Melt Spinnability Comparison of Mechanically and Chemically Recycled Polyamide 6 for Plastic Waste Reuse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Thin Films
2.3. Setup of Melt Spinning Process
2.4. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wren, B. Sustainable Supply Chain Management in the Fast Fashion Industry: A Comparative Study of Current Efforts and Best Practices to Address the Climate Crisis. Clean. Logist. Supply Chain. 2022, 4, 100032. [Google Scholar] [CrossRef]
- Haseeb, M.; Haouas, I.; Nasih, M.; Mihardjo, L.W.W.; Jermsittiparsert, K. Asymmetric Impact of Textile and Clothing Manufacturing on Carbon-Dioxide Emissions: Evidence from Top Asian Economies. Energy 2020, 196, 117094. [Google Scholar] [CrossRef]
- Zubair, M.; Farid, M.; Danish, M.; Zafar, M.N. Evaluation of Air Pollution Sources in Selected Zones of Textile Industries in Pakistan. Environ. Eng. Manag. J. 2017, 16, 373–380. [Google Scholar] [CrossRef]
- Chan, C.K.-M.; Lo, C.K.-Y.; Kan, C.-W. A Systematic Literature Review for Addressing Microplastic Fibre Pollution: Urgency and Opportunities. Water 2024, 16, 1988. [Google Scholar] [CrossRef]
- Tian, H.; Gao, J.; Hao, J.; Lu, L.; Zhu, C.; Qiu, P. Atmospheric Pollution Problems and Control Proposals Associated with Solid Waste Management in China: A Review. J. Hazard. Mater. 2013, 252–253, 142–154. [Google Scholar] [CrossRef]
- Patti, A.; Cicala, G.; Acierno, D. Eco-Sustainability of the Textile Production: Waste Recovery and Current Recycling in the Composites World. Polymers 2021, 13, 134. [Google Scholar] [CrossRef]
- Abrishami, S.; Shirali, A.; Sharples, N.; Kartal, G.E.; Macintyre, L.; Doustdar, O. Textile Recycling and Recovery: An Eco-Friendly Perspective on Textile and Garment Industries Challenges. Text. Res. J. 2024; in press. [Google Scholar] [CrossRef]
- Tripathi, M.; Sharma, M.; Bala, S.; Thakur, V.K.; Singh, A.; Dashora, K.; Hart, P.; Gupta, V.K. Recent Technologies for Transforming Textile Waste into Value-Added Products: A Review. Curr. Res. Biotechnol. 2024, 7, 100225. [Google Scholar] [CrossRef]
- Harmsen, P.; Scheffer, M.; Bos, H. Textiles for Circular Fashion: The Logic behind Recycling Options. Sustainability 2021, 13, 9714. [Google Scholar] [CrossRef]
- Minor, A.-J.; Goldhahn, R.; Rihko-Struckmann, L.; Sundmacher, K. Chemical Recycling Processes of Nylon 6 to Caprolactam: Review and Techno-Economic Assessment. Chem. Eng. J. 2023, 474, 145333. [Google Scholar] [CrossRef]
- Wilhelm, M.; Kummert, H.; Suratkar, A.; Rosenberg, P.; Henning, F. A Study on the Mechanical Recycling of Continuous Glass Fibre Reinforced Nylon 6 Profiles Produced by In-Situ Pultrusion. In Proceedings of the SAMPE Conference 23 Madrid, Madrid, Spain, 4 October 2023. [Google Scholar] [CrossRef]
- Vollmer, I.; Jenks, M.J.F.; Roelands, M.C.P.; White, R.J.; van Harmelen, T.; de Wild, P.; van der Laan, G.P.; Meirer, F.; Keurentjes, J.T.F.; Weckhuysen, B.M. Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angew. Chem. Int. Ed. 2020, 59, 15402–15423. [Google Scholar] [CrossRef]
- Lee, J.; Kwon, E.E.; Lam, S.S.; Chen, W.H.; Rinklebe, J.; Park, Y.K. Chemical Recycling of Plastic Waste via Thermocatalytic Routes. J. Clean. Prod. 2021, 321, 128989. [Google Scholar] [CrossRef]
- Gianchandani, J.; Spruiell, J.E.; Clark, E.S. Polymorphism and Orientation Development in Melt Spinning, Drawing, and Annealing of Nylon-6 Filaments. J. Appl. Polym. Sci. 1982, 27, 3527–3551. [Google Scholar] [CrossRef]
- Zhao, R.; Meng, X.; He, H.; Ming, J.; Ning, X. Formation of a Nylon-6 Micro/Nano-Fiber Assembly through a Low Energy Reactive Melt Spinning Process. Green Chem. 2022, 24, 176–190. [Google Scholar] [CrossRef]
- Jiang, Y.; Loos, K. Enzymatic Synthesis of Biobased Polyesters and Polyamides. Polymers 2016, 8, 243. [Google Scholar] [CrossRef]
- Zeraati, M.; Pourmohamad, R.; Baghchi, B.; Chauhan, N.P.S.; Sargazi, G. Optimization and Predictive Modelling for the Diameter of Nylon-6,6 Nanofibers via Electrospinning for Coronavirus Face Masks. J. Saudi Chem. Soc. 2021, 25, 101348. [Google Scholar] [CrossRef]
- Sørum, S.H.; Fonseca, N.; Kent, M.; Faria, R.P. Assessment of Nylon versus Polyester Ropes for Mooring of Floating Wind Turbines. Ocean Eng. 2023, 278, 114339. [Google Scholar] [CrossRef]
- An, Y.; Kajiwara, T.; Padermshoke, A.; Nguyen, T.V.; Feng, S.; Mokudai, H.; Masaki, T.; Takigawa, M.; Nguyen, T.V.; Masunaga, H.; et al. Environmental Degradation of Nylon, Poly(ethylene terephthalate) (PET), and Poly(vinylidene fluoride) (PVDF) Fishing Line Fibers. ACS Appl. Polym. Mater. 2023, 5, 4427–4436. [Google Scholar] [CrossRef]
- Lv, F.; Yao, D.; Wang, Y.; Wang, C.; Zhu, P.; Hong, Y. Recycling of Waste Nylon 6/Spandex Blended Fabrics by Melt Processing. Compos. Part B 2015, 77, 232–237. [Google Scholar] [CrossRef]
- Alberti, C.; Figueira, R.; Hofmann, M.; Koschke, S.; Enthaler, S. Chemical Recycling of End-of-Life Polyamide 6 via Ring Closing Depolymerization. Chem. Sel. 2019, 4, 12638–12642. [Google Scholar] [CrossRef]
- Cywar, R.M.; Rorrer, N.A.; Mayes, H.B.; Maurya, A.K.; Tassone, C.J.; Beckham, G.T.; Chen, E.Y.-X. Redesigned Hybrid Nylons with Optical Clarity and Chemical Recyclability. J. Am. Chem. Soc. 2022, 144, 5366–5376. [Google Scholar] [CrossRef]
- Sriyanti, I.; Agustini, M.P.; Jauhari, J.; Sukemi; Nawawi, Z. Electrospun Nylon-6 Nanofibers and Their Characteristics. J. Ilm. Pendidik. Fis. Al-BiRuNi 2020, 9, 9–19. [Google Scholar] [CrossRef]
- Ludaš Dujmić, A.; Radičić, R.; Ercegović Ražić, S.; Cingesar, I.K.; Glogar, M.; Jurov, A.; Krstulović, N. Characterization of Melt-Spun Recycled PA 6 Polymer by Adding ZnO Nanoparticles during the Extrusion Process. Polymers 2024, 16, 1883. [Google Scholar] [CrossRef] [PubMed]
- Pelzer, M.; Vad, T.; Becker, A.; Gries, T.; Markova, S.; Teplyakov, V. Melt Spinning and Characterization of Hollow Fibers from Poly(4-Methyl-1-Pentene). J. Appl. Polym. Sci. 2021, 138, e49630. [Google Scholar] [CrossRef]
- Hufenus, R.; Yan, Y.; Dauner, M.; Kikutani, T. Melt-Spun Fibers for Textile Applications. Materials 2020, 13, 4298. [Google Scholar] [CrossRef]
- Tkatch, V.I.; Limanovskii, A.I.; Denisenko, S.N.; Rassolov, S.G. The Effect of the Melt-Spinning Processing Parameters on the Rate of Cooling. Mater. Sci. Eng. A 2002, 323, 91–96. [Google Scholar] [CrossRef]
- Adnan, H.M.; Dawood, A.O. Strength Behavior of Reinforced Concrete Beam Using Recycle of PET Wastes as Synthetic Fibers. Case Stud. Constr. Mater. 2020, 13, e00367. [Google Scholar] [CrossRef]
- Egan, J.; Salmon, S. Strategies and Progress in Synthetic Textile Fiber Biodegradability. SN Appl. Sci. 2022, 4, 22. [Google Scholar] [CrossRef]
- Nikles, D.E.; Farahat, M.S. New Motivation for the Depolymerization Products Derived from Poly(Ethylene Terephthalate) (PET) Waste: A Review. Macromol. Mater. Eng. 2005, 290, 13–30. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, W.; Du, R.; An, W.; Liu, X.; Xu, S.; Wang, Y.-Z. Selective Depolymerization of PET to Monomers from Its Waste Blends and Composites at Ambient Temperature. Chem. Eng. J. 2023, 470, 144032. [Google Scholar] [CrossRef]
- Rubio Arias, J.J.; Thielemans, W. Efficient Depolymerization of Glass Fiber Reinforced PET Composites. Polymers 2022, 14, 5171. [Google Scholar] [CrossRef]
- Kawai, F.; Furushima, Y.; Mochizuki, N.; Muraki, N.; Yamashita, M.; Iida, A.; Mamoto, R.; Tosha, T.; Iizuka, R.; Kitajima, S. Efficient Depolymerization of Polyethylene Terephthalate (PET) and Polyethylene Furanoate by Engineered PET Hydrolase Cut190. AMB Express 2022, 12, 134. [Google Scholar] [CrossRef] [PubMed]
- Hegyi, A.; Vermes, H.; Lăzărescu, A.-V.; Petcu, C.; Bulacu, C. Thermal Insulation Mattresses Based on Textile Waste and Recycled Plastic Waste Fibres, Integrating Natural Fibres of Vegetable or Animal Origin. Materials 2022, 15, 1348. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.G.; Kikutani, T. High Speed Melt Spinning of Nylon 6/Poly(ethylene terephthalate) Bicomponent Fibers. Text. Sci. Eng. 1999, 36, 791–797. [Google Scholar]
- Yanaka, A.; Sakai, W.; Kinashi, K.; Tsutsumi, N. Ferroelectric performance of nylons 6-12, 10-12, 11-12, and 12-12. RSC Adv. 2020, 10, 15740–15750. [Google Scholar] [CrossRef]
- Davidson, J.A.; Jung, H.-T.; Hudson, S.D.; Percec, S. Investigation of molecular orientation in melt-spun high acrylonitrile fibers. Polymer 2000, 41, 3357–3364. [Google Scholar] [CrossRef]
- Hirn, U.; Schennach, R. Comprehensive analysis of individual pulp fiber bonds quantifies the mechanisms of fiber bonding in paper. Sci. Rep. 2015, 5, 10503. [Google Scholar] [CrossRef]
- Rotter, C.; Ishida, H. FTIR separation of nylon-6 chain conformations: Clarification of the mesomorphous and γ-crystalline phases. J. Polym. Sci. Part B Polym. Phys. 1992, 30, 489–495. [Google Scholar] [CrossRef]
- Choi, S.; Kim, H.R.; Jeong, Y.K.; Bang, J.Y.; Kim, H.S. Mechanism of Electrospinning for Poly(amic acid)/Polyacrylonitrile Fiber Fabrication. J. Macromol. Sci. Part B 2020, 57, 222–230. [Google Scholar] [CrossRef]
- Lim, J.; Choi, S.; Kim, H.S. Behavior of Melt Electrospinning/Blowing for Polypropylene Fiber Fabrication. Polym. Int. 2023, 72, 120–125. [Google Scholar] [CrossRef]
- Katoh, K.; Hammar, K.; Smith, P.J.S.; Oldenbourg, R. Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones. Mol. Biol. Cell 1999, 10, 197–210. [Google Scholar] [CrossRef]
- Calosso, C.E.; Bertacco, E.; Calonico, D.; Clivati, C.; Costanzo, G.A.; Frittelli, M.; Levi, F.; Mura, A.; Godone, A. Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network. Opt. Lett. 2014, 39, 1177–1180. [Google Scholar] [CrossRef] [PubMed]
- Habib, M.A.; Anower, M.S.; Hasan, M.R. Ultrahigh birefringence and extremely low loss slotted-core microstructure fiber in terahertz regime. Curr. Opt. Photonics 2017, 1, 567–572. [Google Scholar] [CrossRef]
- Chen, J.; Yu, Q.; Ge, B.; Zhang, C.; He, Y.; Sun, S. A phase difference measurement method for integrated optical interferometric imagers. Remote Sens. 2023, 15, 2194. [Google Scholar] [CrossRef]
- Zhang, X.; Li, K. Phase-only liquid-crystal-on-silicon spatial-light-modulator uniformity measurement with improved classical polarimetric method. Crystals 2023, 13, 958. [Google Scholar] [CrossRef]
- Cho, D.; Zhmayev, E.; Joo, Y.L. Structural studies of electrospun nylon 6 fibers from solution and melt. Polymer 2011, 52, 4600–4609. [Google Scholar] [CrossRef]
- Suzuki, H.; Ishii, S.; Sato, H.; Yamamoto, S.; Morisawa, Y.; Ozaki, Y.; Uchiyama, T.; Otani, C.; Hoshina, H. Brill transition of nylon-6 characterized by low-frequency vibration through terahertz absorption spectroscopy. Chem. Phys. Lett. 2013, 575, 36–39. [Google Scholar] [CrossRef]
- Pepin, J.; Miri, V.; Lefebvre, J.M. New insights into the Brill transition in polyamide 11 and polyamide 6. Macromolecules 2016, 49, 564–573. [Google Scholar] [CrossRef]
- Murthy, N.S.; Aharoni, S.M.; Szollosi, A.B. Stability of the γ form and the development of the α form in nylon 6. J. Polym. Sci. Polym. Phys. Ed. 1985, 23, 2549–2565. [Google Scholar] [CrossRef]
- Holmes, D.R.; Bunn, C.W.; Smith, D.J. The crystal structure of polycaproamide: Nylon 6. J. Polym. Sci. 1955, XVII, 159–177. [Google Scholar] [CrossRef]
- Misra, S.; Lu, F.-M.; Spruiell, J.E.; Richeson, G.C. Influence of molecular weight distribution on the structure and properties of melt-spun polypropylene filaments. J. Appl. Polym. Sci. 1995, 56, 1761–1779. [Google Scholar] [CrossRef]
- Murase, S.; Kashima, M.; Kudo, K.; Hirami, M. Structure and properties of high-speed spun fibers of nylon 6. Macromol. Chem. Phys. 1997, 198, 561–572. [Google Scholar] [CrossRef]
- Bankar, V.G.; Spruiell, J.E.; White, J.L. Melt spinning of nylon 6: Structure development and mechanical properties of as-spun filaments. J. Appl. Polym. Sci. 1977, 21, 2341–2358. [Google Scholar] [CrossRef]
- Chu, L.; Qin, Z.; Yang, J.; Li, X. Anatase TiO2 nanoparticles with exposed {001} facets for efficient dye-sensitized solar cells. Sci. Rep. 2015, 5, 12143. [Google Scholar] [CrossRef] [PubMed]
Discharge pressure (MPa) | 0.03 | |||||
Cylinder temperature (°C) | 230 | |||||
Coil heater (°C) | 200 | |||||
Winding speed (rpm) | 300 | 500 | 700 | 1000 | 1500 | 2000 |
Linear velocity (m min−1) | 170 | 283 | 396 | 565 | 848 | 1130 |
Winding Speed (rpm) | 300 | 500 | 700 | 1000 | 1500 | 2000 |
---|---|---|---|---|---|---|
p-PA | Spinnable | Spinnable | Spinnable | Spinnable | Spinnable | Spinnable |
p-PF | Not feasible | Spinnable | - | - | - | - |
mr-PA | Spinnable | - | - | - | - | - |
cr-PA | Spinnable | Spinnable | Spinnable | Spinnable | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Kim, M.; Kim, Y.; Kim, J.; Lim, J.; Lee, W.; Kim, H.S.; Cho, D.-H.; Lee, J.; Choi, S. Melt Spinnability Comparison of Mechanically and Chemically Recycled Polyamide 6 for Plastic Waste Reuse. Polymers 2024, 16, 3152. https://doi.org/10.3390/polym16223152
Kim K, Kim M, Kim Y, Kim J, Lim J, Lee W, Kim HS, Cho D-H, Lee J, Choi S. Melt Spinnability Comparison of Mechanically and Chemically Recycled Polyamide 6 for Plastic Waste Reuse. Polymers. 2024; 16(22):3152. https://doi.org/10.3390/polym16223152
Chicago/Turabian StyleKim, Kyuhyun, Minsoo Kim, Yerim Kim, Jinhyeong Kim, Jihwan Lim, Woojin Lee, Han Seong Kim, Dong-Hyun Cho, Jaejun Lee, and Sejin Choi. 2024. "Melt Spinnability Comparison of Mechanically and Chemically Recycled Polyamide 6 for Plastic Waste Reuse" Polymers 16, no. 22: 3152. https://doi.org/10.3390/polym16223152
APA StyleKim, K., Kim, M., Kim, Y., Kim, J., Lim, J., Lee, W., Kim, H. S., Cho, D. -H., Lee, J., & Choi, S. (2024). Melt Spinnability Comparison of Mechanically and Chemically Recycled Polyamide 6 for Plastic Waste Reuse. Polymers, 16(22), 3152. https://doi.org/10.3390/polym16223152