Simulation and Analysis of the Loading, Relaxation, and Recovery Behavior of Polyethylene and Its Pipes
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Mechanical Characterization
3. Data Analysis
3.1. Three-Branch Model
3.2. Method for Data Analysis
3.3. Resolution of the Experimental Measurements
4. Results and Discussion
4.1. Accuracy of the Simulation
4.2. Best Five Fits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sparks, T.D.; Banerjee, D. Materials Informatics and Polymer Science: Pushing the Frontiers of Our Understanding. Matter 2021, 4, 1454–1456. [Google Scholar] [CrossRef]
- Stepto, R.; Horie, K.; Kitayama, T.; Abe, A. Mission and challenges of polymer science and technology. Pure Appl. Chem. 2003, 75, 1359–1369. [Google Scholar] [CrossRef]
- Men, Y. Critical Strains Determine the Tensile Deformation Mechanism in Semicrystalline Polymers. Macromolecules 2020, 53, 9155–9157. [Google Scholar] [CrossRef]
- Felder, S.; Holthusen, H.; Hesseler, S.; Pohlkemper, F.; Gries, T.; Simon, J.-W.; Reese, S. Incorporating Crystallinity Distributions into a Thermo-Mechanically Coupled Constitutive Model for Semi-Crystalline Polymers. Int. J. Plast. 2020, 135, 102751. [Google Scholar] [CrossRef]
- Farge, L.; Boisse, J.; Dillet, J.; André, S.; Albouy, P.-A.; Meneau, F. Wide-Angle X-Ray Scattering Study of the Lamellar/Fibrillar Transition for a Semi-Crystalline Polymer Deformed in Tension in Relation with the Evolution of Volume Strain. J. Polym. Sci. Part B Polym. Phys. 2015, 53, 1470–1480. [Google Scholar] [CrossRef]
- Uchida, M.; Tada, N. Micro-, Meso- to Macroscopic Modeling of Deformation Behavior of Semi-Crystalline Polymer. Int. J. Plast. 2013, 49, 164–184. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, D.; Zaera, R.; Arias, A. A Hyperelastic-Thermoviscoplastic Constitutive Model for Semi-Crystalline Polymers: Application to PEEK under Dynamic Loading Conditions. Int. J. Plast. 2017, 88, 27–52. [Google Scholar] [CrossRef]
- Hao, P.; Laheri, V.; Dai, Z.; Gilabert, F.A. A Rate-Dependent Constitutive Model Predicting the Double Yield Phenomenon, Self-Heating and Thermal Softening in Semi-Crystalline Polymers. Int. J. Plast. 2022, 153, 103233. [Google Scholar] [CrossRef]
- Li, C.Y. The Rise of Semicrystalline Polymers and Why Are They Still Interesting. Polymer 2020, 211, 123150. [Google Scholar] [CrossRef]
- Regrain, C.; Laiarinandrasana, L.; Toillon, S.; Saï, K. Multi-Mechanism Models for Semi-Crystalline Polymer: Constitutive Relations and Finite Element Implementation. Int. J. Plast. 2009, 25, 1253–1279. [Google Scholar] [CrossRef]
- Dusunceli, N.; Colak, O.U. Modelling Effects of Degree of Crystallinity on Mechanical Behavior of Semicrystalline Polymers. Int. J. Plast. 2008, 24, 1224–1242. [Google Scholar] [CrossRef]
- Yeh, I.-C.; Andzelm, J.W.; Rutledge, G.C. Mechanical and Structural Characterization of Semicrystalline Polyethylene under Tensile Deformation by Molecular Dynamics Simulations. Macromolecules 2015, 48, 4228–4239. [Google Scholar] [CrossRef]
- Yang, X.; Sun, Y.; Liao, T.; Men, Y. Strain Dependent Evolution of Structure and Stress in Propylene-Based Elastomer during Stress Relaxation. Polymer 2020, 201, 122612. [Google Scholar] [CrossRef]
- Khan, F.; Yeakle, C. Experimental Investigation and Modeling of Non-Monotonic Creep Behavior in Polymers. Int. J. Plast. 2011, 27, 512–521. [Google Scholar] [CrossRef]
- Lendlein, A.; Langer, R. Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications. Science 2002, 296, 1673–1676. [Google Scholar] [CrossRef]
- Lendlein, A.; Gould, O.E. Reprogrammable Recovery and Actuation Behaviour of Shape-Memory Polymers. Nat. Rev. Mater. 2019, 4, 116–133. [Google Scholar] [CrossRef]
- Leterrier, Y. Durability of Nanosized Oxygen-Barrier Coatings on Polymers. Prog. Mater. Sci. 2003, 48, 1–55. [Google Scholar] [CrossRef]
- Hutař, P.; Ševčík, M.; Frank, A.; Náhlík, L.; Kučera, J.; Pinter, G. The Effect of Residual Stress on Polymer Pipe Lifetime. Eng. Fract. Mech. 2013, 108, 98–108. [Google Scholar] [CrossRef]
- Kartalis, C.N.; Papaspyrides, C.D.; Pfaendner, R. Recycling of Post-Used PE Packaging Film Using the Restabilization Technique. Polym. Degrad. Stab. 2000, 70, 189–197. [Google Scholar] [CrossRef]
- Hou, S.; Qi, S.; Hutt, D.A.; Tyrer, J.R.; Mu, M.; Zhou, Z. Three Dimensional Printed Electronic Devices Realised by Selective Laser Melting of Copper/High-Density-Polyethylene Powder Mixtures. J. Mater. Process. Technol. 2018, 254, 310–324. [Google Scholar] [CrossRef]
- Sobhan, K.; Mashnad, M. Tensile Strength and Toughness of Soil–Cement–Fly-Ash Composite Reinforced with Recycled High-Density Polyethylene Strips. J. Mater. Civ. Eng. 2002, 14, 177–184. [Google Scholar] [CrossRef]
- Cha, J.-H.; Kim, Y.; Sathish Kumar, S.K.; Choi, C.; Kim, C.-G. Ultra-High-Molecular-Weight Polyethylene as a Hypervelocity Impact Shielding Material for Space Structures. Acta Astronaut. 2020, 168, 182–190. [Google Scholar] [CrossRef]
- Zaribaf, F.P. Medical-Grade Ultra-High Molecular Weight Polyethylene: Past, Current and Future. Mater. Sci. Technol. 2018, 34, 1940–1953. [Google Scholar] [CrossRef]
- Patil, A.; Patel, A.; Purohit, R. An Overview of Polymeric Materials for Automotive Applications. Mater. Today Proc. 2017, 4, 3807–3815. [Google Scholar] [CrossRef]
- Barba, D.; Arias, A.; Garcia-Gonzalez, D. Temperature and Strain Rate Dependences on Hardening and Softening Behaviours in Semi-Crystalline Polymers: Application to PEEK. Int. J. Solids Struct. 2020, 182–183, 205–217. [Google Scholar] [CrossRef]
- Ayoub, G.; Zaïri, F.; Naït-Abdelaziz, M.; Gloaguen, J.M. Modelling Large Deformation Behaviour under Loading–Unloading of Semicrystalline Polymers: Application to a High Density Polyethylene. Int. J. Plast. 2010, 26, 329–347. [Google Scholar] [CrossRef]
- Atiq, O.; Ricci, E.; Baschetti, M.G.; De Angelis, M.G. Modelling Solubility in Semi-Crystalline Polymers: A Critical Comparative Review. Fluid Phase Equilibria 2022, 556, 113412. [Google Scholar] [CrossRef]
- Nunes dos Santos, W.; Augusto Marcondes Agnelli, J.; Mummery, P.; Wallwork, A. Effect of Recycling on the Thermal Properties of Polymers. Polym. Test. 2007, 26, 216–221. [Google Scholar] [CrossRef]
- Miaudet, P.; Derre, A.; Maugey, M.; Zakri, C.; Piccione, P.M.; Inoubli, R.; Poulin, P. Shape and Temperature Memory of Nanocomposites with Broadened Glass Transition. Science 2007, 318, 1294–1296. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Liu, Z. A Viscoelastic Constitutive Model for Shape Memory Polymers Based on Multiplicative Decompositions of the Deformation Gradient. Int. J. Plast. 2017, 91, 300–317. [Google Scholar] [CrossRef]
- Liu, P.; Peng, L.; Chen, J.; Yang, B.; Chen, Y.; Luo, Z.; Han, C.C.; Huang, X.; Men, Y. Tensile Creep Failure of Isotactic Polypropylene under the Strain Criterion. Macromolecules 2022, 55, 9663–9670. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, J.; Pan, P. Strain-Induced Multiscale Structural Evolutions of Crystallized Polymers: From Fundamental Studies to Recent Progresses. Prog. Polym. Sci. 2023, 140, 101676. [Google Scholar] [CrossRef]
- Sedighiamiri, A.; Govaert, L.E.; Kanters, M.J.W.; van Dommelen, J.A.W. Micromechanics of Semicrystalline Polymers: Yield Kinetics and Long-Term Failure. J. Polym. Sci. B Polym. Phys. 2012, 50, 1664–1679. [Google Scholar] [CrossRef]
- Lim, S.D.; Rhee, J.M.; Nah, C. Predicting the Long-Term Creep Behavior of Plastics Using the Short-Term Creep Test. Int. Polym. Process. 2004, 7, 313–319. [Google Scholar] [CrossRef]
- Kubát, J. Stress Relaxation in Solids. Nature 1965, 205, 378–379. [Google Scholar] [CrossRef]
- Janssen, R. Deformation and Failure in Semi-Crystalline Polymer Systems. Master’s Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2002. [Google Scholar]
- Malpass, V.E. Prediction of Long-Term ABS Relaxation Behavior. J. Appl. Polym. Sci. 1968, 12, 771–788. [Google Scholar] [CrossRef]
- Moser, A.P.; Folkman, S.L. Buried Pipe Design, 3rd ed.; McGraw-Hill: New York, NY, USA, 2008; ISBN 978-0-07-147689-8. [Google Scholar]
- Moser, A.P. Structural Performance of Buried Profile-Wall High-Density Polyethylene Pipe and Influence of Pipe Wall Geometry. Transp. Res. Rec. 1998, 1624, 206–213. [Google Scholar] [CrossRef]
- Frank, A.; Pinter, G.; Lang, R.W. Prediction of the Remaining Lifetime of Polyethylene Pipes after up to 30 Years in Use. Polym. Test. 2009, 28, 737–745. [Google Scholar] [CrossRef]
- Frank, A.; Berger, I.J.; Arbeiter, F.; Hutař, P.; Pinter, G. Lifetime Prediction of PE100 and PE100-RC Pipes Based on Slow Crack Growth Resistance. In Proceedings of the 18th Plastic Pipes Conference PPXVIII, Berlin, Germany, 12–14 September 2016. [Google Scholar] [CrossRef]
- Hoàng, E.M.; Lowe, D. Lifetime Prediction of a Blue PE100 Water Pipe. Polym. Degrad. Stab. 2008, 93, 1496–1503. [Google Scholar] [CrossRef]
- Brown, N. Intrinsic Lifetime of Polyethylene Pipelines. Polym. Eng. Sci. 2007, 47, 477–480. [Google Scholar] [CrossRef]
- Zha, S.; Lan, H.; Huang, H. Review on Lifetime Predictions of Polyethylene Pipes: Limitations and Trends. Int. J. Press. Vessel. Pip. 2022, 198, 104663. [Google Scholar] [CrossRef]
- Frank, A.; Arbeiter, F.J.; Berger, I.J.; Hutař, P.; Náhlík, L.; Pinter, G. Fracture Mechanics Lifetime Prediction of Polyethylene Pipes. J. Pipeline Syst. Eng. Pract. 2019, 10, 04018030. [Google Scholar] [CrossRef]
- Zhang, Y.; Jar, P.-Y.B. Time-Strain Rate Superposition for Relaxation Behavior of Polyethylene Pressure Pipes. Polym. Test. 2016, 50, 292–296. [Google Scholar] [CrossRef]
- Zhang, Y.; Jar, P.-Y.B.; Xue, S.; Han, L.; Li, L. Measurement of Environmental Stress Cracking Resistance of Polyethylene Pipe: A Review. In Proceedings of the ASME 2019 Asia Pacific Pipeline Conference, Qingdao, China, 15–19 May 2019; American Society of Mechanical Engineers: New York City, NY, USA; p. V001T10A001. [Google Scholar]
- Zhang, Y.; Jar, P.-Y.B.; Xue, S.; Li, L. Numerical Simulation of Ductile Fracture in Polyethylene Pipe with Continuum Damage Mechanics and Gurson-Tvergaard-Needleman Damage Models. Proc. IMechE 2019, 233, 2455–2468. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiao, L.; Fan, J.; Xue, S.; Jar, P.B. Molecular Dynamics Simulation of Plastic Deformation in Polyethylene under Uniaxial and Biaxial Tension. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2021, 236, 146442072110458. [Google Scholar] [CrossRef]
- Fancey, K.S. A Mechanical Model for Creep, Recovery and Stress Relaxation in Polymeric Materials. J. Mater. Sci. 2005, 40, 4827–4831. [Google Scholar] [CrossRef]
- Tan, N.; Jar, P.-Y.B. Determining Deformation Transition in Polyethylene under Tensile Loading. Polymers 2019, 11, 1415. [Google Scholar] [CrossRef]
- Hong, K.; Rastogi, A.; Strobl, G. Model Treatment of Tensile Deformation of Semicrystalline Polymers: Static Elastic Moduli and Creep Parameters Derived for a Sample of Polyethylene. Macromolecules 2004, 37, 10174–10179. [Google Scholar] [CrossRef]
- Castagnet, S. High-Temperature Mechanical Behavior of Semi-Crystalline Polymers and Relationship to a Rubber-like “Relaxed” State. Mech. Mater. 2009, 41, 75–86. [Google Scholar] [CrossRef]
- Koerner, H.; Price, G.; Pearce, N.A.; Alexander, M.; Vaia, R.A. Remotely Actuated Polymer Nanocomposites—Stress-Recovery of Carbon-Nanotube-Filled Thermoplastic Elastomers. Nat. Mater. 2004, 3, 115–120. [Google Scholar] [CrossRef]
- Shi, F. Studies on the Time-Dependent Behavior of Semi-Crystalline Polymers. Res. Dev. Polym. Sci. 2023, 2, 1–2. [Google Scholar] [CrossRef]
- Yakimets, I.; Lai, D.; Guigon, M. Model to Predict the Viscoelastic Response of a Semi-Crystalline Polymer under Complex Cyclic Mechanical Loading and Unloading Conditions. Mech. Time-Depend Mater. 2007, 11, 47–60. [Google Scholar] [CrossRef]
- Wilding, M.A.; Ward, I.M. Creep and Recovery of Ultra High Modulus Polyethylene. Polymer 1981, 22, 870–876. [Google Scholar] [CrossRef]
- Wilding, M.A.; Ward, I.M. Tensile Creep and Recovery in Ultra-High Modulus Linear Polyethylenes. Polymer 1978, 19, 969–976. [Google Scholar] [CrossRef]
- Sweeney, J.; Ward, I.M. A Unified Model of Stress Relaxation and Creep Applied to Oriented Polyethylene. J. Mater. Sci. 1990, 25, 697–705. [Google Scholar] [CrossRef]
- Okereke, M.I.; Akpoyomare, A.I. Two-Process Constitutive Model for Semicrystalline Polymers across a Wide Range of Strain Rates. Polymer 2019, 183, 121818. [Google Scholar] [CrossRef]
- Detrez, F.; Cantournet, S.; Séguéla, R. A Constitutive Model for Semi-Crystalline Polymer Deformation Involving Lamellar Fragmentation. Comptes Rendus Mécanique 2010, 338, 681–687. [Google Scholar] [CrossRef]
- Olley, P.; Sweeney, J. A Multiprocess Eyring Model for Large Strain Plastic Deformation. J. Appl. Polym. Sci. 2011, 119, 2246–2260. [Google Scholar] [CrossRef]
- Johnsen, J.; Clausen, A.H.; Grytten, F.; Benallal, A.; Hopperstad, O.S. A Thermo-Elasto-Viscoplastic Constitutive Model for Polymers. J. Mech. Phys. Solids 2019, 124, 681–701. [Google Scholar] [CrossRef]
- Brusselle-Dupend, N.; Lai, D.; Feaugas, X.; Guigon, M.; Clavel, M. Mechanical Behavior of a Semicrystalline Polymer before Necking. Part II: Modeling of Uniaxial Behavior. Polym. Eng. Sci. 2003, 43, 501–518. [Google Scholar] [CrossRef]
- DeMaio, A.; Patterson, T. Rheological Modeling of the Tensile Creep Behavior of Paper: Tensile Creep Behavior of Paper. J. Appl. Polym. Sci. 2007, 106, 3543–3554. [Google Scholar] [CrossRef]
- Duxbury, J.; Ward, I.M. The Creep Behaviour of Ultra-High Modulus Polypropylene. J. Mater. Sci. 1987, 22, 1215–1222. [Google Scholar] [CrossRef]
- Guedes, R.M.; Singh, A.; Pinto, V. Viscoelastic Modelling of Creep and Stress Relaxation Behaviour in PLA-PCL Fibres. Fibers Polym. 2017, 18, 2443–2453. [Google Scholar] [CrossRef]
- Daneshyar, A.; Ghaemian, M.; Du, C. A Fracture Energy–Based Viscoelastic–Viscoplastic–Anisotropic Damage Model for Rate-Dependent Cracking of Concrete. Int. J. Fract. 2023, 241, 1–26. [Google Scholar] [CrossRef]
- Jordan, B.; Gorji, M.B.; Mohr, D. Neural Network Model Describing the Temperature- and Rate-Dependent Stress-Strain Response of Polypropylene. Int. J. Plast. 2020, 135, 102811. [Google Scholar] [CrossRef]
- Nechad, H.; Helmstetter, A.; El Guerjouma, R.; Sornette, D. Andrade and Critical Time-to-Failure Laws in Fiber-Matrix Composites: Experiments and Model. J. Mech. Phys. Solids 2005, 53, 1099–1127. [Google Scholar] [CrossRef]
- Naraghi, M.; Kolluru, P.V.; Chasiotis, I. Time and Strain Rate Dependent Mechanical Behavior of Individual Polymeric Nanofibers. J. Mech. Phys. Solids 2014, 62, 257–275. [Google Scholar] [CrossRef]
- Xu, P.; Zhou, Z.; Liu, T.; Pan, S.; Tan, X.; Chen, Z. The Investigation of Viscoelastic Mechanical Behaviors of Bolted GLARE Joints: Modeling and Experiments. Int. J. Mech. Sci. 2020, 175, 105538. [Google Scholar] [CrossRef]
- Agbossou, A.; Cohen, I.; Muller, D. Effects of Interphase and Impact Strain Rates on Tensile Off-Axis Behaviour of Unidirectional Glass Fibre Composite: Experimental Results. Eng. Fract. Mech. 1995, 52, 923–935. [Google Scholar] [CrossRef]
- Arruda, E.M.; Boyce, M.C. Evolution of Plastic Anisotropy in Amorphous Polymers during Finite Straining. Int. J. Plast. 1993, 9, 697–720. [Google Scholar] [CrossRef]
- Du, Y.; Pei, P.; Suo, T.; Gao, G. Large Deformation Mechanical Behavior and Constitutive Modeling of Oriented PMMA. Int. J. Mech. Sci. 2023, 257, 108520. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, L.; Lan, X.; Leng, J.; Liu, Y. Thermomechanical Constitutive Models of Shape Memory Polymers and Their Composites. Appl. Mech. Rev. 2023, 75, 020802. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, J.; Seppala, J.E.; Nguyen, T.D. Extending the Effective Temperature Model to the Large Strain Hardening Behavior of Glassy Polymers. J. Mech. Phys. Solids 2021, 146, 104175. [Google Scholar] [CrossRef]
- Hong, K.; Strobl, G. Characterizing and Modeling the Tensile Deformation of Polyethylene: The Temperature and Crystallinity Dependences. Polym. Sci. Ser. A 2008, 50, 483–493. [Google Scholar] [CrossRef]
- Na, B.; Zhang, Q.; Fu, Q.; Men, Y.; Hong, K.; Strobl, G. Viscous-Force-Dominated Tensile Deformation Behavior of Oriented Polyethylene. Macromolecules 2006, 39, 2584–2591. [Google Scholar] [CrossRef]
- Izraylit, V.; Heuchel, M.; Gould, O.E.C.; Kratz, K.; Lendlein, A. Strain Recovery and Stress Relaxation Behaviour of Multiblock Copolymer Blends Physically Cross-Linked with PLA Stereocomplexation. Polymer 2020, 209, 122984. [Google Scholar] [CrossRef]
- Shi, F.; Ben Jar, P.-Y. Characterization of Polyethylene Using a New Test Method Based on Stress Response to Relaxation and Recovery. Polymers 2022, 14, 2763. [Google Scholar] [CrossRef]
- Haario, H.; von Hertzen, R.; Karttunen, A.T.; Jorkama, M. Identification of the Viscoelastic Parameters of a Polymer Model by the Aid of a MCMC Method. Mech. Res. Commun. 2014, 61, 1–6. [Google Scholar] [CrossRef]
- Johnson, T.P.M.; Socrate, S.; Boyce, M.C. A Viscoelastic, Viscoplastic Model of Cortical Bone Valid at Low and High Strain Rates. Acta Biomater. 2010, 6, 4073–4080. [Google Scholar] [CrossRef]
- Christöfl, P.; Czibula, C.; Berer, M.; Oreski, G.; Teichert, C.; Pinter, G. Comprehensive Investigation of the Viscoelastic Properties of PMMA by Nanoindentation. Polym. Test. 2021, 93, 106978. [Google Scholar] [CrossRef]
- Sweeney, J.; Bonner, M.; Ward, I.M. Modelling of Loading, Stress Relaxation and Stress Recovery in a Shape Memory Polymer. J. Mech. Behav. Biomed. Mater. 2014, 37, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Wayne Chen, W.; Jane Wang, Q.; Huan, Z.; Luo, X. Semi-Analytical Viscoelastic Contact Modeling of Polymer-Based Materials. J. Tribol. 2011, 133, 041404. [Google Scholar] [CrossRef]
- Shahin, A.; Barsoum, I.; Islam, M.D. Constitutive Model Calibration of the Time and Temperature-Dependent Behavior of High Density Polyethylene. Polym. Test. 2020, 91, 106800. [Google Scholar] [CrossRef]
- Xu, Q.; Engquist, B.; Solaimanian, M.; Yan, K. A New Nonlinear Viscoelastic Model and Mathematical Solution of Solids for Improving Prediction Accuracy. Sci. Rep. 2020, 10, 2202. [Google Scholar] [CrossRef] [PubMed]
- Mierke, C.T. Viscoelasticity Acts as a Marker for Tumor Extracellular Matrix Characteristics. Front. Cell Dev. Biol. 2021, 9, 785138. [Google Scholar] [CrossRef]
- Muliana, A. A Fractional Model of Nonlinear Multiaxial Viscoelastic Behaviors. Mech. Time-Depend Mater. 2022, 27, 1187–1207. [Google Scholar] [CrossRef]
- ASTM D2837-22; Test Method for Obtaining Hydrostatic Design Basis for Thermoplastic Pipe Materials or Pressure Design Basis for Thermoplastic Pipe Products. ASTM International: West Conshohocken, PA, USA, 2022.
- Tan, N.; Jar, P.B. Multi-Relaxation Test to Characterize PE Pipe Performance. Plast. Eng. 2019, 75, 40–45. [Google Scholar] [CrossRef]
- Zhang, Y.; Ben Jar, P.-Y. Quantitative Assessment of Deformation-Induced Damage in Polyethylene Pressure Pipe. Polym. Test. 2015, 47, 42–50. [Google Scholar] [CrossRef]
- Zhang, Y.; Jar, P.-Y.B. Phenomenological Modelling of Tensile Fracture in PE Pipe by Considering Damage Evolution. Mater. Des. 2015, 77, 72–82. [Google Scholar] [CrossRef]
- Zhang, Y.; Ben Jar, P.-Y. Effects of Crosshead Speed on the Quasi-Static Stress–Strain Relationship of Polyethylene Pipes. J. Press. Vessel. Technol. 2017, 139, 021402. [Google Scholar] [CrossRef]
- Shi, F.; Jar, P.-Y.B. Characterization of Loading, Relaxation, and Recovery Behaviors of High-Density Polyethylene Using a Three-Branch Spring-Dashpot Model. Polym. Eng. Sci. 2024, 64, 4920–4934. [Google Scholar] [CrossRef]
- Kumar, S.; Liu, G.; Schloerb, D.; Srinivasan, M. Viscoelastic Characterization of the Primate Finger Pad In Vivo by Microstep Indentation and Three-Dimensional Finite Element Models for Tactile Sensation Studies. J. Biomech. Eng. 2015, 137. [Google Scholar] [CrossRef] [PubMed]
- Blake, Y. Review of Viscoelastic Models Applied to Cortical Bone; Trinity College Dublin: Dublin, Ireland, 2021. [Google Scholar]
- Heuchel, M.; Cui, J.; Kratz, K.; Kosmella, H.; Lendlein, A. Relaxation Based Modeling of Tunable Shape Recovery Kinetics Observed under Isothermal Conditions for Amorphous Shape-Memory Polymers. Polymer 2010, 51, 6212–6218. [Google Scholar] [CrossRef]
- López-Guerra, E.A.; Solares, S.D. Modeling Viscoelasticity through Spring–Dashpot Models in Intermittent-Contact Atomic Force Microscopy. Beilstein J. Nanotechnol. 2014, 5, 2149–2163. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Odaira, T.; Sato, S.; Xu, X.; Omori, T.; Harjo, S.; Kawasaki, T.; Seiner, H.; Zoubková, K.; Murakami, Y.; et al. Non-Hookean Large Elastic Deformation in Bulk Crystalline Metals. Nat. Commun. 2022, 13, 5307. [Google Scholar] [CrossRef]
- Yang, J.-L.; Zhang, Z.; Schlarb, A.K.; Friedrich, K. On the Characterization of Tensile Creep Resistance of Polyamide 66 Nanocomposites. Part II: Modeling and Prediction of Long-Term Performance. Polymer 2006, 47, 6745–6758. [Google Scholar] [CrossRef]
- Alves, A.F.C.; Ferreira, B.P.; Andrade Pires, F.M. Constitutive Modeling of Amorphous Thermoplastics from Low to High Strain Rates: Formulation and Critical Comparison Employing an Optimization-Based Parameter Identification. Int. J. Solids Struct. 2023, 273, 112258. [Google Scholar] [CrossRef]
- Laheri, V.; Hao, P.; Gilabert, F.A. Constitutive Recasting of Macromolecular-Based Thermoviscoplasticity as Yield Function-Based Formulation. Int. J. Mech. Sci. 2023, 250, 108278. [Google Scholar] [CrossRef]
- Teoh, S.H. Effect of Saline Solution on Creep Fracture of Delrin®. Biomaterials 1993, 14, 132–136. [Google Scholar] [CrossRef]
- Jadhao, V.; Robbins, M.O. Rheological Properties of Liquids under Conditions of Elastohydrodynamic Lubrication. Tribol. Lett. 2019, 67, 66. [Google Scholar] [CrossRef]
- Hong, K. A Model Treating Tensile Deformation of Semi-Crystalline Polymers. Ph.D. Thesis, University of Freiburg Institute of Mathematics, Breisgau, Germany, 2005. [Google Scholar]
- Tan, N.; Ben Jar, P.-Y. Reanalysis of the Creep Test Data and Failure Behavior of Polyethylene and Its Copolymers. J. Mater. Eng. Perform. 2022, 31, 2182–2192. [Google Scholar] [CrossRef]
- Halsey, G.; White, H.J.; Eyring, H. Mechanical Properties of Textiles, I. Text. Res. 1945, 15, 295–311. [Google Scholar] [CrossRef]
- Lee, H.-N.; Paeng, K.; Swallen, S.F.; Ediger, M.D. Direct Measurement of Molecular Mobility in Actively Deformed Polymer Glasses. Science 2009, 323, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Ghorbel, E.; Hadriche, I.; Casalino, G.; Masmoudi, N. Characterization of Thermo-Mechanical and Fracture Behaviors of Thermoplastic Polymers. Materials 2014, 7, 375–398. [Google Scholar] [CrossRef] [PubMed]
- Men, Y.; Rieger, J.; Strobl, G. Role of the Entangled Amorphous Network in Tensile Deformation of Semicrystalline Polymers. Phys. Rev. Lett. 2003, 91, 095502. [Google Scholar] [CrossRef]
- Nitta, K. On a Thermodynamic Foundation of Eyring Rate Theory for Plastic Deformation of Polymer Solids. Philos. Mag. Lett. 2023, 103, 2186190. [Google Scholar] [CrossRef]
- Srikanth, K.; Sreejith, P.; Arvind, K.; Kannan, K.; Pandey, M. An Efficient Mode-of-Deformation Dependent Rate-Type Constitutive Relation for Multi-Modal Cyclic Loading of Elastomers. Int. J. Plast. 2023, 163, 103517. [Google Scholar] [CrossRef]
- Kakaletsis, S.; Lejeune, E.; Rausch, M.K. Can Machine Learning Accelerate Soft Material Parameter Identification from Complex Mechanical Test Data? Biomech. Model. Mechanobiol. 2023, 22, 57–70. [Google Scholar] [CrossRef]
- Klinge, S.; Steinmann, P. Inverse Analysis for Heterogeneous Materials and Its Application to Viscoelastic Curing Polymers. Comput. Mech. 2015, 55, 603–615. [Google Scholar] [CrossRef]
- Polanco-Loria, M.; Daiyan, H.; Grytten, F. Material Parameters Identification: An Inverse Modeling Methodology Applicable for Thermoplastic Materials. Polym. Eng. Sci. 2012, 52, 438–448. [Google Scholar] [CrossRef]
- Chen, Z.; Diebels, S.; Peter, N.J.; Schneider, A.S. Identification of Finite Viscoelasticity and Adhesion Effects in Nanoindentation of a Soft Polymer by Inverse Method. Comput. Mater. Sci. 2013, 72, 127–139. [Google Scholar] [CrossRef]
- Yun, G.J.; Shang, S. A Self-Optimizing Inverse Analysis Method for Estimation of Cyclic Elasto-Plasticity Model Parameters. Int. J. Plast. 2011, 27, 576–595. [Google Scholar] [CrossRef]
- Van Der Vossen, B.C.; Makeev, A.V. Mechanical Properties Characterization of Fiber Reinforced Composites by Nonlinear Constitutive Parameter Optimization in Short Beam Shear Specimens. J. Compos. Mater. 2021, 55, 2985–2997. [Google Scholar] [CrossRef]
- Saleeb, A.F.; Gendy, A.S.; Wilt, T.E. Parameter-Estimation Algorithms for Characterizing a Class of Isotropic and Anisotropic Viscoplastic Material Models. Mech. Time-Depend. Mater. 2002, 6, 323–361. [Google Scholar] [CrossRef]
- Maier, G.; Bocciarelli, M.; Bolzon, G.; Fedele, R. Inverse Analyses in Fracture Mechanics. Int. J. Fract. 2006, 138, 47–73. [Google Scholar] [CrossRef]
- Lyu, Y.; Pathirage, M.; Ramyar, E.; Liu, W.K.; Cusatis, G. Machine Learning Meta-Models for Fast Parameter Identification of the Lattice Discrete Particle Model. Comput. Mech. 2023, 72, 593–612. [Google Scholar] [CrossRef]
- Hoerig, C.; Ghaboussi, J.; Wang, Y.; Insana, M.F. Machine Learning in Model-Free Mechanical Property Imaging: Novel Integration of Physics with the Constrained Optimization Process. Front. Phys. 2021, 9, 600718. [Google Scholar] [CrossRef]
- Andrade-Campos, A.; Thuillier, S.; Pilvin, P.; Teixeira-Dias, F. On the Determination of Material Parameters for Internal Variable Thermoelastic–Viscoplastic Constitutive Models. Int. J. Plast. 2007, 23, 1349–1379. [Google Scholar] [CrossRef]
- Unger, J.F.; Könke, C. An Inverse Parameter Identification Procedure Assessing the Quality of the Estimates Using Bayesian Neural Networks. Appl. Soft Comput. 2011, 11, 3357–3367. [Google Scholar] [CrossRef]
- Xu, H.; Jiang, X. Creep Constitutive Models for Viscoelastic Materials Based on Fractional Derivatives. Comput. Math. Appl. 2017, 73, 1377–1384. [Google Scholar] [CrossRef]
- Van Den Bos, A. Nonlinear Least-Absolute-Values and Minimax Model Fitting. IFAC Proc. Vol. 1985, 18, 173–177. [Google Scholar] [CrossRef]
- Powell, M.J.D. Approximation Theory and Methods; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1981; ISBN 978-0-521-22472-7. [Google Scholar]
- Setiyoko, A.; Basaruddin, T.; Arymurthy, A.M. Minimax Approach for Semivariogram Fitting in Ordinary Kriging. IEEE Access 2020, 8, 82054–82065. [Google Scholar] [CrossRef]
- Boutaleb, S.; Zaïri, F.; Mesbah, A.; Naït-Abdelaziz, M.; Gloaguen, J.M.; Boukharouba, T.; Lefebvre, J.M. Micromechanics-Based Modelling of Stiffness and Yield Stress for Silica/Polymer Nanocomposites. Int. J. Solids Struct. 2009, 46, 1716–1726. [Google Scholar] [CrossRef]
- Khan, A.S.; Lopez-Pamies, O.; Kazmi, R. Thermo-Mechanical Large Deformation Response and Constitutive Modeling of Viscoelastic Polymers over a Wide Range of Strain Rates and Temperatures. Int. J. Plast. 2006, 22, 581–601. [Google Scholar] [CrossRef]
- Kemmer, G.; Keller, S. Nonlinear Least-Squares Data Fitting in Excel Spreadsheets. Nat. Protoc. 2010, 5, 267–281. [Google Scholar] [CrossRef]
- Paetzold, M.; Andert, T.P.; Asmar, S.W.; Anderson, J.D.; Barriot, J.-P.; Bird, M.K.; Haeusler, B.; Hahn, M.; Tellmann, S.; Sierks, H.; et al. Asteroid 21 Lutetia: Low Mass, High Density. Science 2011, 334, 491–492. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the Volume and Age of Water Stored in Global Lakes Using a Geo-Statistical Approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef]
- Sprave, L.; Menzel, A. A Large Strain Gradient-Enhanced Ductile Damage Model: Finite Element Formulation, Experiment and Parameter Identification. Acta Mech. 2020, 231, 5159–5192. [Google Scholar] [CrossRef]
- Sweeney, J. A Comparison of Three Polymer Network Models in Current Use. Comput. Theor. Polym. Sci. 1999, 9, 27–33. [Google Scholar] [CrossRef]
- Mahnken, R.; Stein, E. Parameter Identification for Viscoplastic Models Based on Analytical Derivatives of a Least-Squares Functional and Stability Investigations. Int. J. Plast. 1996, 12, 451–479. [Google Scholar] [CrossRef]
- Khan, A.; Zhang, H. Finite Deformation of a Polymer: Experiments and Modeling. Int. J. Plast. 2001, 17, 1167–1188. [Google Scholar] [CrossRef]
- Zhang, C.; Cai, L.-H.; Guo, B.-H.; Miao, B.; Xu, J. New Kinetics Equation for Stress Relaxation of Semi-Crystalline Polymers below Glass Transition Temperature. Chin. J. Polym. Sci. 2022, 40, 1662–1669. [Google Scholar] [CrossRef]
- Ayoub, G.; Zaïri, F.; Fréderix, C.; Gloaguen, J.M.; Naït-Abdelaziz, M.; Seguela, R.; Lefebvre, J.M. Effects of Crystal Content on the Mechanical Behaviour of Polyethylene under Finite Strains: Experiments and Constitutive Modelling. Int. J. Plast. 2011, 27, 492–511. [Google Scholar] [CrossRef]
- Drozdov, A.D.; Klitkou, R.; Christiansen, J. deC. Multi-Cycle Deformation of Semicrystalline Polymers: Observations and Constitutive Modeling. Mech. Res. Commun. 2013, 48, 70–75. [Google Scholar] [CrossRef]
- Kubát, J.; Seldén, R. The Stress Dependence of Activation Volumes in Creep and Stress Relaxation. Mater. Sci. Eng. 1978, 36, 65–69. [Google Scholar] [CrossRef]
- Le, T.M.; Fatahi, B. Trust-Region Reflective Optimisation to Obtain Soil Visco-Plastic Properties. Eng. Comput. 2016, 33. [Google Scholar] [CrossRef]
- Schmidt, U.; Mergheim, J.; Steinmann, P. Multiscale Parameter Identification. Int. J. Mult. Comp. Eng. 2012, 10, 327–342. [Google Scholar] [CrossRef]
- Ramzanpour, M.; Hosseini-Farid, M.; Ziejewski, M.; Karami, G. Particle Swarm Optimization Method for Hyperelastic Characterization of Soft Tissues. In Proceedings of the ASME 2019 International Mechanical Engineering Congress and Exposition, Salt Lake City, UT, USA, 11–14 November 2019. [Google Scholar]
- Pereira, J.O.; Farias, T.M.; Castro, A.M.; (Al-Baldawi), A.A.; Secchi, A.R.; Cardozo, N.S.M. Estimation of the Nonlinear Parameters of Viscoelastic Constitutive Models Using CFD and Multipass Rheometer Data. J. Non-Newton. Fluid Mech. 2020, 281, 104284. [Google Scholar] [CrossRef]
- Syrjakow, M.; Szczerbicka, H. Efficient Parameter Optimization Based on Combination of Direct Global and Local Search Methods. In Evolutionary Algorithms; The IMA Volumes in Mathematics and its Applications; Davis, L.D., De Jong, K., Vose, M.D., Whitley, L.D., Eds.; Springer: New York, NY, USA, 1999; Volume 111, pp. 227–249. ISBN 978-1-4612-7185-7. [Google Scholar]
- Renders, J.-M.; Flasse, S.P. Hybrid Methods Using Genetic Algorithms for Global Optimization. IEEE Trans. Syst. Man Cybern. Part B 1996, 26, 243–258. [Google Scholar] [CrossRef]
- Mahinthakumar, G.; Sayeed, M. Hybrid Genetic Algorithm—Local Search Methods for Solving Groundwater Source Identification Inverse Problems. J. Water Resour. Plann. Manag. 2005, 131, 45–57. [Google Scholar] [CrossRef]
- Maaranen, H.; Miettinen, K.; Penttinen, A. On Initial Populations of a Genetic Algorithm for Continuous Optimization Problems. J. Glob. Optim. 2007, 37, 405–436. [Google Scholar] [CrossRef]
- Yen, J.; Liao, J.C.; Lee, B.; Randolph, D. A Hybrid Approach to Modeling Metabolic Systems Using a Genetic Algorithm and Simplex Method. IEEE Trans. Syst. Man Cybern. Part B 1998, 28, 173–191. [Google Scholar] [CrossRef] [PubMed]
- Ahn, C.W.; Ramakrishna, R.S. A Genetic Algorithm for Shortest Path Routing Problem and the Sizing of Populations. IEEE Trans. Evol. Comput. 2002, 6, 566–579. [Google Scholar] [CrossRef]
- Pál, K.F. Genetic Algorithm with Local Optimization. Biol. Cybern. 1995, 73, 335–341. [Google Scholar] [CrossRef]
- Okamoto, M.; Nonaka, T.; Ochiai, S.; Tominaga, D. Nonlinear Numerical Optimization with Use of a Hybrid Genetic Algorithm Incorporating the Modified Powell Method. Appl. Math. Comput. 1998, 91, 63–72. [Google Scholar] [CrossRef]
- Crain, T.; Bishop, R.H.; Fowler, W.; Rock, K. Interplanetary Flyby Mission Optimization Using a Hybrid Global-Local Search Method. J. Spacecr. Rocket. 2012, 37, 468–474. [Google Scholar] [CrossRef]
- Attaviriyanupap, P.; Kita, H.; Tanaka, E.; Hasegawa, J. A Hybrid EP and SQP for Dynamic Economic Dispatch with Nonsmooth Fuel Cost Function. IEEE Trans. Power Syst. 2002, 17, 411–416. [Google Scholar] [CrossRef]
- Henz, B.J.; Mohan, R.V.; Shires, D.R. A Hybrid Global–Local Approach for Optimization of Injection Gate Locations in Liquid Composite Molding Process Simulations. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1932–1946. [Google Scholar] [CrossRef]
- Wu, L.; Chen, Z.; Long, C.; Cheng, S.; Lin, P.; Chen, Y.; Chen, H. Parameter Extraction of Photovoltaic Models from Measured I-V Characteristics Curves Using a Hybrid Trust-Region Reflective Algorithm. Appl. Energy 2018, 232, 36–53. [Google Scholar] [CrossRef]
- Nenov, H.B.; Dimitrov, B.H.; Marinov, A.S. Algorithms for Computational Procedure Acceleration for Systems Differential Equations in Matlab. In Proceedings of the 2013 36th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 20–24 May 2013; pp. 238–242. [Google Scholar]
- Rivard, S.R.; Mailloux, J.-G.; Beguenane, R.; Bui, H.T. Design of High-Performance Parallelized Gene Predictors in MATLAB. BMC Res. Notes 2012, 5, 183. [Google Scholar] [CrossRef]
- Tan, N. Deformation Transitions and Their Effects on the Long-Term Performance of Polyethylene and Its Pressure Pipe. Ph.D. Thesis, Department of Mechanical Engineering University of Alberta, Alberta, AL, Canada, 2021; p. 172. [Google Scholar]
- Zheng, J.; Li, H.; Hogan, J.D. Strain-Rate-Dependent Tensile Response of an Alumina Ceramic: Experiments and Modeling. Int. J. Impact Eng. 2023, 173, 104487. [Google Scholar] [CrossRef]
- Zheng, J.; Li, H.; Hogan, J.D. Advanced Tensile Fracture Analysis of Alumina Ceramics: Integrating Hybrid Finite-Discrete Element Modeling with Experimental Insights. Eng. Fract. Mech. 2024, 302, 110075. [Google Scholar] [CrossRef]
- Jar, P.-Y.B. Effect of Tensile Loading History on Mechanical Properties for Polyethylene. Polym. Eng. Sci. 2015, 55, 2002–2010. [Google Scholar] [CrossRef]
- Zheng, J.; Ji, M.; Zaiemyekeh, Z.; Li, H.; Hogan, J.D. Strain-Rate-Dependent Compressive and Compression-Shear Response of an Alumina Ceramic. J. Eur. Ceram. Soc. 2022, 42, 7516–7527. [Google Scholar] [CrossRef]
- Fritsch, J.; Hiermaier, S.; Strobl, G. Characterizing and Modeling the Non-Linear Viscoelastic Tensile Deformation of a Glass Fiber Reinforced Polypropylene. Compos. Sci. Technol. 2009, 69, 2460–2466. [Google Scholar] [CrossRef]
- Rafiee, R.; Mazhari, B. Simulation of the Long-Term Hydrostatic Tests on Glass Fiber Reinforced Plastic Pipes. Compos. Struct. 2016, 136, 56–63. [Google Scholar] [CrossRef]
- Ebert, C.; Hufenbach, W.; Langkamp, A.; Gude, M. Modelling of Strain Rate Dependent Deformation Behaviour of Polypropylene. Polym. Test. 2011, 30, 183–187. [Google Scholar] [CrossRef]
- Graba, M. Evaluation of Measurement Uncertainty in a Static Tensile Test. Open Eng. 2021, 11, 709–722. [Google Scholar] [CrossRef]
- Mulliken, A.D.; Boyce, M.C. Mechanics of the Rate-Dependent Elastic–Plastic Deformation of Glassy Polymers from Low to High Strain Rates. Int. J. Solids Struct. 2006, 43, 1331–1356. [Google Scholar] [CrossRef]
- Jar, P.B. Revisiting Creep Test on Polyethylene Pipe—Data Analysis and Deformation Mechanisms. Polym. Eng. Sci. 2021, 61, 586–599. [Google Scholar] [CrossRef]
- Piyal Aravinna, A.G. Estimation of Measurement Uncertainty in Determination of Tensile Strength of Reinforcement Steel; Technical Report–2021/QC1; Central Engineering Consultancy Bureau: Colombo, Sri Lanka, 2021. [Google Scholar] [CrossRef]
- Hong, K.; Rastogi, A.; Strobl, G. A Model Treating Tensile Deformation of Semicrystalline Polymers: Quasi-Static Stress- Strain Relationship and Viscous Stress Determined for a Sample of Polyethylene. Macromolecules 2004, 37, 10165–10173. [Google Scholar] [CrossRef]
- Richeton, J.; Ahzi, S.; Daridon, L.; Rémond, Y. A Formulation of the Cooperative Model for the Yield Stress of Amorphous Polymers for a Wide Range of Strain Rates and Temperatures. Polymer 2005, 46, 6035–6043. [Google Scholar] [CrossRef]
- Bergstrom, J.; Boyce, M.C. Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers. J. Mech. Phys. Solids 1998, 46, 931–954. [Google Scholar] [CrossRef]
- Natarajan, V.D. Constitutive Behavior of a Twaron® Fabric/Natural Rubber Composite: Experiments and Modeling. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2009. [Google Scholar]
- Popa, C.M.; Fleischhauer, R.; Schneider, K.; Kaliske, M. Formulation and Implementation of a Constitutive Model for Semicrystalline Polymers. Int. J. Plast. 2014, 61, 128–156. [Google Scholar] [CrossRef]
- Jar, P.-Y.B. Analysis of Time-dependent Mechanical Behavior of Polyethylene. SPE Polym. 2024, 5, 426–443. [Google Scholar] [CrossRef]
- Pyrz, M.; Zairi, F. Identification of Viscoplastic Parameters of Phenomenological Constitutive Equations for Polymers by Deterministic and Evolutionary Approach. Model. Simul. Mater. Sci. Eng. 2007, 15, 85–103. [Google Scholar] [CrossRef]
- Zhang, Y.; Jar, P.-Y.B. Comparison of Mechanical Properties Between PE80 and PE100 Pipe Materials. J. Mater. Eng Perform 2016, 25, 4326–4332. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Xia, M.; Wu, K.; Chen, Y.; Zheng, Q.; Li, J. Mechanical Response of Buried Polyethylene Pipelines under Excavation Load during Pavement Construction. Eng. Fail. Anal. 2018, 90, 355–370. [Google Scholar] [CrossRef]
- Zhang, C.; Moore, I.D. Nonlinear Mechanical Response of High Density Polyethylene. Part II: Uniaxial Constitutive Modeling. Polym. Eng. Sci. 1997, 37, 414–420. [Google Scholar] [CrossRef]
- Zhang, C.; Moore, I.D. Nonlinear Mechanical Response of High Density Polyethylene. Part I: Experimental Investigation and Model Evaluation. Polym. Eng. Sci. 1997, 37, 404–413. [Google Scholar] [CrossRef]
- Moore, I. Profiled HDPE Pipe Response to Parallel Plate Loading. In Buried Plastic Pipe Technology: 2nd Volume; Eckstein, D., Ed.; ASTM International: West Conshohocken, PA, USA, 1994; p. 25. ISBN 978-0-8031-1992-5. [Google Scholar]
Material | Pipe Name | Density (kg/m3) | Yield Strength (MPa) | HDB @23 °C (MPa) |
---|---|---|---|---|
HDPE | PE4710-black | 949 | 24.8 | 11.03 |
HDPE | PE4710-yellow | 949 | >24.1 | 11.03 |
PEX | PE-Xa | 938 | 19 | 8.62 |
MDPE | PE2708 | 940 | 19.3 | 8.62 |
Sample Specimens | Resolution of Experimental Measurement (MPa) | Max Difference of Stress Between Experimental Measurements and Model Simulation from the Study (MPa) |
---|---|---|
HDPE-b, cylindrical | 0.0682 | 0.0618 |
PE-Xa, NPR pipe | 0.0767 | 0.0759 |
PE4710-yellow, NPR pipe | 0.0746 | 0.0666 |
PE4710-black, NPR pipe | 0.0743 | 0.0591 |
PE2708, NPR pipe | 0.0590 | 0.0524 |
Model Parameters | Set 1 | Set 2 | Set 3 | Set 4 | Set 5 |
---|---|---|---|---|---|
(MPa) | 0.26 | 0.27 | 0.33 | 0.29 | 0.30 |
(MPa) | 0.06 | 0.06 | 0.09 | 0.08 | 0.08 |
(s) | 62.51 | 69.78 | 36.70 | 37.80 | 37.88 |
(MPa) | 4.21 | 4.28 | 4.47 | 4.51 | 4.47 |
(MPa) | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 |
(s) | 39,881.24 | 49,320.51 | 89,792.94 | 89,999.71 | 81,756.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, F.; Jar, P.-Y.B. Simulation and Analysis of the Loading, Relaxation, and Recovery Behavior of Polyethylene and Its Pipes. Polymers 2024, 16, 3153. https://doi.org/10.3390/polym16223153
Shi F, Jar P-YB. Simulation and Analysis of the Loading, Relaxation, and Recovery Behavior of Polyethylene and Its Pipes. Polymers. 2024; 16(22):3153. https://doi.org/10.3390/polym16223153
Chicago/Turabian StyleShi, Furui, and P.-Y. Ben Jar. 2024. "Simulation and Analysis of the Loading, Relaxation, and Recovery Behavior of Polyethylene and Its Pipes" Polymers 16, no. 22: 3153. https://doi.org/10.3390/polym16223153
APA StyleShi, F., & Jar, P. -Y. B. (2024). Simulation and Analysis of the Loading, Relaxation, and Recovery Behavior of Polyethylene and Its Pipes. Polymers, 16(22), 3153. https://doi.org/10.3390/polym16223153