Synergistic Effects of Polydopamine/Medical Stone Bio-Adsorbents for Enhanced Interfacial Adsorption and Dynamic Filtration of Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PDA-Modified Medical Stones
2.3. Investigation of the Bio-Adsorption Capacity
2.4. Filtration Performance and Removal Efficiency
2.5. Characterization
3. Results and Discussion
3.1. Preparation of MS@PDA for Enhanced Bacterial Bio-Adsorption and Cycling Infiltration
3.2. Microstructure and Characterization of MS@PDA
3.3. Interfacial Bioadsorption Performance of MS@PDA
3.4. Synergistic Effect of Bio-Adsorption and Cycling Infiltration on Bacteria-Infected Water Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, V.; Shekhawat, S.S.; Kulshreshtha, N.M.; Gupta, A.B. A systematic review on chlorine tolerance among bacteria and standardization of their assessment protocol in wastewater. Water Sci. Technol. 2022, 86, 261–291. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Yadav, P.; Gupta, R.K.; Singh, S.K.; Verma, H.; Singh, P.K.; Kaushalendra; Pandey, K.D.; Kumar, A. Chapter Fourteen-Pathogenic microbes in wastewater: Identification and characterization. In Advances in Chemical Pollution, Environmental Management and Protection; LFerreira, F.R., Kumar, A., Bilal, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 247–262. [Google Scholar]
- Lazarova, V.; Savoye, P.; Janex, M.L.; Blatchley, E.R.; Pommepuy, M. Advanced wastewater disinfection technologies: State of the art and perspectives. Water Sci. Technol. 1999, 40, 203–213. [Google Scholar] [CrossRef]
- Gilca, A.F.; Teodosiu, C.; Fiore, S.; Musteret, C.P. Emerging disinfection byproducts: A review on their occurrence and control in drinking water treatment processes. Chemosphere 2020, 259, 127476. [Google Scholar] [CrossRef]
- Mojiri, A.; Bashir, M.J.K. Wastewater Treatment: Current and Future Techniques. Water 2022, 14, 448. [Google Scholar] [CrossRef]
- Peng, L.; Zhu, H.; Wang, H.; Guo, Z.; Wu, Q.; Yang, C.; Hu, H.-Y. Hydrodynamic tearing of bacteria on nanotips for sustainable water disinfection. Nat. Commun. 2023, 14, 5734. [Google Scholar] [CrossRef]
- Chithra, A.; Sekar, R.; Kumar, P.S.; Padmalaya, G. A review on removal strategies of microorganisms from water environment using nanomaterials and their behavioural characteristics. Chemosphere 2022, 295, 133915. [Google Scholar] [CrossRef]
- Kalu, C.M.; Mudau, K.L.; Masindi, V.; Ijoma, G.N.; Tekere, M. Occurrences and implications of pathogenic and antibiotic-resistant bacteria in different stages of drinking water treatment plants and distribution systems. Heliyon 2024, 10, e26380. [Google Scholar] [CrossRef]
- Fakhri, V.; Jafari, A.; Vahed, F.L.; Su, C.-H.; Pirouzfar, V. Polysaccharides as eco-friendly bio-adsorbents for wastewater remediation: Current state and future perspective. J. Water Process Eng. 2023, 54, 103980. [Google Scholar] [CrossRef]
- Dahanayake, M.H.; Athukorala, S.S.; Jayasundera, A.C.A. Recent breakthroughs in nanostructured antiviral coating and filtration materials: A brief review. RSC Adv. 2022, 12, 16369–16385. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, R.; Liu, Y.; Luo, H.; Cao, Z.; Liu, J. Chiral coating-mediated interactions of bacteria with diverse biointerfaces. Sci. China Chem. 2023, 66, 3594–3601. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Ghaffarkhah, A.; Molavi, H.; Dutta, S.; Lu, Y.; Wuttke, S.; Kamkar, M.; Rojas, O.J.; Arjmand, M. COF and MOF Hybrids: Advanced Materials for Wastewater Treatment. Adv. Funct. Mater. 2023, 34, 2305527. [Google Scholar] [CrossRef]
- Qi, X.; Tong, X.; Pan, W.; Zeng, Q.; You, S.; Shen, J. Recent advances in polysaccharide-based adsorbents for wastewater treatment. J. Clean. Prod. 2021, 315, 128221. [Google Scholar] [CrossRef]
- Marinescu, L.; Motelica, L.; Ficai, D.; Ficai, A.; Oprea, O.; Andronescu, E.; Holban, A.-M. A Two-Step Surface Modification Methodology for the Advanced Protection of a Stone Surface. Nanomaterials 2023, 14, 68. [Google Scholar] [CrossRef]
- Gao, T.; Wang, W.; Wang, A. A pH-sensitive composite hydrogel based on sodium alginate and medical stone: Synthesis, swelling, and heavy metal ions adsorption properties. Macromol. Res. 2011, 19, 739–748. [Google Scholar] [CrossRef]
- Arefe, A.; Song, X.; Wang, Y.; Si, Z.; Abayneh, B. Preparation of modified Chinese medical stone and its performance on the removal of low-concentration ammonium from water. Res. Chem. Intermed. 2020, 46, 2035–2054. [Google Scholar] [CrossRef]
- Gao, R.-Q.; Hou, X.-M. Preparation and photo-catalytic activity of TiO2-coated medical stone-based porous ceramics. Int. J. Miner. Metall. Mater. 2013, 20, 593–597. [Google Scholar] [CrossRef]
- Wang, Z.; Su, J.; Li, Y.; Zhang, R.; Yang, W.; Wang, Y. Microbially induced calcium precipitation coupled with medical stone-coated sponges: A targeted strategy for enhanced nitrate and fluoride removal from groundwater. Environ. Pollut. 2023, 318, 120855. [Google Scholar] [CrossRef]
- Qi, L.-Y.; Hao, S.-E.; Sun, T.-C. Preparation of rare-earth-modified medical stone powders and their application as conductive fillers. Int. J. Miner. Metall. Mater. 2019, 26, 260–266. [Google Scholar] [CrossRef]
- Bernsmann, F.; Ball, V.; Addiego, F.; Ponche, A.; Michel, M.; Gracio, J.J.D.A.; Toniazzo, V.; Ruch, D. Dopamine−Melanin Film Deposition Depends on the Used Oxidant and Buffer Solution. Langmuir 2011, 27, 2819–2825. [Google Scholar] [CrossRef]
- Li, H.; Yin, D.; Li, W.; Tang, Q.; Zou, L.; Peng, Q. Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy. Colloids Surf. B Biointerfaces 2021, 199, 111502. [Google Scholar] [CrossRef]
- Cheng, D.; He, M.; Ran, J.; Cai, G.; Wu, J.; Wang, X. In situ reduction of TiO2 nanoparticles on cotton fabrics through polydopamine templates for photocatalysis and UV protection. Cellulose 2018, 25, 1413–1424. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, D.; Pedrero, M.; Guo, Z.; Pingarrón, J.M.; Campuzano, S.; Zou, X. Advances and opportunities of polydopamine coating in biosensing: Preparation, functionality, and applications. Coord. Chem. Rev. 2024, 501, 215564. [Google Scholar] [CrossRef]
- Jia, L.; Han, F.; Wang, H.; Zhu, C.; Guo, Q.; Li, J.; Zhao, Z.; Zhang, Q.; Zhu, X.; Li, B. Polydopamine-assisted surface modification for orthopaedic implants. J. Orthop. Transl. 2019, 17, 82–95. [Google Scholar] [CrossRef]
- Singh, I.; Dhawan, G.; Gupta, S.; Kumar, P. Recent Advances in a Polydopamine-Mediated Antimicrobial Adhesion System. Front. Microbiol. 2021, 11, 607099. [Google Scholar] [CrossRef]
- Qiu, W.Z.; Yang, H.C.; Xu, Z.K. Dopamine-assisted co-deposition: An emerging and promising strategy for surface modification. Adv. Colloid Interface Sci. 2018, 256, 111–125. [Google Scholar] [CrossRef]
- Chen, W.; Li, Q.; Zheng, W.; Hu, F.; Zhang, G.; Wang, Z.; Zhang, D.; Jiang, X. Identification of Bacteria in Water by a Fluorescent Array. Angew. Chem. Int. Ed. 2014, 53, 13734–13739. [Google Scholar] [CrossRef]
- Yang, X.; Yan, K.; Yang, C.; Wang, D. Coupling nano-redox carbon dots with nontraditional AIE-polysaccharides on a smart fabric for healthcare sensing systems. Chem. Eng. J. 2023, 478, 147402. [Google Scholar] [CrossRef]
- Ni, Y.; Yan, K.; Xu, F.; Zhong, W.; Zhao, Q.; Liu, K.; Yan, K.; Wang, D. Synergistic effect on TiO2 doped poly (vinyl alcohol-co-ethylene) nanofibrous film for filtration and photocatalytic degradation of methylene blue. Compos. Commun. 2019, 12, 112–116. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Wan, S.; Lin, H.; Li, S.; Deng, A.; Feng, L.; Xu, Y.; Zhang, X.; Hu, Z.; Xu, F.; et al. Synergistic Effects of Polydopamine/Medical Stone Bio-Adsorbents for Enhanced Interfacial Adsorption and Dynamic Filtration of Bacteria. Polymers 2024, 16, 3027. https://doi.org/10.3390/polym16213027
Chen W, Wan S, Lin H, Li S, Deng A, Feng L, Xu Y, Zhang X, Hu Z, Xu F, et al. Synergistic Effects of Polydopamine/Medical Stone Bio-Adsorbents for Enhanced Interfacial Adsorption and Dynamic Filtration of Bacteria. Polymers. 2024; 16(21):3027. https://doi.org/10.3390/polym16213027
Chicago/Turabian StyleChen, Wenfeng, Sha Wan, Hongxin Lin, Shimi Li, Anhua Deng, Lihui Feng, Yangfan Xu, Xu Zhang, Zhen Hu, Fang Xu, and et al. 2024. "Synergistic Effects of Polydopamine/Medical Stone Bio-Adsorbents for Enhanced Interfacial Adsorption and Dynamic Filtration of Bacteria" Polymers 16, no. 21: 3027. https://doi.org/10.3390/polym16213027
APA StyleChen, W., Wan, S., Lin, H., Li, S., Deng, A., Feng, L., Xu, Y., Zhang, X., Hu, Z., Xu, F., & Yan, K. (2024). Synergistic Effects of Polydopamine/Medical Stone Bio-Adsorbents for Enhanced Interfacial Adsorption and Dynamic Filtration of Bacteria. Polymers, 16(21), 3027. https://doi.org/10.3390/polym16213027