Development of Conductive Antibacterial Coatings on Cotton Fabrics via Polyphenol-Mediated Silver Mirror Reaction
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Natural Polyphenol-Mediated Silver Mirror Reaction Was Performed on Cotton Fabric
3.2. Surface Morphologies and Characterizations
3.3. Investigation of Photothermal Performance
3.4. Assessment of Washing Resistance and Conductivity
3.5. Antibacterial Activities of Polyphenol/Nano-Silver-Coated Decorated Cotton Fabrics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Qian, J.; Dong, Q.; Chun, K.; Zhu, D.; Zhang, X.; Mao, Y.; Culver, J.N.; Tai, S.; German, J.R.; Dean, D.P.; et al. Highly stable, antiviral, antibacterial cotton textiles via molecular engineering. Nat. Nanotechnol. 2023, 18, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Hanif, Z.; Tariq, M.Z.; Choi, D.; La, M.; Park, S.J. Solution-processed deposition based on plant polyphenol for silver conductive coating and its application on human motions detecting sensor. Compos. Sci. Technol. 2021, 201, 108550. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, Z.; Zhu, Q.; Zhou, S.; Xia, L.; Zhang, C.; Liu, X.; Xu, W. Highly stable, antibacterial and antiviral composites films via improved non-solvent induced phase separation for textile application. Chem. Eng. J. 2024, 492, 151824. [Google Scholar] [CrossRef]
- Wang, Y.; Kong, Q.; Liu, Q.; Li, R.; Zhou, C.; Li, Z. Preparation of Polypyrrole/Carbon Nanotubes Composite Cotton Fabric through In Situ Polymerization and Its Conductive Property. ACS Appl. Electron. Mater. 2024, 6, 3563–3573. [Google Scholar] [CrossRef]
- Jarach, N.; Meridor, D.; Buzhor, M.; Raichman, D.; Dodiuk, H.; Kenig, S.; Amir, E. Hybrid Antibacterial and Electro-Conductive Coating for Textiles Based on Cationic Conjugated Polymer. Polymers 2020, 12, 1517. [Google Scholar] [CrossRef]
- Sadi, M.S.; Kumpikaitė, E. Highly conductive composites using polypyrrole and carbon nanotubes on polydopamine functionalized cotton fabric for wearable sensing and heating applications. Cellulose 2023, 30, 7981–7999. [Google Scholar] [CrossRef]
- Suryaprabha, T.; Kiruthika, T.; Selvamurugan, P.; Sethuraman, M.G.; Ha, H.; Choi, Z.; Wang, E.; Hwang, B. Recycling Primary Batteries into Advanced Graphene Flake-Based Multifunctional Smart Textiles for Energy Storage, Strain Sensing, Electromagnetic Interference Shielding, Antibacterial, and Deicing Applications. J. Clean. Prod. 2024, 479, 144020. [Google Scholar] [CrossRef]
- Li, W.; Yu, Z.; Zhang, Y.; Lv, C.; He, X.; Wang, S.; Wang, Z.; He, B.; Yuan, S.; Xin, J.; et al. Scalable multifunctional MOFs-textiles via diazonium chemistry. Nat. Commun. 2024, 15, 5297. [Google Scholar] [CrossRef]
- Wang, Z.-Q.; Wang, X.; Li, C.; Yang, Y.-W. Covalent organic frameworks for antibacterial applications. Cell Rep. Phys. Sci. 2024, 5, 101845. [Google Scholar] [CrossRef]
- Al-dolaimy, F.; Saraswat, S.K.; Hussein, B.A.; Hussein, U.A.-R.; Saeed, S.M.; Kareem, A.T.; Abdulwahid, A.S.; Mizal, T.L.; Muzammil, K.; Alawadi, A.H.; et al. A review of recent advancement in covalent organic framework (COFs) synthesis and characterization with a focus on their applications in antibacterial activity. Micron 2024, 179, 103595. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Q.; Wang, J.; Wang, P.; Zhang, Y. Conductive cotton fabric fabricated using stable Ag/MXene colloidal solution and PDMS for heating and electromagnetic shielding. Mater. Today Phys. 2024, 40, 101295. [Google Scholar] [CrossRef]
- Yan, K.; Wan, Y.; Xu, F.; Lu, J.; Yang, C.; Li, X.; Lu, Z.; Wang, X.; Wang, D. Ionic crosslinking of alginate/carboxymethyl chitosan fluorescent hydrogel for bacterial detection and sterilization. Carbohydr. Polym. 2023, 302, 120427. [Google Scholar] [CrossRef] [PubMed]
- Montes-Hernandez, G.; Di Girolamo, M.; Sarret, G.; Bureau, S.; Fernandez-Martinez, A.; Lelong, C.; Vernain, E.E. In Situ Formation of Silver Nanoparticles (Ag-NPs) onto Textile Fibers. ACS Omega 2021, 6, 1316–1327. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.H.; Chang, J.-H.; Xie, R.-J.; Tseng, C.-H.; Hsieh, S.-R.; Tsai, J.-H.; Cheng, I.C.; Cheng, I.C.; Chen, C.-F.; Chen, J.-Z. Silver mirror reaction metallized chromatography paper for supercapacitor application. Flex. Print. Electron. 2021, 6, 045010. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, J.; Wen, H.; Zhu, Z.; Huang, W.; Liu, C. Photothermal conversion-assisted oil Water separation by superhydrophobic Cotton yarn prepared via the silver mirror reaction. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125684. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, K.; Yang, Y.; Ren, J.; Sun, R.; Huang, F.; Wang, X. Highly smooth, stable and reflective Ag-paper electrode enabled by silver mirror reaction for organic optoelectronics. Chem. Eng. J. 2019, 370, 1048–1056. [Google Scholar] [CrossRef]
- Jin, C.; Li, J.; Han, S.; Wang, J.; Yao, Q.; Sun, Q. Silver mirror reaction as an approach to construct a durable, robust superhydrophobic surface of bamboo timber with high conductivity. J. Alloys Compd. 2015, 635, 300–306. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, R.; Duan, G.; Zhang, L.; Li, Y.; Yang, L. Bio-inspired and Multifunctional Polyphenol-Coated Textiles. Adv. Fiber Mater. 2024, 6, 952–977. [Google Scholar] [CrossRef]
- Chen, C.; Lin, M.; Wahl, C.; Li, Y.; Zhou, W.; Wang, Z.; Zhang, Y.; Mirkin, C.A. Dynamic Metal–Phenolic Coordination Complexes for Versatile Surface Nanopatterning. J. Am. Chem. Soc. 2023, 145, 7974–7982. [Google Scholar] [CrossRef]
- Liu, G.; Xiang, J.; Xia, Q.; Li, K.; Yan, H.; Yu, L. Fabrication of Durably Antibacterial Cotton Fabrics by Robust and Uniform Immobilization of Silver Nanoparticles via Mussel-Inspired Polydopamine/Polyethyleneimine Coating. Ind. Eng. Chem. Res. 2020, 59, 9666–9678. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, W.; Yu, D. Conductive, antibacterial, and electromagnetic shielding silver-plated cotton fabrics activated by dopamine. J. Appl. Polym. Sci. 2018, 135, 46766. [Google Scholar] [CrossRef]
- Xu, W.; Lin, Z.; Pan, S.; Chen, J.; Wang, T.; Cortez-Jugo, C.; Caruso, F. Direct Assembly of Metal-Phenolic Network Nanoparticles for Biomedical Applications. Angew. Chem. Int. Ed. 2023, 62, e202312925. [Google Scholar] [CrossRef] [PubMed]
- Sha, D.; Sun, Y.; Xing, L.; Chen, X.; Wang, X.; Wan, B.; Wang, X.; Li, Y.; Chen, G.; Zhou, S.; et al. Preparation of polyphenol-structural colored silk fabrics with bright colors. Int. J. Biol. Macromol. 2024, 266, 131140. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yan, K.; Yang, C.; Wang, D. Coupling nano-redox carbon dots with nontraditional AIE-polysaccharides on a smart fabric for healthcare sensing systems. Chem. Eng. J. 2023, 478, 147402. [Google Scholar] [CrossRef]
- Chen, W.; Wan, S.; Lin, H.; Li, S.; Deng, A.; Feng, L.; Xu, Y.; Zhang, X.; Hu, Z.; Xu, F.; et al. Synergistic Effects of Polydopamine/Medical Stone Bio-Adsorbents for Enhanced Interfacial Adsorption and Dynamic Filtration of Bacteria. Polymers 2024, 16, 3027. [Google Scholar] [CrossRef] [PubMed]
- Andrés, C.M.C.; de la Lastra, J.M.P.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Polyphenols as Antioxidant/Pro-Oxidant Compounds and Donors of Reducing Species: Relationship with Human Antioxidant Metabolism. Processes 2023, 11, 2771. [Google Scholar] [CrossRef]
- Yan, K.; Xu, F.; Wang, C.; Li, Y.; Chen, Y.; Li, X.; Lu, Z.; Wang, D. A multifunctional metal-biopolymer coordinated double network hydrogel combined with multi-stimulus responsiveness, self-healing, shape memory and antibacterial properties. Biomater. Sci. 2020, 8, 3193–3201. [Google Scholar] [CrossRef]
- Radetić, M. Functionalization of textile materials with silver nanoparticles. J. Mater. Sci. 2013, 48, 95–107. [Google Scholar] [CrossRef]
- Xu, L.Q.; Neoh, K.-G.; Kang, E.-T. Natural polyphenols as versatile platforms for material engineering and surface functionalization. Prog. Polym. Sci. 2018, 87, 165–196. [Google Scholar] [CrossRef]
- Galdopórpora, J.M.; Ibar, A.; Tuttolomondo, M.V.; Desimone, M.F. Dual-effect core–shell polyphenol coated silver nanoparticles for tissue engineering. Nano-Struct. Nano-Objects 2021, 26, 100716. [Google Scholar] [CrossRef]
- Hashim, N.; Paramasivam, M.; Tan, J.S.; Kernain, D.; Hussin, M.H.; Brosse, N.; Gambier, F.; Raja, P.B. Green mode synthesis of silver nanoparticles using Vitis vinifera’s tannin and screening its antimicrobial activity/apoptotic potential versus cancer cells. Mater. Today Commun. 2020, 25, 101511. [Google Scholar] [CrossRef]
- Rolim, W.R.; Pelegrino, M.T.; de Araújo Lima, B.; Ferraz, L.S.; Costa, F.N.; Bernardes, J.S.; Rodigues, T.; Brocchi, M.; Seabra, A.B. Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Appl. Surf. Sci. 2019, 463, 66–74. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, T.; He, J.; Dong, X. Effect of AgNP distribution on the cotton fiber on the durability of antibacterial cotton fabrics. Cellulose 2021, 28, 9489–9504. [Google Scholar] [CrossRef]
- Behzad, F.; Naghib, S.M.; Kouhbanani, M.A.J.; Tabatabaei, S.N.; Zare, Y.; Rhee, K.Y. An overview of the plant-mediated green synthesis of noble metal nanoparticles for antibacterial applications. J. Ind. Eng. Chem. 2021, 94, 92–104. [Google Scholar] [CrossRef]
- Ye, X.-Y.; Chen, Y.; Yang, J.; Yang, H.-Y.; Wang, D.-W.; Xu, B.B.; Ren, J.; Sridhar, D.; Guo, Z.; Shi, Z.-J. Sustainable wearable infrared shielding bamboo fiber fabrics loaded with antimony doped tin oxide/silver binary nanoparticles. Adv. Compos. Hybrid Mater. 2023, 6, 106. [Google Scholar] [CrossRef]
- Khan, G.M.A.; Islam, M.A.; Al Masud, M.A.; Alam, K.S.; Islam, M.T.U.; Islam, M.M.; Aidid, A.R. Sericin-TiO2 nanocomposite treated cotton fabrics for enhanced antibacterial and self-cleaning properties. Hybrid Adv. 2024, 7, 100287. [Google Scholar] [CrossRef]
- Sivalingam, A.M.; Pandian, A.; Rengarajan, S.; Ramasubbu, R. Polyphenol-compounds From Green Synthesis of Antimicrobial property of Silver Nanoparticles using Eichhornia crassipes: Characterization and Applications. Silicon 2023, 15, 7415–7429. [Google Scholar] [CrossRef]
- Liu, L.; Wang, H.; Hao, X.; Zhang, Q.; Fei, G.; Duan, Y.; Sun, L. Robust superhydrophobic bilayer coating: Long-term anti-corrosion and anti-fouling resistance enabled by POSS star cross-linking and fluoride-modified SiO2 nanoparticles specific synergies. Prog. Org. Coat. 2025, 198, 108919. [Google Scholar] [CrossRef]
- Ngamchuea, K.; Eloul, S.; Tschulik, K.; Compton, R.G. Planar diffusion to macro disc electrodes—What electrode size is required for the Cottrell and Randles-Sevcik equations to apply quantitatively? J. Solid State Electrochem. 2014, 18, 3251–3257. [Google Scholar] [CrossRef]
- Lobato-Peralta, D.R.; Okoye, P.U.; Alegre, C. A review on carbon materials for electrochemical energy storage applications: State of the art, implementation, and synergy with metallic compounds for supercapacitor and battery electrodes. J. Power Sources 2024, 617, 235140. [Google Scholar] [CrossRef]
- Hu, B.; Shen, Y.; Adamcik, J.; Fischer, P.; Schneider, M.; Loessner, M.J.; Mezzenga, R. Polyphenol-Binding Amyloid Fibrils Self-Assemble into Reversible Hydrogels with Antibacterial Activity. ACS Nano 2018, 12, 3385–3396. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Fu, C.; Xing, J.; Yang, L.; Zhao, C.; Yan, K. Development of Conductive Antibacterial Coatings on Cotton Fabrics via Polyphenol-Mediated Silver Mirror Reaction. Polymers 2024, 16, 3244. https://doi.org/10.3390/polym16233244
Wu Y, Fu C, Xing J, Yang L, Zhao C, Yan K. Development of Conductive Antibacterial Coatings on Cotton Fabrics via Polyphenol-Mediated Silver Mirror Reaction. Polymers. 2024; 16(23):3244. https://doi.org/10.3390/polym16233244
Chicago/Turabian StyleWu, Yixiao, Chenlin Fu, Jiaxin Xing, Lin Yang, Chong Zhao, and Kun Yan. 2024. "Development of Conductive Antibacterial Coatings on Cotton Fabrics via Polyphenol-Mediated Silver Mirror Reaction" Polymers 16, no. 23: 3244. https://doi.org/10.3390/polym16233244
APA StyleWu, Y., Fu, C., Xing, J., Yang, L., Zhao, C., & Yan, K. (2024). Development of Conductive Antibacterial Coatings on Cotton Fabrics via Polyphenol-Mediated Silver Mirror Reaction. Polymers, 16(23), 3244. https://doi.org/10.3390/polym16233244