Impact of Probiotic Fermentation on the Physicochemical Properties of Hemp Seed Protein Gels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of PSPI-Based Gel
2.3. Effects of Fermentation on Physicochemical Properties of PSPI Gel
2.3.1. Effects of Fermentation on pH Value and Particle Size
2.3.2. Effects of Fermentation on Rheological Behavior
2.3.3. Effects of Fermentation on Water Holding Capacity and Gel Strength
2.3.4. Effects of Fermentation on Microstructure
2.3.5. Effects of Fermentation on Molecular Interactions
2.3.6. Effects of Fermentation on Subunits
2.4. Statistical Analysis
3. Results and Discussion
3.1. Appearance of Gel and pH Value
3.2. Particle Size
3.3. Rheological Behavior
3.4. Water-Holding Capacity (WHC) and Strength of Gel
3.5. Microstructure of Gel
3.6. Molecular Interactions
3.7. Subunits Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhakal, D.; Younas, T.; Bhusal, R.P.; Devkota, L.; Henry, C.J.; Dhital, S. Design rules of plant-based yoghurt-mimic: Formulation, functionality, sensory profile and nutritional value. Food Hydrocoll. 2023, 142, 108786. [Google Scholar] [CrossRef]
- Nikbakht Nasrabadi, M.; Sedaghat Doost, A.; Mezzenga, R. Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll. 2021, 118, 106789. [Google Scholar] [CrossRef]
- Wang, O.; Perez-Cueto, F.J.A.; Scarpa, R.; Scrimgeour, F. The influence of innovation-adoption characteristics on consumers’ trust and purchase intentions of innovative alternative proteins: A comparison between plant-based food, cultured food, and insect-based food. Food Qual. Prefer. 2024, 113, 105072. [Google Scholar] [CrossRef]
- Montemurro, M.; Pontonio, E.; Coda, R.; Rizzello, C.G. Plant-Based Alternatives to Yogurt: State-of-the-Art and Perspectives of New Biotechnological Challenges. Foods 2021, 10, 316. [Google Scholar] [CrossRef]
- Zang, J.; Yan, B.; Hu, H.; Liu, Z.; Tang, D.; Liu, Y.; Chen, J.; Tu, Y.; Yin, Z. The current advances, challenges, and future trends of plant-based yogurt. Trends Food Sci. Technol. 2024, 149, 104531. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, X.; Xue, F. Effects of high-pressure homogenization treatment on physiochemical properties of novel plant proteins. Appl. Food Res. 2023, 3, 100285. [Google Scholar] [CrossRef]
- Shen, P.; Gao, Z.; Fang, B.; Rao, J.; Chen, B. Ferreting out the secrets of industrial hemp protein as emerging functional food ingredients. Trends Food Sci. Technol. 2021, 112, 1–15. [Google Scholar] [CrossRef]
- Wang, X.-S.; Tang, C.-H.; Yang, X.-Q.; Gao, W.-R. Characterization, amino acid composition and in vitro digestibility of hemp (Cannabis sativa L.) proteins. Food Chem. 2008, 107, 11–18. [Google Scholar] [CrossRef]
- Liu, X.; Xue, F.; Adhikari, B. Recent advances in plant protein modification: Spotlight on hemp protein. Sustain. Food Technol. 2024, 2, 893–907. [Google Scholar] [CrossRef]
- Stright, A.; Baxter, L.; Dolan, E.; Frampton, K.; Richelle, E.; Ritchie, C.; Moss, R.; McSweeney, M.B. An investigation into the sensory properties of luffa (Luffa cylindrica (L.)) seeds and a comparison to other seeds (flax, sunflower, chia, and hemp). Food Res. Int. 2024, 192, 114746. [Google Scholar] [CrossRef]
- Chen, H.; Xu, B.; Wang, Y.; Li, W.; He, D.; Zhang, Y.; Zhang, X.; Xing, X. Emerging natural hemp seed proteins and their functions for nutraceutical applications. Food Sci. Hum. Wellness 2023, 12, 929–941. [Google Scholar] [CrossRef]
- Kamle, M.; Mahato, D.K.; Sharma, B.; Gupta, A.; Shah, A.K.; Mahmud, M.M.C.; Agrawal, S.; Singh, J.; Rasane, P.; Shukla, A.C.; et al. Nutraceutical potential, phytochemistry of hemp seed (Cannabis sativa L.) and its application in food and feed: A review. Food Chem. Adv. 2024, 4, 100671. [Google Scholar] [CrossRef]
- Dash, D.R.; Singh, S.K.; Singha, P. Viscoelastic behavior, gelation properties and structural characterization of Deccan hemp seed (Hibiscus cannabinus) protein: Influence of protein and ionic concentrations, pH, and temperature. Int. J. Biol. Macromol. 2024, 263, 130120. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cheng, J.; Adhikari, B.; Xue, F. Physicochemical properties of soybean protein isolate-based gel produced through probiotic fermentation. Future Foods 2023, 8, 100242. [Google Scholar] [CrossRef]
- Xue, F.; Li, C.; Cheng, J. Effects of probiotics fermentation on physicochemical properties of plum (Pruni domesticae semen) seed protein-based gel. Int. J. Biol. Macromol. 2024, 277, 134361. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, M.; Xue, F.; Adhikari, B. Application of ultrasound treatment to improve the technofunctional properties of hemp protein isolate. Future Foods 2022, 6, 100176. [Google Scholar] [CrossRef]
- Matysek, J.; Baier, A.; Kalla-Bertholdt, A.-M.; Grebenteuch, S.; Rohn, S.; Rauh, C. Effect of ultrasound and fibre enrichment on aroma profile and texture characteristics of pea protein-based yoghurt alternatives. Innov. Food Sci. Emerg. Technol. 2024, 93, 103610. [Google Scholar] [CrossRef]
- Xue, F.; Xie, Y.; Li, C.; Wang, S.; Liu, X. Prevention of frozen-dough from deterioration with incorporation of glutenin-polyphenols conjugates prepared by ultrasound. LWT 2021, 151, 112141. [Google Scholar] [CrossRef]
- Xue, F.; Li, C.; Adhikari, B. Physicochemical properties of active films of rose essential oil produced using soy protein isolate-polyphenol conjugates for cherry tomato preservation. Food Chem. 2024, 452, 139614. [Google Scholar] [CrossRef]
- Xue, F.; Gu, Y.; Wang, Y.; Li, C.; Adhikari, B. Encapsulation of essential oil in emulsion based edible films prepared by soy protein isolate-gum acacia conjugates. Food Hydrocoll. 2019, 96, 178–189. [Google Scholar] [CrossRef]
- Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, J.; Xue, F.; Li, C. Effects of heating or ultrasound treatment on the enzymolysis and the structure characterization of hempseed protein isolates. J. Food Sci. Technol. 2019, 56, 3337–3346. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Dai, T.; Jiang, D.; Geng, Q.; Deng, L.; Li, T.; Zhong, J.; Liu, C.; Chen, J. Acid-induced pea protein gels pretreated with media milling: Gelling properties and the formation mechanism. Food Chem. 2024, 449, 139110. [Google Scholar] [CrossRef]
- Xu, J.; Xu, X.; Yuan, Z.; Hua, D.; Yan, Y.; Bai, M.; Song, H.; Yang, L.; Zhu, D.; Liu, J.; et al. Effect of hemp protein on the physicochemical properties and flavor components of plant-based yogurt. LWT 2022, 172, 114145. [Google Scholar] [CrossRef]
- Li, N.; Yang, M.; Guo, Y.; Tong, L.-T.; Wang, Y.; Zhang, S.; Wang, L.; Fan, B.; Wang, F.; Liu, L. Physicochemical properties of different pea proteins in relation to their gelation ability to form lactic acid bacteria induced yogurt gel. LWT 2022, 161, 113381. [Google Scholar] [CrossRef]
- Yang, M.; Li, N.; Tong, L.; Fan, B.; Wang, L.; Wang, F.; Liu, L. Comparison of physicochemical properties and volatile flavor compounds of pea protein and mung bean protein-based yogurt. LWT 2021, 152, 112390. [Google Scholar] [CrossRef]
- Ren, H.-B.; Feng, B.-L.; Liu, H.-Y.; Wang, Y.-T.; Zhang, H.-T.; Li, Z.-L.; Meng, L.; Zhang, J.-J.; Bai, X.-S.; Gao, F.; et al. A novel approach has been developed to produce pure plant-based gel soy yogurt by combining soy proteins (7S/11S), high pressure homogenization, and glycation reaction. Food Chem. X 2024, 22, 101259. [Google Scholar] [CrossRef]
- Lee, D.H.; Lee, W.; Shin, D.; Im, H.; Jung, G.; Lee, Y.-B.; Choi, J. Genomic and metabolomic analysis of Latilactobacillus sakei DCF0720 for black soybean yogurt fermentation. Int. J. Food Microbiol. 2024, 425, 110897. [Google Scholar] [CrossRef]
- Shin, J.-S.; Kim, B.-H.; Kim, H.-S.; Baik, M.-Y. Optimization of pea protein and citrus fiber contents for plant based stirred soymilk yogurt using response surface methodology. Food Sci. Biotechnol. 2022, 31, 1691–1701. [Google Scholar] [CrossRef]
- Luo, H.; Bao, Y.; Zhu, P. Enhancing the functionality of plant-based Yogurt: Integration of lycopene through dual-stage fermentation of soymilk. Food Chem. 2024, 434, 137511. [Google Scholar] [CrossRef]
- Lin, Y.; Maloney, K.; Drake, M.; Zheng, H. Synergistic functionality of transglutaminase and protease on modulating texture of pea protein based yogurt alternative: From rheological and tribological characterizations to sensory perception. Food Hydrocoll. 2024, 150, 109652. [Google Scholar] [CrossRef]
- Silva, E.K.; Gomes, M.T.M.S.; Hubinger, M.D.; Cunha, R.L.; Meireles, M.A.A. Ultrasound-assisted formation of annatto seed oil emulsions stabilized by biopolymers. Food Hydrocoll. 2015, 47, 1–13. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, M.; Jiang, H.; Wang, X.; Yin, H.; Yu, Z.; Wang, J.; Han, R.; Yang, Y.; Fan, R. Divergence in physicochemical and microstructural properties of set-type yogurt derived from bean proteins and animal milks: An inquiry into substitution viability. LWT 2024, 193, 115689. [Google Scholar] [CrossRef]
- Pachekrepapol, U.; Kokhuenkhan, Y.; Ongsawat, J. Formulation of yogurt-like product from coconut milk and evaluation of physicochemical, rheological, and sensory properties. Int. J. Gastron. Food Sci. 2021, 25, 100393. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Hua, Y.; Kong, X.; Zhang, C.; Chen, Y.; Wang, S. The absence of lipoxygenase and 7S globulin of soybeans and heating temperatures on the properties of soymilks and soy yogurts. LWT 2019, 115, 108431. [Google Scholar] [CrossRef]
- Sim, S.Y.J.; Hua, X.Y.; Henry, C.J. A Novel Approach to Structure Plant-Based Yogurts Using High Pressure Processing. Foods 2020, 9, 1126. [Google Scholar] [CrossRef]
- Huang, J.; Zeng, S.; Xiong, S.; Huang, Q. Steady, dynamic, and creep-recovery rheological properties of myofibrillar protein from grass carp muscle. Food Hydrocoll. 2016, 61, 48–56. [Google Scholar] [CrossRef]
- Kohyama, K.; Sano, Y.; Doi, E. Rheological Characteristics and Gelation Mechanism of Tofu (Soybean Curd). J. Agric. Food Chem. 1995, 43, 1808–1812. [Google Scholar] [CrossRef]
- Puppo, M.C.; Añón, M.C. Structural Properties of Heat-Induced Soy Protein Gels As Affected by Ionic Strength and pH. J. Agric. Food Chem. 1998, 46, 3583–3589. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, W.; Zhang, Y.; Li, W.; Zhang, Q.; Rui, X. Assessment of dynamic digestion fate of soy protein gel induced by lactic acid bacteria: A protein digestomics research. Food Hydrocoll. 2023, 136, 108309. [Google Scholar] [CrossRef]
- Huang, K.; Liu, Y.; Zhang, Y.; Cao, H.; Luo, D.-k.; Yi, C.; Guan, X. Formulation of plant-based yoghurt from soybean and quinoa and evaluation of physicochemical, rheological, sensory and functional properties. Food Biosci. 2022, 49, 101831. [Google Scholar] [CrossRef]
- Zhang, Z.; Regenstein, J.M.; Zhou, P.; Yang, Y. Effects of high intensity ultrasound modification on physicochemical property and water in myofibrillar protein gel. Ultrason. Sonochem. 2017, 34, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhu, Y.; Ye, T.; Nie, Y.; Jiang, S.; Lin, L.; Lu, J. Physicochemical properties and microstructure of composite surimi gels: The effects of ultrasonic treatment and olive oil concentration. Ultrason. Sonochem. 2022, 88, 106065. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ma, Y.; Ukwatta, R.H.; Xue, F.; Xiong, X.; Li, C. Protein-polyphenol conjugation through alkali treatment improves the structure and functionality of gluten. J. Food Meas. Charact. 2024, 18, 8638–8650. [Google Scholar] [CrossRef]
- Liu, X.; Xue, F.; Li, C.; Adhikari, B. Physicochemical properties of films produced using nanoemulsions stabilized by carboxymethyl chitosan-peptide conjugates and application in blueberry preservation. Int. J. Biol. Macromol. 2022, 202, 26–36. [Google Scholar] [CrossRef]
- Li, C.; Huang, X.; Peng, Q.; Shan, Y.; Xue, F. Physicochemical properties of peanut protein isolate–glucomannan conjugates prepared by ultrasonic treatment. Ultrason. Sonochem. 2014, 21, 1722–1727. [Google Scholar] [CrossRef]
- Xue, F.; Li, C.; Zhu, X.; Wang, L.; Pan, S. Comparative studies on the physicochemical properties of soy protein isolate-maltodextrin and soy protein isolate-gum acacia conjugate prepared through Maillard reaction. Food Res. Int. 2013, 51, 490–495. [Google Scholar] [CrossRef]
- Xue, F.; Li, C.; Adhikari, B. Physicochemical properties of soy protein isolates-cyanidin-3-galactoside conjugates produced using free radicals induced by ultrasound. Ultrason. Sonochem. 2020, 64, 104990. [Google Scholar] [CrossRef]
- Yang, X.; Su, Y.; Li, L. Study of soybean gel induced by Lactobacillus plantarum: Protein structure and intermolecular interaction. LWT 2020, 119, 108794. [Google Scholar] [CrossRef]
- Li, M.; Yang, R.; Feng, X.; Fan, X.; Liu, Y.; Xu, X.; Zhou, G.; Zhu, B.; Ullah, N.; Chen, L. Effects of low-frequency and high-intensity ultrasonic treatment combined with curdlan gels on the thermal gelling properties and structural properties of soy protein isolate. Food Hydrocoll. 2022, 127, 107506. [Google Scholar] [CrossRef]
- Hu, H.; Fan, X.; Zhou, Z.; Xu, X.; Fan, G.; Wang, L.; Huang, X.; Pan, S.; Zhu, L. Acid-induced gelation behavior of soybean protein isolate with high intensity ultrasonic pre-treatments. Ultrason. Sonochem. 2013, 20, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Han, J.; Kwok, E.; Kan, X.; Iordache, M.; Chen, L. The impact of κ-carrageenan on the pea protein gelation by high pressure processing and the gelling mechanisms study. Food Hydrocoll. 2025, 158, 110577. [Google Scholar] [CrossRef]
- Wang, X.; Majzoobi, M.; Farahnaky, A. Ultrasound-assisted modification of functional properties and biological activity of biopolymers: A review. Ultrason. Sonochem. 2020, 65, 105057. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, W.; Bi, S.; Chen, Q.; Lei, Y.; Li, J.; Wang, X. Effect of freezing on physicochemical properties and microstructure of soy protein gels. LWT 2024, 208, 116661. [Google Scholar] [CrossRef]
- Wang, Y.; Li, K.; Yuan, J.J.; Chen, B.; Wang, Y.T.; Li, J.G.; Bai, Y.H. Effect of chickpea protein modified with combined heating and high-pressure homogenization on enhancing the gelation of reduced phosphate myofibrillar protein. Food Chem. 2024, 463, 141180. [Google Scholar] [CrossRef]
- Li, R.; Xiong, Y.L.; Subramanian, V.; Suman, S.P.; True, A.D. Unlocking the gelling potential of oat protein: Synergistic effects of sonication and disulfide cleavage. Food Hydrocoll. 2024, 155, 110241. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J.; Hu, A.; Guo, F.; Zhou, H.; Wang, Q. Effect of transglutaminase and laccase on pea protein gel properties compared to that of soybean. Food Hydrocoll. 2024, 156, 110314. [Google Scholar] [CrossRef]
- Nicolai, T. Gelation of food protein-protein mixtures. Adv. Colloid Interface Sci. 2019, 270, 147–164. [Google Scholar] [CrossRef]
- Dhakal, D.; Younas, T.; Bhusal, R.P.; Devkota, L.; Li, L.; Zhang, B.; Dhital, S. The effect of probiotic strains on the proteolytic activity and peptide profiles of lupin oat-based yoghurt. Food Hydrocoll. 2024, 149, 109570. [Google Scholar] [CrossRef]
- Lu, Y.; Jia, C.; Niu, M.; Xu, Y.; Zhao, S. The in-situ dextran produced in rice protein yogurt: Effect on viscosity and structural characteristics. Carbohydr. Polym. 2023, 311, 120767. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Guo, Q.; Li, W.; Hong, Y.; Gong, J.; Zhang, F.; Chen, C. Improved textural properties of transglutaminase treated milk acid gel: Influence of citric acid. J. Agric. Food Res. 2024, 18, 101270. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, X.; Xiang, X.; McClements, D.J. Modification of textural attributes of potato protein gels using salts, polysaccharides, and transglutaminase: Development of plant-based foods. Food Hydrocoll. 2023, 144, 108909. [Google Scholar] [CrossRef]
- Bulca, S.; Büyükgümüş, E. Production of yogurt analogs from peanut milk (extract) using microbial transglutaminase and two different starter cultures. LWT 2024, 205, 116546. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Fei, Y.; Li, C.; Cheng, J.; Xue, F. Impact of Probiotic Fermentation on the Physicochemical Properties of Hemp Seed Protein Gels. Polymers 2024, 16, 3032. https://doi.org/10.3390/polym16213032
Liu Y, Fei Y, Li C, Cheng J, Xue F. Impact of Probiotic Fermentation on the Physicochemical Properties of Hemp Seed Protein Gels. Polymers. 2024; 16(21):3032. https://doi.org/10.3390/polym16213032
Chicago/Turabian StyleLiu, Yipeng, Yingxue Fei, Chen Li, Jianming Cheng, and Feng Xue. 2024. "Impact of Probiotic Fermentation on the Physicochemical Properties of Hemp Seed Protein Gels" Polymers 16, no. 21: 3032. https://doi.org/10.3390/polym16213032
APA StyleLiu, Y., Fei, Y., Li, C., Cheng, J., & Xue, F. (2024). Impact of Probiotic Fermentation on the Physicochemical Properties of Hemp Seed Protein Gels. Polymers, 16(21), 3032. https://doi.org/10.3390/polym16213032