Chitosan Nanoparticles Embedded in In Situ Gel for Nasal Delivery of Imipramine Hydrochloride: Short-Term Stage Development and Controlled Release Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Chromatographic Method
2.3. Preparation of Cs NPs
2.4. Preparation of IMP-Cs NPs
2.5. Characterization of the Cs NPs and the IMP-Cs NPs
2.6. Morphology Observation by Transmission Electron Microscope (TEM)
2.7. Calculation of the Percentage Encapsulation Efficiency and Percentage Loading Capacity
2.8. Preparation of Simulated Nasal Electrolyte Solution (SNE)
2.9. Formulation and Characterization of IMP-Cs NPs ISG
2.10. Gelation Temperature
2.11. Gelation Time
2.12. Viscosity
2.13. Mucoadhesive Strength
2.14. Gel Strength
2.15. ATR-FTIR
2.16. In Vitro Release Study
2.17. Ex Vivo Permeation Study
2.18. Statistical Analysis
3. Results and Discussion
3.1. Optimization of Chromatographic Method
3.2. Fabrication and Characterization of Cs NPs and IMP-Cs NPs
3.3. Preparation and Characterization of IMP-Cs NPs ISG
3.4. ATR-FTIR Spectroscopy
3.5. In Vitro Drug Release of IMP-Cs NPs
3.6. In Vitro Release Study of IMP-Cs NPs ISG
3.7. Ex Vivo Permeation Study of IMP-Cs NPs and IMP-Cs NPs ISG
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Finlay, W.H.; Vehring, R.; Martin, A.R. Characterizing regional drug delivery within the nasal airways. Expert. Opin. Drug Deliv. 2024, 21, 537–551. [Google Scholar] [CrossRef] [PubMed]
- Rai, G.; Gauba, P.; Dang, S. Recent advances in nanotechnology for intra-nasal drug delivery and clinical applications. J. Drug Deliv. Sci. Technol. 2023, 86, 104726. [Google Scholar] [CrossRef]
- Jeong, S.H.; Jang, J.H.; Lee, Y.B. Drug delivery to the brain via the nasal route of administration: Exploration of key targets and major consideration factors. J. Pharm. Investig. 2023, 53, 119–152. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Chen, X.; Yu, S.; Gong, G.; Shu, H. Research progress in brain-targeted nasal drug delivery. Front. Aging Neurosci. 2024, 15, 1341295. [Google Scholar] [CrossRef]
- Wong, C.Y.J.; Baldelli, A.; Tietz, O.; van der Hoven, J.; Suman, J.; Ong, H.X.; Traini, D. An overview of in vitro and in vivo techniques for characterization of intranasal protein and peptide formulations for brain targeting. Int. J. Pharm. 2024, 654, 123922. [Google Scholar] [CrossRef]
- Rutvik, K.; Meshva, P.; Dinal, P.; Mansi, D. The nasal route, advanced drug delivery systems and evaluation: A review. Egypt. J. Chest Dis. Tuberc. 2023, 72, 471–477. [Google Scholar] [CrossRef]
- Shaghlil, L.; Alshishani, A.; Sa’aleek, A.A.; Abdelkader, H.; Al-ebini, Y. Formulation and evaluation of nasal insert for nose-to-brain drug delivery of rivastigmine tartrate. J. Drug Deliv. Sci. Technol. 2022, 76, 103736. [Google Scholar] [CrossRef]
- Kaur, G.; Goyal, J.; Behera, P.K.; Devi, S.; Singh, S.K.; Garg, V.; Mittal, N. Unraveling the role of chitosan for nasal drug delivery systems: A review. Carbohydr. Polym. Technol. Appl. 2023, 5, 100316. [Google Scholar] [CrossRef]
- Aderibigbe, B.A.; Naki, T. Design and efficacy of nanogels formulations for intranasal administration. Molecules 2018, 23, 1241. [Google Scholar] [CrossRef]
- Saeed, R.M.; Dmour, I.; Taha, M.O. Stable chitosan-based nanoparticles using polyphosphoric acid or hexametaphosphate for tandem ionotropic/covalent crosslinking and subsequent investigation as novel vehicles for drug delivery. Front. Bioeng. Biotechnol. 2020, 8, 4. [Google Scholar] [CrossRef]
- Jha, R.; Mayanovic, R.A. A review of the preparation, characterization, and applications of chitosan nanoparticles in nanomedicine. Nanomaterials 2023, 13, 1302. [Google Scholar] [CrossRef] [PubMed]
- Awad, R.; Avital, A.; Sosnik, A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharm. Sin. B 2023, 13, 1866–1886. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Duan, S.; Wang, W.; Ouyang, Q.; Qin, F.; Guo, P.; Qin, M. Nose-to-brain delivery of nanotherapeutics: Transport mechanisms and applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024, 16, e1956. [Google Scholar] [CrossRef] [PubMed]
- Haider, A.; Khan, S.; Iqbal, D.N.; Shrahili, M.; Haider, S.; Mohammad, K.; Mustafa, G. Advances in chitosan-based drug delivery systems: A comprehensive review for therapeutic applications. Eur. Polym. J. 2024, 210, 112983. [Google Scholar] [CrossRef]
- El-Araby, A.; Janati, W.; Ullah, R.; Ercisli, S.; Errachidi, F. Chitosan, chitosan derivatives, and chitosan-based nanocomposites: Eco-friendly materials for advanced applications (a review). Front. Chem. 2024, 11, 1327426. [Google Scholar] [CrossRef]
- Calvo, P.; Remunan-Lopez, C.; Vila-Jato, J.L.; Alonso, M.J. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci. 1997, 63, 125–132. [Google Scholar] [CrossRef]
- Mi, Y.; Chen, Y.; Gu, G.; Miao, Q.; Tan, W.; Li, Q.; Guo, Z. New synthetic adriamycin-incorporated chitosan nanoparticles with enhanced antioxidant, antitumor activities and pH-sensitive drug release. Carbohydr. Polym. 2021, 273, 118623. [Google Scholar] [CrossRef]
- Jadhav, A.; Dharashive, V.; Shafi, S.; Chavan, S.; Honrao, M.; Inje, R.; Biradar, A. A novel approach for nasal drug delivery system. Asian J. Pharm. Res. Dev. 2024, 12, 96–106. [Google Scholar] [CrossRef]
- Shriky, B.; Vigato, A.A.; Sepulveda, A.F.; Machado, I.P.; de Araujo, D.R. Poloxamer-based nanogels as delivery systems: How structural requirements can drive their biological performance. Biophys. Rev. 2023, 15, 475–496. [Google Scholar] [CrossRef]
- Fayez, R.; Gupta, V. Imipramine. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024; Available online: https://www.ncbi.nlm.nih.gov/books/NBK557656/ (accessed on 25 October 2024).
- Sipos, B.; Csóka, I.; Budai-Szűcs, M.; Kozma, G.; Berkesi, D.; Kónya, Z.; Katona, G. Development of dexamethasone-loaded mixed polymeric micelles for nasal delivery. Eur. J. Pharm. Sci. 2021, 166, 105960. [Google Scholar] [CrossRef]
- Schmolka, I.R. Artificial skin I. Preparation and properties of pluronic F-127 gels for treatment of burns. J. Biomed. Mater. Res. 1972, 6, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Garg, T.; Vaidya, B.; Prakash, A.; Rath, G.; Goyal, A.K. Brain delivery of intranasal in situ gel of nanoparticulated polymeric carriers containing antidepressant drug: Behavioral and biochemical assessment. J. Drug Target. 2015, 23, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Radivojša, M.; Grabnar, I.; Grabnar, P.A. Thermoreversible in situ gelling poloxamer-based systems with chitosan nanocomplexes for prolonged subcutaneous delivery of heparin: Design and in vitro evaluation. Eur. J. Pharm. Sci. 2013, 50, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Rarokar, N.R.; Saoji, S.D.; Raut, N.A.; Taksande, J.B.; Khedekar, P.B.; Dave, V.S. Nanostructured cubosomes in a thermoresponsive depot system: An alternative approach for the controlled delivery of docetaxel. AAPS PharmSciTech 2016, 17, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.; Agrawal, D.K.; Shirsath, C. Thermoreversible mucoadhesive in situ nasal gel for treatment of Parkinson’s disease. Drug Dev. Ind. Pharm. 2017, 43, 142–150. [Google Scholar] [CrossRef]
- Alsarra, I.A.; Hamed, A.Y.; Mahrous, G.M.; El Maghraby, G.M.; Al-Robayan, A.A.; Alanazi, F.K. Mucoadhesive polymeric hydrogels for nasal delivery of acyclovir. Drug Dev. Ind. Pharm. 2009, 35, 352–362. [Google Scholar] [CrossRef]
- Madni, A.; Kashif, P.M.; Nazir, I.; Tahir, N.; Rehman, M.; Khan, M.I.; Jabar, A. Drug-Polymer Interaction Studies of Cytarabine Loaded Chitosan Nanoparticles. J. Chem. Soc. Pak. 2017, 39, 1045. [Google Scholar]
- Shoueir, K.R.; El-Desouky, N.; Rashad, M.M.; Ahmed, M.K.; Janowska, I.; El-Kemary, M. Chitosan based-nanoparticles and nanocapsules: Overview, physicochemical features, applications of a nanofibrous scaffold, and bioprinting. Int. J. Biol. Macromol. 2021, 167, 1176–1197. [Google Scholar] [CrossRef]
- Gomathi, T.; Sudha, P.N.; Florence, J.A.K.; Venkatesan, J.; Anil, S. Fabrication of letrozole formulation using chitosan nanoparticles through ionic gelation method. Int. J. Biol. Macromol. 2017, 104, 1820–1832. [Google Scholar] [CrossRef]
- Mistry, A.; Stolnik, S.; Illum, L. Nanoparticles for direct nose-to-brain delivery of drugs. Int. J. Pharm. 2009, 379, 146–157. [Google Scholar] [CrossRef]
- Md, S.; Khan, R.A.; Mustafa, G.; Chuttani, K.; Baboota, S.; Sahni, J.K.; Ali, J. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur. J. Pharm. Sci. 2013, 48, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Badran, M.M.; Alanazi, A.E.; Ibrahim, M.A.; Alshora, D.H.; Taha, E.; Alomrani, A.H. Optimization of bromocriptine-mesylate-loaded polycaprolactone nanoparticles coated with chitosan for nose-to-brain delivery: In vitro and in vivo studies. Polymers 2023, 15, 3890. [Google Scholar] [CrossRef] [PubMed]
- Jingou, J.; Shilei, H.; Weiqi, L.; Danjun, W.; Tengfei, W.; Yi, X. Preparation, characterization of hydrophilic and hydrophobic drug in combine loaded chitosan/cyclodextrin nanoparticles and in vitro release study. Colloids Surf. B Biointerfaces 2011, 83, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Yan, W.; Xu, Z.; Ni, H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf. B Biointerfaces 2012, 90, 21–27. [Google Scholar] [CrossRef]
- Fernández-Urrusuno, R.; Calvo, P.; Remuñán-López, C.; Vila-Jato, J.L.; José Alonso, M. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm. Res. 1999, 16, 1576–1581. [Google Scholar] [CrossRef]
- Lazaridou, M.; Christodoulou, E.; Nerantzaki, M.; Kostoglou, M.; Lambropoulou, D.A.; Katsarou, A.; Bikiaris, D.N. Formulation and in-vitro characterization of chitosan-nanoparticles loaded with the iron chelator deferoxamine mesylate (DFO). Pharmaceutics 2020, 12, 238. [Google Scholar] [CrossRef]
- Lakshmi, P.K.; Harini, K. Design and optimization of thermo-reversible nasal in situ gel of atomoxetine hydrochloride using taguchi orthogonal array design. Dhaka Univ. J. Pharm. Sci. 2019, 18, 183–193. [Google Scholar] [CrossRef]
- Abdel Bary, G. Preparation and characterization of thermosensitive mucoadhesive in situ gels for nasal delivery of ondansetron hydrochloride. Al-Azhar J. Pharm. Sci. 2014, 50, 191–207. [Google Scholar] [CrossRef]
- Beule, A.G. Funktionen und Funktionsstörungen der respiratorischen Schleimhaut der Nase und der Nasennebenhöhlen. Laryngo-Rhino-Otologie 2010, 89, S15–S34. [Google Scholar] [CrossRef]
- Badran, M.M.; Harisa, G.I.; AlQahtani, S.A.; Alanazi, F.K.; Zoheir, K.M. Pravastatin-loaded chitosan nanoparticles: Formulation, characterization and cytotoxicity studies. J. Drug Deliv. Sci. Technol. 2016, 32, 1–9. [Google Scholar] [CrossRef]
- Rub, M.A.; Azum, N.; Kumar, D.; Asiri, A.M. Interaction of TX-100 and antidepressant imipramine hydrochloride drug mixture: Surface tension, 1H NMR, and FT-IR investigation. Gels 2022, 8, 159. [Google Scholar] [CrossRef]
- Wilson, B.; Alobaid, B.N.M.; Geetha, K.M.; Jenita, J.L. Chitosan nanoparticles to enhance nasal absorption and brain targeting of sitagliptin to treat Alzheimer’s disease. J. Drug Deliv. Sci. Technol. 2021, 61, 102176. [Google Scholar] [CrossRef]
Slope | Intercep | R2 | LoD | LoQ |
---|---|---|---|---|
20.57 | 9.56 | 0.9999 | 3.71 µg/mL | 11.25 µg/mL |
Formulation Code | Cs (mg/mL) | STPP (mg/mL) | PS (nm) | PDI | ZP (mV) |
---|---|---|---|---|---|
F1 | 0.5 | 1 | 1294.9 ± 1.1 | 0.290 ± 0.20 | 7.320 ± 2.2 |
F2 | 1 | 1 | 1421.8 ± 12 | 0.332 ± 0.16 | 5.030 ± 1.4 |
F3 | 1.5 | 1 | 1149.5 ± 2.5 | 0.390 ± 0.090 | 9.110 ± 1.8 |
F4 | 2 | 1 | 180.60 ± 2.2 | 0.298 ± 0.070 | 15.47 ± 2.7 |
F5 | 2.5 | 1 | 310.60 ± 1.9 | 0.335 ± 0.080 | 14.78 ± 2.3 |
F6 | 3 | 1 | 266.20 ± 0.41 | 0.324 ± 0.040 | 10.83 ± 3.2 |
F7 | 1 | 0.5 | 128.70 ± 2.7 | 0.340 ± 0.010 | 16.38 ± 3.8 |
Formulation Code | PS (nm) | PDI | ZP (mV) | %EE | % LC |
---|---|---|---|---|---|
F4-10 | 132.9 ± 1.7 | 0.281 ± 0.020 | 18.48 ± 3.2 | 55.76 ± 0.26 | 23.28 ± 0.64 |
F4-50 | 141.7 ± 2.2 | 0.278 ± 0.080 | 16.79 ± 2.1 | 67.71 ± 1.9 | 37.34 ± 0.11 |
F7-10 | 130.0 ± 1.7 | 0.340 ± 0.060 | 15.78 ± 3.8 | 45.38 ± 1.6 | 8.380 ± 1.9 |
F7-50 | 134.2 ± 2.9 | 0.337 ± 0.040 | 15.71 ± 4.1 | 56.52 ± 1.4 | 11.02 ± 0.41 |
Formulation Code | T Sol-Gel (°C) | Gelation Time (s) | Viscosity (cps) | Mucoadhesive Strength (dyne/cm2) | Gel Strength (s) |
---|---|---|---|---|---|
F4-50-P1 | 33.6 ± 0.94 | 48.1 ± 0.70 | 1206 ± 1.6 | 990.3 ± 1.1 | 33 ± 1.2 |
F4-50-P2 | 30.3 ± 1.8 | 44.5 ± 0.60 | 1443 ± 1.1 | 1011 ± 0.46 | 41 ± 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adwan, S.; Obeidi, T.; Al-Akayleh, F. Chitosan Nanoparticles Embedded in In Situ Gel for Nasal Delivery of Imipramine Hydrochloride: Short-Term Stage Development and Controlled Release Evaluation. Polymers 2024, 16, 3062. https://doi.org/10.3390/polym16213062
Adwan S, Obeidi T, Al-Akayleh F. Chitosan Nanoparticles Embedded in In Situ Gel for Nasal Delivery of Imipramine Hydrochloride: Short-Term Stage Development and Controlled Release Evaluation. Polymers. 2024; 16(21):3062. https://doi.org/10.3390/polym16213062
Chicago/Turabian StyleAdwan, Samer, Teiba Obeidi, and Faisal Al-Akayleh. 2024. "Chitosan Nanoparticles Embedded in In Situ Gel for Nasal Delivery of Imipramine Hydrochloride: Short-Term Stage Development and Controlled Release Evaluation" Polymers 16, no. 21: 3062. https://doi.org/10.3390/polym16213062
APA StyleAdwan, S., Obeidi, T., & Al-Akayleh, F. (2024). Chitosan Nanoparticles Embedded in In Situ Gel for Nasal Delivery of Imipramine Hydrochloride: Short-Term Stage Development and Controlled Release Evaluation. Polymers, 16(21), 3062. https://doi.org/10.3390/polym16213062