Innovative Biocompatible Blend Scaffold of Poly(hydroxybutyrate-co-hydroxyvalerate) and Poly(ε-caprolactone) for Bone Tissue Engineering: In Vitro and In Vivo Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Dense and Porous PHBV, PCL, and PHBV/PCL (75/25) Blend Scaffolds
2.2. Characterization of the Scaffolds
2.3. Culture of Rat Mesenchymal Stem Cells (MSCs)
2.4. MTT Assays
2.5. Morphological Analysis
2.6. Analysis of Osteogenic Differentiation: Alkaline Phosphatase (ALP) and Alizarin Red Staining (ARS)
2.7. Cytochemical Analysis of MSCs Cultured Under Osteogenic Differentiation Conditions
2.8. Scanning Electron Microscopy (SEM) of Cellularized Scaffolds
2.9. Animals and Surgical Procedure
2.10. Histomorphometric and Statistical Analysis
3. Results
3.1. Scaffolds
3.2. FTIR Scaffolds
3.3. MTT Assay
3.4. Morphological Analysis of MSCs
3.5. Analysis of Osteogenic Differentiation by Alkaline Phosphatase Measurements
3.6. Analysis of Osteogenic Differentiation by Alizarin Red Staining
3.7. Cytochemical Analysis of MSCs Under Osteogenic Differentiation Conditions
3.8. Scanning Electron Microscopy (SEM) of Cellularized Scaffolds
3.9. Histological and Morphometric Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bharadwaz, A.; Jayasuriya, A.C. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 110, 110698. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, N.; Kishori, B.; Rao, S.; Anjum, M.; Hemanth, V.; Das, S.; Jabbari, E. Electropsun polycaprolactone fibres in bone tissue engineering: A review. Mol. Biotechnol. 2021, 63, 363–388. [Google Scholar] [CrossRef] [PubMed]
- Zoghi, S. Advancements in tissue engineering: A review of bioprinting techniques, scaffolds, and bioinks. Biomed. Eng. Comput. Biol. 2024, 15, 11795972241288099. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Gao, F.; Yang, D.; Lin, L.; Yu, W.; Tang, J.; Yang, R.; Jin, M.; Gu, Y.; Wang, P.; et al. ECM-mimicking composite hydrogel for accelerated vascularized bone regeneration. Bioact. Mater. 2024, 42, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.R., Jr.; Zavaglia, C.A.C. Tissue Engineering Concepts. In Reference Module in Materials Science and Materials Engineering; Hashmi, S., Ed.; Elsevier: Oxford, UK, 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Vert, M.; Doi, Y.; Hellwich, K.H.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl. Chem. 2012, 84, 377–410. [Google Scholar] [CrossRef]
- Saska, S.; Pilatti, L.; Blay, A.; Shibli, J.A. Bioresorbable polymers: Advanced materials and 4D printing for tissue engineering. Polymers 2021, 13, 563. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Udduttula, A.; Fan, Z.S.; Chen, J.H.; Sun, A.R.; Zhang, P. Microbial-Derived Polyhydroxyalkanoate-Based Scaffolds for Bone Tissue Engineering: Biosynthesis, Properties, and Perspectives. Front. Bioeng. Biotechnol. 2021, 9, 763031. [Google Scholar] [CrossRef]
- Elmowafy, E.; Abdal-Hay, A.; Skouras, A.; Tiboni, M.; Casettari, L.; Guarino, V. Polyhydroxyalkanoate (PHA): Applications in drug delivery and tissue engineering. Expert Rev. Med. Devices 2019, 16, 467–482. [Google Scholar] [CrossRef]
- Köse, G.T.; Korkusuz, F.; Korkusuz, P.; Purali, N.; Özkul, A.; Hasırcı, V. Bone generation on PHBV matrices: An in vitro study. Biomaterials 2003, 24, 4999–5007. [Google Scholar] [CrossRef]
- Delaine-Smith, R.M.; Hann, A.J.; Green, N.H.; Reilly, G.C. Electrospun fiber alignment guides osteogenesis and matrix organization differentially in two different osteogenic cell types. Front. Bioeng. Biotechnol. 2021, 9, 672959. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, D.; Qu, Y.; Peng, J.; Huang, K.; Lei, M.; Wu, T.; Xiao, Y.; Gu, Y.; Qian, Z. Preparation of adenosine-loaded electrospun nanofibers and their application in bone regeneration. J. Biomed. Nanotechnol. 2019, 15, 857–877. [Google Scholar] [CrossRef] [PubMed]
- Casarin, S.A.; Malmonge, S.M.; Kobayashi, M.; Agnelli, J.A.M. Study on in vitro degradation of bioabsorbable polymers poly(hydroxybutyrate-co-valerate)—(PHBV) and poly(caprolactone)—(PCL). J. Biomater. Nanobiotech. 2011, 2, 207–215. [Google Scholar] [CrossRef]
- Kirmanidou, Y.; Chatzinikolaidou, M.; Michalakis, K.; Tsouknidas, A. Clinical translation of polycaprolactone-based tissue engineering scaffolds, fabricated via additive manufacturing: A review of their craniofacial applications. Biomater. Adv. 2024, 162, 213902. [Google Scholar] [CrossRef] [PubMed]
- Gadalla, D.; Goldstein, A.S. Improving the osteogenicity of PCL fiber substrates by surface-immobilization of bone morphogenic protein-2. Ann. Biomed. Eng. 2020, 48, 1006–1015. [Google Scholar] [CrossRef] [PubMed]
- Baptista-Perianes, A.; Malmonge, S.M.; Simbara, M.M.O.; Santos, A.R., Jr. In vitro evaluation of PHBV/PCL blends for bone tissue engineering. Mater. Res. 2019, 22, e20190338. [Google Scholar] [CrossRef]
- Rodrigues, A.A.; Batista, N.A.; Malmonge, S.M.; Casarin, A.S.; Agnelli, J.A.M.; Santos, A.R., Jr.; Belangero, W.D. Osteogenic differentiation of rat bone mesenchymal stem cells cultured on poly (hydroxybutyrate-co-hydroxyvalerate), poly (ε-caprolactone) scaffolds. J. Mater. Sci. Mater. Med. 2021, 32, 138. [Google Scholar] [CrossRef]
- ASTM-F.813-83 (1996) e1; Standard Practice for Direct Contact Cell Culture Evaluation of Materials for Medical Devices. ASTM International: West Conshohocken, PA, USA, 2001.
- ISO-18-5. 2009; Biological Evaluation of Medical Devices. Part 5: Tests for Cytotoxicity: In Vitro Methods. International Organization for Standardization: Geneva, Switzerland, 2009.
- Al-Maharma, A.Y.; Patil, S.P.; Markert, B. Effects of porosity on the mechanical properties of additively manufactured components: A critical review. Mater. Res. Express. 2020, 7, 122001. [Google Scholar] [CrossRef]
- Gregory, C.A.; Gunn, W.G.; Peister, A.; Prockop, D.J. An Alizarin red-based assay of mineralization by adherent cells in culture: Comparison with cetylpyridinium chloride extraction. Anal. Biochem. 2004, 329, 77–84. [Google Scholar] [CrossRef]
- Toboga, S.R.; Vilamaior, P.S.L. Citoquímica. In A Célula, 4th ed.; Carvalho, H.F., Recco-Pimentel, S.M., Eds.; Manole: São Paulo, Brazil, 2019; pp. 62–70. [Google Scholar]
- Vidal, B.C.; Mello, M.L.S. Toluidine blue staining for cell and tissue biology applications. Acta Histochem. 2019, 121, 101–112. [Google Scholar] [CrossRef]
- Modolo, L.P.; Franca, W.R.; Simbara, M.M.O.; Malmonge, S.M.; Santos, A.R., Jr. Dense, porous, and fibrous scaffolds composed of PHBV, PCL, and their 75:25 blend: An morphological and cytochemical characterization. Int. J. Polym. Anal. Charact. 2023, 28, 73–87. [Google Scholar] [CrossRef]
- Cheng, A.; Schwartz, Z.; Kahn, A.; Li, X.; Shao, Z.; Sun, M.; Ao, Y.; Boyan, B.D.; Chen, H. Advances in porous scaffold design for bone and cartilage tissue engineering and regeneration. Tissue Eng. Part B Rev. 2019, 25, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Blokhuis, T.J.; Arts, J.J. Bioactive and osteoinductive bone graft substitutes: Definitions, facts and myths. Injury 2011, 42, S26–S29. [Google Scholar] [CrossRef] [PubMed]
- Oryan, A.; Alidadi, S.; Moshiri, A.; Maffulli, N. Bone regenerative medicine: Classic options, novel strategies, and future directions. J. Orthop. Surg. Res. 2014, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.M.; Adewunmi, A.; Schek, R.M.; Flanagan, C.L.; Krebsbach, P.H.; Feinberg, S.E.; Hollister, S.J.; Das, S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 2005, 26, 4817–4827. [Google Scholar] [CrossRef]
- Moroni, L.; de Wijn, J.R.; van Blitterswijk, C.A. 3D fiber-deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 2006, 27, 974–985. [Google Scholar] [CrossRef]
- Tubio, C.R.; Valle, X.; Carvalho, E.; Moreira, J.; Costa, P.; Correia, D.M.; Lanceros-Mendez, S. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends with poly (caprolactone) and poly (lactic acid): A comparative study. Polymers 2023, 15, 4566. [Google Scholar] [CrossRef]
- Prokudina, E.S.; Senokosova, E.A.; Antonova, L.V.; Krivkina, E.O.; Velikanova, E.A.; Akentieva, T.N.; Glushkova, T.V.; Matveeva, V.G.; Kochergin, N.A. New tissue-engineered vascular matrix based on regenerated silk fibroin: In vitro study. Sovrem. Tekhnologii Med. 2023, 15, 41–48. [Google Scholar] [CrossRef]
- Dalgic, A.D.; Atila, D.; Karatas, A.; Tezcaner, A.; Keskin, D. Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 100, 735–746. [Google Scholar] [CrossRef]
- Nascimento, V.A.; Malmonge, S.M.; Santos, A.R., Jr. Culture of rat mesenchymal stem cells on PHBV-PCL scaffolds: Analysis of conditioned culture medium by FT-Raman spectroscopy. Braz. J. Biol. 2023, 83, e246592. [Google Scholar] [CrossRef]
- Zhang, Z.; Nam, H.K.; Crouch, S.; Hatch, N.E. Tissue nonspecific alkaline phosphatase function in bone and muscle progenitor cells: Control of mitochondrial respiration and ATP production. Int. J. Mol. Sci. 2021, 22, 1140. [Google Scholar] [CrossRef]
- Liu, L.; Hou, S.; Xu, G.; Gao, J.; Mu, J.; Gao, M.; He, J.; Su, X.; Yang, Z.; Liu, Y.; et al. Evaluation of osteogenic properties of a novel injectable bone-repair material containing strontium in vitro and in vivo. Front. Bioeng. Biotechnol. 2024, 12, 1390337. [Google Scholar] [CrossRef] [PubMed]
- San-Marina, S.; Sharma, A.; Voss, S.G.; Janus, J.R.; Hamilton, G.S. Assessment of scaffolding properties for chondrogenic differentiation of adipose-derived mesenchymal stem cells in nasal reconstruction. JAMA Facial Plast. Surg. 2017, 19, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Dec, P.; Modrzejewski, A.; Pawlik, A. Existing and novel biomaterials for bone tissue engineering. Int. J. Mol. Sci. 2022, 24, 529. [Google Scholar] [CrossRef] [PubMed]
- Munhoz, M.A.E.S.; Pomini, K.T.; Plepis, A.M.G.; Martins, V.D.C.A.; Machado, E.G.; de Moraes, R.; Cunha, F.B.; Santos, A.R., Jr.; Cardoso, G.B.C.; Duarte, M.A.H.; et al. Elastin-derived scaffolding associated or not with bone morphogenetic protein (BMP) or hydroxyapatite (HA) in the repair process of metaphyseal bone defects. PLoS ONE 2020, 15, e0231112. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.K.; Plepis, A.M.G.; Martins, V.D.C.A.; Horn, M.M.; Buchaim, D.V.; Buchaim, R.L.; Pelegrine, A.A.; Silva, V.R.; Kudo, M.H.M.; Fernandes, J.F.R.; et al. Suitability of chitosan scaffolds with carbon nanotubes for bone defects treated with photobiomodulation. Int. J. Mol. Sci. 2022, 23, 6503. [Google Scholar] [CrossRef]
- Bonartsev, A.P.; Voinova, V.V.; Volkov, A.V.; Muraev, A.A.; Boyko, E.M.; Venediktov, A.A.; Didenko, N.N.; Dolgalev, A.A. Scaffolds based on poly(3-hydroxybutyrate) and its copolymers for bone tissue engineering (review). Sovrem. Tekhnologii Med. 2022, 14, 78–90. [Google Scholar] [CrossRef]
- Wu, C.A.; Pettit, A.R.; Toulson, S.; Grøndahl, L.; Mackie, E.J.; Cassady, A.I. Responses in vivo to purified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) implanted in a murine tibial defect model. J. Biomed. Mater. Res. Part A 2009, 91, 845–954. [Google Scholar] [CrossRef]
- Park, S.A.; Lee, H.J.; Kim, K.S.; Lee, S.J.; Lee, J.T.; Kim, S.Y.; Chang, N.H.; Park, S.Y. In vivo evaluation of 3D-printed polycaprolactone scaffold implantation combined with β-TCP powder for alveolar bone augmentation in a beagle defect model. Materials 2018, 11, 238. [Google Scholar] [CrossRef]
- Lee, J.Y.; Son, S.J.; Son, J.S.; Kang, S.S.; Choi, S.H. Bone-healing capacity of PCL/PLGA/Duck beak scaffold in critical bone defects in a rabbit model. Biomed. Res. Int. 2016, 2016, 2136215. [Google Scholar] [CrossRef]
- Gharibshahian, M.; Salehi, M.; Beheshtizadeh, N.; Kamalabadi-Farahani, M.; Atashi, A.; Nourbakhsh, M.S.; Alizadeh, M. Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering. Front. Bioeng. Biotechnol. 2023, 11, 1168504. [Google Scholar] [CrossRef]
- Kalaiselvan, E.; Maiti, S.K.; Shivaramu, S.; Banu, S.A.; Sharun, K.; Mohan, D.; Palakkara, S.; Bag, S.; Sahoo, M.; Ramalingam, S.; et al. Bone marrow-derived mesenchymal stem cell-laden nanocomposite scaffolds enhance bone regeneration in rabbit critical-size segmental bone defect model. J. Funct. Biomater. 2024, 15, 66. [Google Scholar] [CrossRef] [PubMed]
- Szczepańczyk, P.; Szlachta, M.; Złocista-Szewczyk, N.; Chłopek, J.; Pielichowska, K. Recent Developments in Polyurethane-Based Materials for Bone Tissue Engineering. Polymers 2021, 13, 946. [Google Scholar] [CrossRef] [PubMed]
- Almansoori, A.A.; Kwon, O.J.; Nam, J.H.; Seo, Y.K.; Song, H.R.; Lee, J.H. Mesenchymal stem cells and platelet-rich plasma-impregnated polycaprolactone-β tricalcium phosphate bio-scaffold enhanced bone regeneration around dental implants. Int. J. Implant. Dent. 2021, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- Jeong, W.-S.; Kim, Y.-C.; Min, J.-C.; Park, H.-J.; Lee, E.-J.; Shim, J.-H.; Choi, J.-W. Clinical Application of 3D-Printed Patient-Specific Polycaprolactone/Beta Tricalcium Phosphate Scaffold for Complex Zygomatico-Maxillary Defects. Polymers 2022, 14, 740. [Google Scholar] [CrossRef] [PubMed]
- Helaehil, J.V.; Lourenço, C.B.; Huang, B.; Helaehil, L.V.; de Camargo, I.X.; Chiarotto, G.B.; Santamaria-Jr, M.; Bártolo, P.; Caetano, G.F. In Vivo Investigation of Polymer-Ceramic PCL/HA and PCL/β-TCP 3D Composite Scaffolds and Electrical Stimulation for Bone Regeneration. Polymers 2022, 14, 65. [Google Scholar] [CrossRef]
- Bassi, A.P.F.; Bizelli, V.F.; Francatti, T.M.; Rezende de Moares Ferreira, A.C.; Carvalho Pereira, J.; Al-Sharani, H.M.; de Almeida Lucas, F.; Faverani, L.P. Bone Regeneration Assessment of Polycaprolactone Membrane on Critical-Size Defects in Rat Calvaria. Membranes 2021, 11, 124. [Google Scholar] [CrossRef]
Samples | Thickness (μm) | Porosity (%) | Pore Diameter (μm) | |
---|---|---|---|---|
PHBV | Dense | 190 ± 48 | - | - |
Porous | 2500 ± 280 | 92.38 ± 0.20 | 280 ± 100 | |
75:25 | Dense | 194 ± 41 | - | - |
Porous | 2157 ± 410 | 93.17 ± 0.34 | 245 ± 130 | |
PCL | Dense | 197 ± 6 | - | - |
Porous | 1997 ± 520 | 93.68 ± 0.87 | 242 ± 51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baptista-Perianes, A.; Simbara, M.M.O.; Malmonge, S.M.; da Cunha, M.R.; Buchaim, D.V.; Miglino, M.A.; Kassis, E.N.; Buchaim, R.L.; Santos, A.R., Jr. Innovative Biocompatible Blend Scaffold of Poly(hydroxybutyrate-co-hydroxyvalerate) and Poly(ε-caprolactone) for Bone Tissue Engineering: In Vitro and In Vivo Evaluation. Polymers 2024, 16, 3054. https://doi.org/10.3390/polym16213054
Baptista-Perianes A, Simbara MMO, Malmonge SM, da Cunha MR, Buchaim DV, Miglino MA, Kassis EN, Buchaim RL, Santos AR Jr. Innovative Biocompatible Blend Scaffold of Poly(hydroxybutyrate-co-hydroxyvalerate) and Poly(ε-caprolactone) for Bone Tissue Engineering: In Vitro and In Vivo Evaluation. Polymers. 2024; 16(21):3054. https://doi.org/10.3390/polym16213054
Chicago/Turabian StyleBaptista-Perianes, Amália, Marcia Mayumi Omi Simbara, Sônia Maria Malmonge, Marcelo Rodrigues da Cunha, Daniela Vieira Buchaim, Maria Angelica Miglino, Elias Naim Kassis, Rogerio Leone Buchaim, and Arnaldo Rodrigues Santos, Jr. 2024. "Innovative Biocompatible Blend Scaffold of Poly(hydroxybutyrate-co-hydroxyvalerate) and Poly(ε-caprolactone) for Bone Tissue Engineering: In Vitro and In Vivo Evaluation" Polymers 16, no. 21: 3054. https://doi.org/10.3390/polym16213054
APA StyleBaptista-Perianes, A., Simbara, M. M. O., Malmonge, S. M., da Cunha, M. R., Buchaim, D. V., Miglino, M. A., Kassis, E. N., Buchaim, R. L., & Santos, A. R., Jr. (2024). Innovative Biocompatible Blend Scaffold of Poly(hydroxybutyrate-co-hydroxyvalerate) and Poly(ε-caprolactone) for Bone Tissue Engineering: In Vitro and In Vivo Evaluation. Polymers, 16(21), 3054. https://doi.org/10.3390/polym16213054