The Influence of In-Mould Annealing and Accelerated Ageing on the Properties of Impact-Modified Poly(Lactic Acid)/Biochar Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grinding of Biochar
2.2. Biochar Properties
2.3. Preparation of PLA Biocomposites
2.4. Accelerated Ageing
2.5. Differential Scanning Calorimetry (DSC)
2.6. Mechanical Properties
2.7. Vicat Softening Temperature (VST)
2.8. Scanning Electron Microscopy (SEM)
3. Results
3.1. Chemical Compositions of Biochar
3.2. Ground Biochar Properties
3.3. Differential Scanning Calorimetry (DSC)
3.4. Mechanical Properties
3.5. Vicat Softening Temperature (VST)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Vieira, M.G.A.; da Silva, M.A.; dos Santos, L.O.; Beppu, M.M. Natural-Based Plasticizers and Biopolymer Films: A Review. Eur. Polym. J. 2011, 47, 254–263. [Google Scholar] [CrossRef]
- Courgneau, C.; Domenek, S.; Guinault, A.; Avérous, L.; Ducruet, V. Analysis of the Structure-Properties Relationships of Different Multiphase Systems Based on Plasticized Poly (Lactic Acid). J. Polym. Environ. 2011, 19, 362–371. [Google Scholar] [CrossRef]
- Darie-Niţă, R.N.; Vasile, C.; Irimia, A.; Lipşa, R.; Râpă, M. Evaluation of Some Eco-friendly Plasticizers for PLA Films Processing. J. Appl. Polym. Sci. 2016, 133, 43223. [Google Scholar] [CrossRef]
- Hassouna, F.; Raquez, J.-M.; Addiego, F.; Dubois, P.; Toniazzo, V.; Ruch, D. New Approach on the Development of Plasticized Polylactide (PLA): Grafting of Poly (Ethylene Glycol)(PEG) via Reactive Extrusion. Eur. Polym. J. 2011, 47, 2134–2144. [Google Scholar] [CrossRef]
- Arrieta, M.P.; Samper, M.D.; López, J.; Jiménez, A. Combined Effect of Poly (Hydroxybutyrate) and Plasticizers on Polylactic Acid Properties for Film Intended for Food Packaging. J. Polym. Environ. 2014, 22, 460–470. [Google Scholar] [CrossRef]
- Gálvez, J.; Correa Aguirre, J.P.; Hidalgo Salazar, M.A.; Vera Mondragón, B.; Wagner, E.; Caicedo, C. Effect of Extrusion Screw Speed and Plasticizer Proportions on the Rheological, Thermal, Mechanical, Morphological and Superficial Properties of PLA. Polymers 2020, 12, 2111. [Google Scholar] [CrossRef]
- Aliotta, L.; Cinelli, P.; Coltelli, M.B.; Righetti, M.C.; Gazzano, M.; Lazzeri, A. Effect of Nucleating Agents on Crystallinity and Properties of Poly (Lactic Acid)(PLA). Eur. Polym. J. 2017, 93, 822–832. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, C.; Liu, X.; Zhu, J. The Crystallization Behavior and Mechanical Properties of Polylactic Acid in the Presence of a Crystal Nucleating Agent. J. Appl. Polym. Sci. 2012, 125, 1108–1115. [Google Scholar] [CrossRef]
- Fehri, S.; Cinelli, P.; Coltelli, M.B.; Anguillesi, I.; Lazzeri, A. Thermal Properties of Plasticized Poly (Lactic Acid)(PLA) Containing Nucleating Agent. Int. J. Chem. Eng. Appl. 2016, 7, 85–88. [Google Scholar] [CrossRef]
- Feng, Y.; Ma, P.; Xu, P.; Wang, R.; Dong, W.; Chen, M.; Joziasse, C. The Crystallization Behavior of Poly (Lactic Acid) with Different Types of Nucleating Agents. Int. J. Biol. Macromol. 2018, 106, 955–962. [Google Scholar] [CrossRef]
- Suksut, B.; Deeprasertkul, C. Effect of Nucleating Agents on Physical Properties of Poly(Lactic Acid) and Its Blend with Natural Rubber. J Polym Environ. 2011, 19, 288–296. [Google Scholar] [CrossRef]
- Kawamoto, N.; Sakai, A.; Horikoshi, T.; Urushihara, T.; Tobita, E. Nucleating Agent for Poly(L -lactic Acid)—An Optimization of Chemical Structure of Hydrazide Compound for Advanced Nucleation Ability. J. Appl. Polym. Sci. 2007, 103, 198–203. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Harussani, M.M.; Hakimi, M.; Haziq, M.Z.M.; Atikah, M.S.N.; Asyraf, M.R.M.; Ishak, M.R.; Razman, M.R.; Nurazzi, N.M. Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers 2021, 13, 1326. [Google Scholar] [CrossRef] [PubMed]
- Kannan, C.S.; Ramesh, R.; Raviram, R.; Aadithya, M. Study of Mechanical Properties of Sustainable Biocomposite Panels Using Jute-PLA and Sisal-PLA. Mater. Today Proc. 2023; in press. [Google Scholar]
- Trivedi, A.K.; Gupta, M.K.; Singh, H. PLA Based Biocomposites for Sustainable Products: A Review. Adv. Ind. Eng. Polym. Res. 2023, 6, 382–395. [Google Scholar] [CrossRef]
- Manral, A.; Ahmad, F.; Chaudhary, V. Static and Dynamic Mechanical Properties of PLA Bio-Composite with Hybrid Reinforcement of Flax and Jute. Mater. Today Proc. 2020, 25, 577–580. [Google Scholar] [CrossRef]
- Chaitanya, S.; Singh, I. Ecofriendly Treatment of Aloe Vera Fibers for PLA Based Green Composites. Int. J. Precis. Eng. Manuf.-Green Tech. 2018, 5, 143–150. [Google Scholar] [CrossRef]
- Motru, S.; Adithyakrishna, V.H.; Bharath, J.; Guruprasad, R. Development and Evaluation of Mechanical Properties of Biodegradable PLA/Flax Fiber Green Composite Laminates. Mater. Today Proc. 2020, 24, 641–649. [Google Scholar] [CrossRef]
- Adugna, E.K.; Desplentere, F.; Yalew, T.B. Mechanical Properties of Short Sisal Fiber Reinforced Polylactic Acid (Pla) Biocomposite Processed by Injection Molding. Branna J. Eng. Technol. 2019, 1, 20–36. [Google Scholar]
- Legesse, N.T. Review on Jute Fiber Reinforced PLA Biocomposite. Available online: https://www.theseus.fi/bitstream/handle/10024/340357/Thesis_NetsanetLegesse.pdf?sequence=2&isAllowed=y (accessed on 22 September 2024).
- Asim, M.; Paridah, M.T.; Chandrasekar, M.; Shahroze, R.M.; Jawaid, M.; Nasir, M.; Siakeng, R. Thermal Stability of Natural Fibers and Their Polymer Composites. Iran. Polym. J. 2020, 29, 625–648. [Google Scholar] [CrossRef]
- Kodal, M.; Sirin, H.; Ozkoc, G. Long-and Short-Term Stability of Plasticized Poly (Lactic Acid): Effects of Plasticizers Type on Thermal, Mechanical and Morphological Properties. Polym. Bull. 2019, 76, 423–445. [Google Scholar] [CrossRef]
- Tsou, C.-H.; Suen, M.-C.; Yao, W.-H.; Yeh, J.-T.; Wu, C.-S.; Tsou, C.-Y.; Chiu, S.-H.; Chen, J.-C.; Wang, R.Y.; Lin, S.-M. Preparation and Characterization of Bioplastic-Based Green Renewable Composites from Tapioca with Acetyl Tributyl Citrate as a Plasticizer. Materials 2014, 7, 5617–5632. [Google Scholar] [CrossRef] [PubMed]
- Brdlík, P.; Borůvka, M.; Běhálek, L.; Lenfeld, P. Biodegradation of Poly (Lactic Acid) Biocomposites under Controlled Composting Conditions and Freshwater Biotope. Polymers 2021, 13, 594. [Google Scholar] [CrossRef] [PubMed]
- Brdlík, P.; Novák, J.; Bor\uuvka, M.; Běhálek, L.; Lenfeld, P. The Influence of Plasticizers and Accelerated Ageing on Biodegradation of PLA under Controlled Composting Conditions. Polymers 2022, 15, 140. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Chen, C.; Song, B.; Shen, M.; Cao, W.; Yang, H.; Zeng, G.; Gong, J. A Review of Biodegradable Plastics to Biodegradable Microplastics: Another Ecological Threat to Soil Environments? J. Clean. Prod. 2021, 312, 127816. [Google Scholar] [CrossRef]
- Sun, X.-L.; Xiang, H.; Xiong, H.-Q.; Fang, Y.-C.; Wang, Y. Bioremediation of Microplastics in Freshwater Environments: A Systematic Review of Biofilm Culture, Degradation Mechanisms, and Analytical Methods. Sci. Total Environ. 2023, 863, 160953. [Google Scholar] [CrossRef]
- Bartoli, M.; Arrigo, R.; Malucelli, G.; Tagliaferro, A.; Duraccio, D. Recent Advances in Biochar Polymer Composites. Polymers 2022, 14, 2506. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation; Routledge: London, UK, 2015; ISBN 1-134-48953-6. [Google Scholar]
- Ok, Y.S.; Uchimiya, S.M.; Chang, S.X.; Bolan, N. Biochar: Production, Characterization, and Applications; CRC Press: Boca Raton, FL, USA, 2015; ISBN 1-4822-4230-3. [Google Scholar]
- Hamzenejad Taghlidabad, R.; Sepehr, E. Heavy Metals Immobilization in Contaminated Soil by Grape-Pruning-Residue Biochar. Arch. Agron. Soil Sci. 2018, 64, 1041–1052. [Google Scholar] [CrossRef]
- Li, Y.; Yu, H.; Liu, L.; Yu, H. Application of Co-Pyrolysis Biochar for the Adsorption and Immobilization of Heavy Metals in Contaminated Environmental Substrates. J. Hazard. Mater. 2021, 420, 126655. [Google Scholar] [CrossRef]
- Joseph, S.; Van, H.T.; Mai, T.L.A.; Duong, T.M.H.; Weldon, S.; Munroe, P.; Mitchell, D.; Taherymoosavi, S. Immobilization of Heavy Metals in Contaminated Soil after Mining Activity by Using Biochar and Other Industrial By-Products: The Significant Role of Minerals on the Biochar Surfaces. Environ. Technol. 2018, 40, 3200–3215. [Google Scholar]
- Hussain, R.; Ravi, K.; Garg, A. Influence of Biochar on the Soil Water Retention Characteristics (SWRC): Potential Application in Geotechnical Engineering Structures. Soil Tillage Res. 2020, 204, 104713. [Google Scholar] [CrossRef]
- Bikbulatova, S.; Tahmasebi, A.; Zhang, Z.; Rish, S.K.; Yu, J. Understanding Water Retention Behavior and Mechanism in Bio-Char. Fuel Process. Technol. 2018, 169, 101–111. [Google Scholar] [CrossRef]
- Wang, D.; Li, C.; Parikh, S.J.; Scow, K.M. Impact of Biochar on Water Retention of Two Agricultural Soils–A Multi-Scale Analysis. Geoderma 2019, 340, 185–191. [Google Scholar] [CrossRef]
- Laird, D.A.; Brown, R.C.; Amonette, J.E.; Lehmann, J. Review of the Pyrolysis Platform for Coproducing Bio-oil and Biochar. Biofuels Bioprod. Biorefining 2009, 3, 547–562. [Google Scholar] [CrossRef]
- Yoshizawa, S.; Tanaka, S.; Ohata, M. Proliferation Effect of Aerobic Micro-Organisms during Composting of Rice Bran by Addition of Biomass Charcoal. In Proceedings of the International Agrichar Conference, Terrigal, NSW, Australia, 27 April–2 May 2007; p. 26. [Google Scholar]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Zech, W. Microbial Response to Charcoal Amendments of Highly Weathered Soils and Amazonian Dark Earths in Central Amazonia—Preliminary Results. In Amazonian Dark Earths Explorations in Space and Time; Springer: Berlin/Heidelberg, Germany, 2004; pp. 195–212. [Google Scholar]
- Pietikäinen, J.; Kiikkilä, O.; Fritze, H. Charcoal as a Habitat for Microbes and Its Effect on the Microbial Community of the Underlying Humus. Oikos 2000, 89, 231–242. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Adhikari, S.; Shojaeiarani, J.; Bajwa, S.G.; Pandey, P.; Shanmugam, S.R. Characterization of Bio-Carbon and Ligno-Cellulosic Fiber Reinforced Bio-Composites with Compatibilizer. Constr. Build. Mater. 2019, 204, 193–202. [Google Scholar] [CrossRef]
- Kane, S.; Van Roijen, E.; Ryan, C.; Miller, S. Reducing the Environmental Impacts of Plastics While Increasing Strength: Biochar Fillers in Biodegradable, Recycled, and Fossil-Fuel Derived Plastics. Compos. Part C Open Access 2022, 8, 100253. [Google Scholar] [CrossRef]
- Kane, S.; Ryan, C. Biochar from Food Waste as a Sustainable Replacement for Carbon Black in Upcycled or Compostable Composites. Compos. Part C Open Access 2022, 8, 100274. [Google Scholar] [CrossRef]
- Zouari, M.; Devallance, D.B.; Marrot, L. Effect of Biochar Addition on Mechanical Properties, Thermal Stability, and Water Resistance of Hemp-Polylactic Acid (PLA) Composites. Materials 2022, 15, 2271. [Google Scholar] [CrossRef]
- Hernandez-Charpak, Y.D.; Trabold, T.A.; Lewis, C.L.; Diaz, C.A. Biochar-Filled Plastics: Effect of Feedstock on Thermal and Mechanical Properties. Biomass Convers. Biorefinery 2022, 12, 4349–4360. [Google Scholar] [CrossRef]
- Aup-Ngoen, K.; Noipitak, M. Effect of Carbon-Rich Biochar on Mechanical Properties of PLA-Biochar Composites. Sustain. Chem. Pharm. 2020, 15, 100204. [Google Scholar] [CrossRef]
- Pudełko, A.; Postawa, P.; Stachowiak, T.; Malińska, K.; Dróżdż, D. Waste Derived Biochar as an Alternative Filler in Biocomposites-Mechanical, Thermal and Morphological Properties of Biochar Added Biocomposites. J. Clean. Prod. 2021, 278, 123850. [Google Scholar] [CrossRef]
- Das, O.; Sarmah, A.K.; Bhattacharyya, D. Biocomposites from Waste Derived Biochars: Mechanical, Thermal, Chemical, and Morphological Properties. Waste Manag. 2016, 49, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liang, Y.; Qian, X.; Hui, D.; Sheng, K. Pyrolysis Kinetics and Mechanical Properties of Poly (Lactic Acid)/Bamboo Particle Biocomposites: Effect of Particle Size Distribution. Nanotechnol. Rev. 2020, 9, 524–533. [Google Scholar] [CrossRef]
- ISO 1133-1:2022; Plastics—Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics. ISO Central Secretaria: Vernier, Switzerland, 2022.
- Regulation (EC) No 1935/2004 of the European Parliament and of the Council of 27 October 2004 on Materials and Articles Intended to Come into Contact with Food and Repealing Directives 80/590/EEC and 89/109/EEC, Strasbourg, France, 2004.
- Commission regulation (EC) No 1169/2004 of 24 June 2004 fixing the representative prices and the additional import duties for molasses in the sugar sector applicable from 25 June 2004.
- ISO 527-1:2019; Plastics—Determination of Tensile Properties—Part 1: General Principles. ISO Central Secretariat: Vernier, Switzerland, 2019.
- ISO 179-1:2023; Plastics—Determination of Charpy Impact Properties—Part 1: Non-Instrumented Impact Test. ISO Central Secretariat: Vernier, Switzerland, 2023.
- Harris, A.M.; Lee, E.C. Improving Mechanical Performance of Injection Molded PLA by Controlling Crystallinity. J. Appl. Polym. Sci. 2008, 107, 2246–2255. [Google Scholar] [CrossRef]
- Nagarajan, V.; Zhang, K.; Misra, M.; Mohanty, A.K. Overcoming the Fundamental Challenges in Improving the Impact Strength and Crystallinity of PLA Biocomposites: Influence of Nucleating Agent and Mold Temperature. ACS Appl. Mater. Interfaces 2015, 7, 11203–11214. [Google Scholar] [CrossRef]
- Sullivan, E.M.; Moon, R.J.; Kalaitzidou, K. Processing and Characterization of Cellulose Nanocrystals/Polylactic Acid Nanocomposite Films. Materials 2015, 8, 8106–8116. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, R.; Liu, W.; Yang, Y.; Huang, L.; Huo, E.; Ma, Z. New Strategy for Reinforcing Polylactic Acid Composites: Towards the Insight into the Effect of Biochar Microspheres. Int. J. Biol. Macromol. 2023, 245, 125487. [Google Scholar] [CrossRef]
- Arrigo, R.; Bartoli, M.; Malucelli, G. Poly (Lactic Acid)–Biochar Biocomposites: Effect of Processing and Filler Content on Rheological, Thermal, and Mechanical Properties. Polymers 2020, 12, 892. [Google Scholar] [CrossRef]
- Sarasua, J.-R.; Prud’homme, R.E.; Wisniewski, M.; Le Borgne, A.; Spassky, N. Crystallization and Melting Behavior of Polylactides. Macromolecules 1998, 31, 3895–3905. [Google Scholar] [CrossRef]
- ISO 306:2022; Plastics—Thermoplastic Materials—Determination of Vicat Softening Temperature (VST). ISO Central Secretariat: Vernier, Switzerland, 2022.
- Haeldermans, T.; Samyn, P.; Cardinaels, R.; Vandamme, D.; Vanreppelen, K.; Cuypers, A.; Schreurs, S. Poly (Lactic Acid) Biocomposites Containing Biochar Particles: Effects of Fillers and Plasticizers on Crystallization and Thermal Properties. Express Polym. Lett. 2021, 15, 343–360. [Google Scholar] [CrossRef]
- Zhao, S.-X.; Ta, N.; Wang, X.-D. Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material. Energies 2017, 10, 1293. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R. Pyrolysis Temperature Induced Changes in Characteristics and Chemical Composition of Biochar Produced from Conocarpus Wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Liu, M.; Ren, H. Biochar Produced from the Co-Pyrolysis of Sewage Sludge and Walnut Shell for Ammonium and Phosphate Adsorption from Water. J. Environ. Manag. 2019, 249, 109410. [Google Scholar] [CrossRef]
- Chen, D.; Liu, D.; Zhang, H.; Chen, Y.; Li, Q. Bamboo Pyrolysis Using TG–FTIR and a Lab-Scale Reactor: Analysis of Pyrolysis Behavior, Product Properties, and Carbon and Energy Yields. Fuel 2015, 148, 79–86. [Google Scholar] [CrossRef]
- Liu, Z.; Han, G. Production of Solid Fuel Biochar from Waste Biomass by Low Temperature Pyrolysis. Fuel 2015, 158, 159–165. [Google Scholar] [CrossRef]
- Lee, Y.; Park, J.; Ryu, C.; Gang, K.S.; Yang, W.; Park, Y.-K.; Jung, J.; Hyun, S. Comparison of Biochar Properties from Biomass Residues Produced by Slow Pyrolysis at 500 °C. Bioresour. Technol. 2013, 148, 196–201. [Google Scholar] [CrossRef]
- Uzun, B.B.; Apaydin-Varol, E.; Ateş, F.; Özbay, N.; Pütün, A.E. Synthetic Fuel Production from Tea Waste: Characterisation of Bio-Oil and Bio-Char. Fuel 2010, 89, 176–184. [Google Scholar] [CrossRef]
- Jafri, N.; Wong, W.Y.; Doshi, V.; Yoon, L.W.; Cheah, K.H. A Review on Production and Characterization of Biochars for Application in Direct Carbon Fuel Cells. Process Saf. Environ. Prot. 2018, 118, 152–166. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An Overview on Engineering the Surface Area and Porosity of Biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef]
- ČSN 46 5735 (465735); Composting. Czech Agency for Standardization: Prague, Czech Republic, 2020.
- Regulation (ČR) n. 273/2021 Coll; Regulation on the Details of Waste Management. Parliament of the Czech Republic: Prague, Czech Republic, 2021.
- Aliotta, L.; Sciara, L.M.; Cinelli, P.; Canesi, I.; Lazzeri, A. Improvement of the PLA Crystallinity and Heat Distortion Temperature Optimizing the Content of Nucleating Agents and the Injection Molding Cycle Time. Polymers 2022, 14, 977. [Google Scholar] [CrossRef]
- Schäfer, H.; Pretschuh, C.; Brüggemann, O. Reduction of Cycle Times in Injection Molding of PLA through Bio-Based Nucleating Agents. Eur. Polym. J. 2019, 115, 6–11. [Google Scholar] [CrossRef]
- Ageyeva, T.; Kovács, J.G.; Tábi, T. Comparison of the Efficiency of the Most Effective Heterogeneous Nucleating Agents for Poly(Lactic Acid). J. Therm. Anal. Calorim. 2022, 147, 8199–8211. [Google Scholar] [CrossRef]
- Tábi, T.; Ageyeva, T.; Kovács, J.G. The Influence of Nucleating Agents, Plasticizers, and Molding Conditions on the Properties of Injection Molded PLA Products. Mater. Today Commun. 2022, 32, 103936. [Google Scholar] [CrossRef]
- Di Lorenzo, M.L.; Rubino, P.; Luijkx, R.; Hélou, M. Influence of Chain Structure on Crystal Polymorphism of Poly(Lactic Acid). Part 1: Effect of Optical Purity of the Monomer. Colloid Polym. Sci. 2014, 292, 399–409. [Google Scholar] [CrossRef]
- Righetti, M.C.; Tombari, E.; Di Lorenzo, M.L. The Role of the Crystallization Temperature on the Nanophase Structure Evolution of Poly[(R)-3-Hydroxybutyrate]. J. Phys. Chem. B 2013, 117, 12303–12311. [Google Scholar] [CrossRef]
- Belbachir, S.; Zaïri, F.; Ayoub, G.; Maschke, U.; Naït-Abdelaziz, M.; Gloaguen, J.M.; Benguediab, M.; Lefebvre, J.M. Modelling of Photodegradation Effect on Elastic–Viscoplastic Behaviour of Amorphous Polylactic Acid Films. J. Mech. Phys. Solids 2010, 58, 241–255. [Google Scholar] [CrossRef]
- Salač, J.; Šerá, J.; Jurča, M.; Verney, V.; Marek, A.A.; Koutnỳ, M. Photodegradation and Biodegradation of Poly (Lactic) Acid Containing Orotic Acid as a Nucleation Agent. Materials 2019, 12, 481. [Google Scholar] [CrossRef]
- Cui, L.; Imre, B.; Tátraaljai, D.; Pukánszky, B. Physical Ageing of Poly (Lactic Acid): Factors and Consequences for Practice. Polymer 2020, 186, 122014. [Google Scholar] [CrossRef]
- Müller, P.; Imre, B.; Bere, J.; Móczó, J.; Pukánszky, B. Physical Ageing and Molecular Mobility in PLA Blends and Composites. J. Therm. Anal. Calorim. 2015, 122, 1423–1433. [Google Scholar] [CrossRef]
- Lesaffre, N.; Bellayer, S.; Fontaine, G.; Jimenez, M.; Bourbigot, S. Revealing the Impact of Ageing on a Flame Retarded PLA. Polym. Degrad. Stab. 2016, 127, 88–97. [Google Scholar] [CrossRef]
- Rocca-Smith, J.R.; Chau, N.; Champion, D.; Brachais, C.-H.; Marcuzzo, E.; Sensidoni, A.; Piasente, F.; Karbowiak, T.; Debeaufort, F. Effect of the State of Water and Relative Humidity on Ageing of PLA Films. Food Chem. 2017, 236, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Vadori, R.; Mohanty, A.K.; Misra, M. The Effect of Mold Temperature on the Performance of Injection Molded Poly(Lactic Acid)-Based Bioplastic. Macro Mater. Eng. 2013, 298, 981–990. [Google Scholar] [CrossRef]
- Scaffaro, R.; Morreale, M.; Mirabella, F.; La Mantia, F.P. Preparation and Recycling of Plasticized PLA. Macro Mater. Eng. 2011, 296, 141–150. [Google Scholar] [CrossRef]
- Mozrall, A.M.; Hernandez-Charpak, Y.D.; Trabold, T.A.; Diaz, C.A. Effect of Biochar Content and Particle Size on Mechanical Properties of Biochar-Bioplastic Composites. Sustain. Chem. Pharm. 2023, 35, 101223. [Google Scholar] [CrossRef]
- Qian, S.; Zhang, H.; Yao, W.; Sheng, K. Effects of Bamboo Cellulose Nanowhisker Content on the Morphology, Crystallization, Mechanical, and Thermal Properties of PLA Matrix Biocomposites. Compos. Part B Eng. 2018, 133, 203–209. [Google Scholar] [CrossRef]
- Xia, Y.; Qian, S.; Zhang, X.; Zhang, Z.; Zhu, C. Biochar as an Efficient Reinforcing Agent for Poly (Lactic Acid)/Poly (ε-Caprolactone) Biodegradable Composites with High Robustness and Thermo-Resistance. Ind. Crops Prod. 2024, 219, 119049. [Google Scholar] [CrossRef]
Sample Designation | Composition (wt. %) | |||
---|---|---|---|---|
PLA | MOC006 | Biochar (B1)— avg. 0.6 µm | Biochar (B2)— avg. 41.1 µm | |
PLA | 100 | - | - | - |
PLA/IM | 90 | 10 | - | - |
PLA/2B1 | 98 | - | 2 | - |
PLA/IM/2B1 | 88 | 10 | 2 | - |
PLA/5B1 | 95 | - | 5 | - |
PLA/IM/5B1 | 85 | 10 | 5 | - |
PLA/2B2 | 98 | - | - | 2 |
PLA/IM/2B2 | 88 | 10 | - | 2 |
PLA/5B2 | 95 | - | - | 5 |
PLA/IM/5B2 | 85 | 10 | - | 5 |
Element | Content (%) | Heavy Metal | Content (mg/kg) |
---|---|---|---|
Ash | 36.6 | Hg | 0.006 |
C | 46.7 | As | <1.0 |
O | 28.2 | Be | <0.1 |
N | 0.8 | Cd | <0.05 |
P | 0.7 | Co | 1.47 |
K | 1.0 | Cr | 6.7 |
Mg | 0.4 | Cu | 6.8 |
Ca | 6.7 | Mn | 136.0 |
S | 0.07 | Mo | 0.47 |
Ni | 8.8 | ||
Pb | <5.0 | ||
V | <5.0 | ||
Zn | 60.5 |
Sample | T (°C) | Tg (°C) | Tsc (°C) | Tpc (°C) | Tm (°C) | ΔHsc (J/g) | ΔHpc (J/g) | ΔHm (J/g) | Xc (%) |
---|---|---|---|---|---|---|---|---|---|
PLA | 40 | 59.6 | 108.7 | 160.1 | 176.7 | 29.30 | 4.27 | 39.50 | 5.6 |
100 | 59.8 | 108.4 | 159.8 | 175.7 | 27.49 | 4.07 | 41.72 | 9.6 | |
PLA/IM | 40 | 59.8 | 96.1 | 156.0 | 177.4 | 26.58 | 5.93 | 45.19 | 13.3 |
100 | 60.1 | - | 175.1 | - | - | 40.50 | 42.5 | ||
PLA/2B1 | 40 | - | 97.1 | 156.7 | 174.6 | 29.64 | 6.32 | 45.15 | 8.8 |
100 | - | - | 173.8 | - | - | 40.47 | 39.0 | ||
PLA/5B1 | 40 | - | 94.6 | 156.2 | 173.8 | 26.48 | 6.04 | 44.60 | 12.0 |
100 | - | - | 173.7 | - | - | 42.63 | 42.3 | ||
PLA/2B2 | 40 | 60.1 | 100.3 | 157.8 | 175.8 | 27.63 | 5.62 | 44.05 | 10.4 |
100 | 60.3 | 95.7 | 156.0 | 173.5 | 11.12 | 4.33 | 46.62 | 30.0 | |
PLA/5B2 | 40 | 60.0 | 97.6 | 155.8 | 172.5 | 27.59 | 5.58 | 42.35 | 9.1 |
100 | 60.9 | - | 158.1 | 174.7 | - | 2.58 | 43.13 | 40.3 | |
PLA/IM/2B1 | 40 | 60.4 | 95.2 | 155.1 | 175.0 | 25.91 | 5.77 | 43.55 | 12.7 |
100 | 59.9 | 91.5 | 155.6 | 173.3 | 3.32 | 2.86 | 40.03 | 36.3 | |
PLA/IM/5B1 | 40 | - | 94.4 | 155.3 | 174.7 | 25.20 | 5.80 | 41.69 | 11.9 |
100 | - | - | - | 173.5 | - | - | 38.11 | 42.3 | |
PLA/IM/2B2 | 40 | 59.6 | 96.2 | 155.3 | 174.2 | 27.91 | 5.73 | 42.87 | 9.9 |
100 | 59.9 | 94.9 | 154.2 | 172.6 | 20.88 | 5.06 | 42.92 | 18.2 | |
PLA/IM/5B2 | 40 | 60.7 | 95.4 | 155.5 | 175.8 | 25.53 | 5.34 | 41.84 | 12.2 |
100 | 60.9 | 93.4 | 154.0 | 172.6 | 17.83 | 4.41 | 38.25 | 17.8 |
Sample | T (°C) | Tg (°C) | Tsc (°C) | Tpc (°C) | Tm (°C) | ΔHsc (J/g) | ΔHpc (J/g) | ΔHm (J/g) | Xc (%) |
---|---|---|---|---|---|---|---|---|---|
PLA | 40 | 59.8 | 98.9 | 156.3 | 172.0 | 29.09 | 5.99 | 45.88 | 10.2 |
100 | 59.7 | 104.6 | 158.5 | 174.1 | 25.77 | 3.52 | 44.39 | 14.2 | |
PLA/IM | 40 | 59.7 | 95.0 | 154.5 | 172.3 | 28.70 | 6.43 | 44.22 | 9.5 |
100 | 59.6 | - | 157.6 | 173.1 | - | 3.17 | 44.27 | 43.1 | |
PLA/2B1 | 40 | - | 96.7 | 155.8 | 172.6 | 27.91 | 6.38 | 45.60 | 10.9 |
100 | - | - | 160.1 | 173.1 | - | 0.29 | 40.12 | 38.3 | |
PLA/5B1 | 40 | - | 94.4 | 155.8 | 172.4 | 19.86 | 5.28 | 44.68 | 19.4 |
100 | - | - | - | 173.8 | - | - | 41.37 | 41.1 | |
PLA/2B2 | 40 | 59.6 | 99.7 | 156.7 | 173.1 | 29.28 | 5.89 | 46.13 | 10.6 |
100 | 59.9 | - | 154.8 | 172.5 | - | 3.05 | 45.28 | 40.7 | |
PLA/5B2 | 40 | 58.9 | 97.9 | 155.8 | 172.4 | 26.21 | 5.82 | 43.84 | 11.7 |
100 | 60.2 | 94.8 | 156.3 | 173.4 | 11.95 | 3.65 | 42.97 | 27.2 | |
PLA/IM/2B1 | 40 | 60.6 | 94.7 | 154.7 | 172.0 | 26.38 | 5.48 | 41.49 | 10.3 |
100 | 59.9 | - | 159.0 | 172.4 | - | 1.38 | 39.82 | 41.2 | |
PLA/IM/5B1 | 40 | - | 91.3 | 154.0 | 172.1 | 13.39 | 4.50 | 43.41 | 28.3 |
100 | - | - | - | 173.7 | - | - | 41.03 | 45.5 | |
PLA/IM/2B2 | 40 | 59.5 | 95.4 | 154.5 | 171.9 | 27.22 | 5.41 | 42.92 | 11.0 |
100 | 59.6 | - | 153.0 | 172.2 | - | 3.01 | 43.53 | 43.4 | |
PLA/IM/5B2 | 40 | 60.1 | 94.7 | 154.8 | 173.0 | 25.24 | 5.44 | 41.93 | 12.5 |
100 | 60.1 | 94.4 | 154.6 | 172.4 | 19.42 | 4.99 | 40.76 | 18.1 |
Sample | As-Produced | Aged | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
40 °C | 100 °C | 40 °C | 100 °C | |||||||||
PLA | 18 | ± | 1 | 13 | ± | 4 | 21 | ± | 3 | 21 | ± | 3 |
PLA/IM | 29 | ± | 2 | 79 | ± | 2 | 39 | ± | 7 | 65 | ± | 12 |
PLA/2B1 | 17 | ± | 3 | 28 | ± | 6 | 20 | ± | 4 | 27 | ± | 9 |
PLA/5B1 | 21 | ± | 4 | 21 | ± | 4 | 23 | ± | 3 | 18 | ± | 3 |
PLA/2B2 | 18 | ± | 2 | 19 | ± | 3 | 21 | ± | 2 | 25 | ± | 4 |
PLA/5B2 | 18 | ± | 2 | 14 | ± | 1 | 19 | ± | 2 | 34 | ± | 4 |
PLA/IM/2B1 | 37 | ± | 6 | 49 | ± | 6 | 53 | ± | 11 | 52 | ± | 8 |
PLA/IM/5B1 | 95 | ± | 8 | 59 | ± | 8 | 95 | ± | 13 | 51 | ± | 9 |
PLA/IM/2B2 | 28 | ± | 6 | 22 | ± | 5 | 29 | ± | 4 | 44 | ± | 4 |
PLA/IM/5B2 | 29 | ± | 4 | 19 | ± | 5 | 18 | ± | 2 | 34 | ± | 3 |
Sample | As-Produced | Aged | ||
---|---|---|---|---|
40 °C | 100 °C | 40 °C | 100 °C | |
PLA | 60.2 | 60.8 | 62.4 | 63.8 |
PLA/IM | 59.4 | 90.7 | 62.7 | 64.1 |
PLA/2B1 | 61.2 | 95.7 | 63.4 | 95.5 |
PLA/5B1 | 61.2 | 98.5 | 68.7 | 98.5 |
PLA/2B2 | 60.2 | 66.3 | 62.1 | 86.4 |
PLA/5B2 | 60.2 | 87.3 | 63.5 | 89.7 |
PLA/IM/2B1 | 60.4 | 85.2 | 61.4 | 80.5 |
PLA/IM/5B1 | 60.3 | 94.6 | 61.2 | 91.1 |
PLA/IM/2B2 | 59.7 | 62.2 | 61.1 | 81.4 |
PLA/IM/5B2 | 60.0 | 61.6 | 62.2 | 63.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brdlík, P.; Novák, J.; Borůvka, M.; Gomez-Caturla, J.; Lenfeld, P. The Influence of In-Mould Annealing and Accelerated Ageing on the Properties of Impact-Modified Poly(Lactic Acid)/Biochar Composites. Polymers 2024, 16, 3102. https://doi.org/10.3390/polym16223102
Brdlík P, Novák J, Borůvka M, Gomez-Caturla J, Lenfeld P. The Influence of In-Mould Annealing and Accelerated Ageing on the Properties of Impact-Modified Poly(Lactic Acid)/Biochar Composites. Polymers. 2024; 16(22):3102. https://doi.org/10.3390/polym16223102
Chicago/Turabian StyleBrdlík, Pavel, Jan Novák, Martin Borůvka, Jaume Gomez-Caturla, and Petr Lenfeld. 2024. "The Influence of In-Mould Annealing and Accelerated Ageing on the Properties of Impact-Modified Poly(Lactic Acid)/Biochar Composites" Polymers 16, no. 22: 3102. https://doi.org/10.3390/polym16223102
APA StyleBrdlík, P., Novák, J., Borůvka, M., Gomez-Caturla, J., & Lenfeld, P. (2024). The Influence of In-Mould Annealing and Accelerated Ageing on the Properties of Impact-Modified Poly(Lactic Acid)/Biochar Composites. Polymers, 16(22), 3102. https://doi.org/10.3390/polym16223102