Electrospun Micro/Nanofiber-Based Electrocatalysts for Hydrogen Evolution Reaction: A Review
Abstract
:1. Introduction
2. Properties for a Potential Effective Electrocatalyst for HER
2.1. High Electrocatalytic Activity
2.2. Outstanding Stability
2.3. Low-Cost and Sustainability
3. Advantages of Electrospun Micro/Nanofiber-Based Electrocatalysts
4. Classifications of Electrospun Micro/Nanofiber-Based Electrocatalysts
4.1. Metal-Based Electrospun Micro/Nanofiber-Based Electrocatalysts
4.1.1. Noble Metals and Alloys
4.1.2. Transition Metals and Alloys
4.2. Metal–Non-Metal Electrospun Micro/Nanofiber-Based Electrocatalysts
4.2.1. Metal Sulfide-Based Electrocatalysts
4.2.2. Metal Oxide-Based Electrocatalysts
4.2.3. Metal Phosphide-Based Electrocatalysts
4.2.4. Metal Nitride-Based Electrocatalysts
4.2.5. Metal Carbide-Based Electrocatalysts
4.3. Metal-Free Electrospun Electrocatalysts
4.4. Hybrid Electrospun Micro/Nanofiber-Based Electrocatalysts
5. Enhancement Strategies for Electrospun Micro/Nanofiber-Based Electrocatalysts
5.1. Enhancement of Intrinsic Activity
5.1.1. Constructing Heterostructures
5.1.2. Doping with Heteroatoms
5.1.3. Defect Engineering
Key Strategy | Electrocatalyst | η10 (mV) | Tafel Slope (mV/dec) | Electrolyte | Ref. |
---|---|---|---|---|---|
Constructing Heterostructures | CoS2-C@MoS2 | 173 | 61 | 0.5 M H2SO4 | [286] |
rGO@CoNi2S4/CNF | 228 (η20) | 42.1 | 1.0 M KOH | [166] | |
Co9S8/HWS2/CNFs | 83 | 56 | 0.5 M H2SO4 | [287] | |
87 | 72 | 1.0 M KOH | |||
CoMoS@CNF | 105.2 | 152.8 | 1.0 M KOH | [167] | |
Ru-Ru2P@CNFs | 11 | 24.5 | 0.5 M H2SO4 | [206] | |
14 | 24.2 | 1.0 M KOH | |||
CoP/Co2P@ACNF | 133 | 53.5 | 0.5 M H2SO4 | [288] | |
155 | 88.6 | 1.0 M KOH | |||
CoP-PrBa0.5Sr0.5Co1.5Fe0.5O5+δ | 240 | 93.8 | 1.0 M KOH | [289] | |
D-TiO2/Co@NCT | 57.5 | 73.5 | 0.5 M H2SO4 | [181] | |
NiFe2O4-NFs | 61 | 40 | 1.0 M KOH | [196] | |
RuO2/Ru-CNFs | 21 | 25.1 | 1.0 M KOH | [186] | |
Ni/CeO2@N-CNFs | 100 | 85.7 | 1.0 M KOH | [290] | |
S-Co-NiO@N-CNF | 169 | 86.44 | 1.0 M KOH | [185] | |
Fe3C-Mo2C/NC | 116 | 43 | 0.5 M H2SO4 | [291] | |
Ni/Mo2C-NCNFs | 143 | 57.8 | 1.0 M KOH | [259] | |
Sn/Mo2C-CNFs | 144 | 49.8 | 1.0 M KOH | [255] | |
Mo2C-CoO@N-CNFs | 115 | 76 | 1.0 M KOH | [292] | |
CoSe2–CoO/NCF | 72 | 68.3 | 0.5 M H2SO4 | [278] | |
117 | 124.5 | 1.0 M KOH | |||
SrTiO3@MoS2 | 165 | 81.41 | 1.0 M KOH | [275] | |
Co3W3C/CoP/NPC | 139 | 116.9 | 1.0 M KOH | [265] | |
Ru/Ni-V2NO/NCNFs | 74.5 | 60.7 | 1.0 M KOH | [274] | |
CoSe2/Co3S4@Co3O4 | 165 | 117.7 | 1.0 M KOH | [267] | |
Doping with Heteroatoms | P-NiCo2S4@CNT/CNF | 74 | 65.9 | 0.5 M H2SO4 | [163] |
NCNFs-MoS2|P | 98 | 66 | 0.5 M H2SO4 | [149] | |
NCT-NiCo2S4 | 183 | 89.8 | 1.0 M KOH | [293] | |
(NiCo)S2/NCNF | 177 | 66.9 | 1.0 M KOH | [294] | |
SFCNF/Co1-xS@CoN | 20 | 54.4 | 1.0 M KOH | [295] | |
Ru, Ni-CoP | 45 | 53.9 | 1.0 M KOH | [284] | |
Fe-CoP/PCNF | 151 | 53.9 | 0.5 M H2SO4 | [215] | |
FeCNFs-NP | 149 | 58 | 0.5 M H2SO4 | [283] | |
MC-V-CoP | 65 | 72.5 | 1.0 M KOH | [205] | |
P-Pr0.5La0.5BaCo2O5+δ | 224 (η500) | 32.9 | 1.0 M KOH | [201] | |
NiCoP@PNCNF | 98 | 58 | 1.0 M KOH | [232] | |
CoNiPx-CNFs | 154 | 73 | 1.0 M KOH | [233] | |
VxCo3-xC/CNFs | 87 | 78 | 1.0 M KOH | [296] | |
Co, Mo2C-CNF | 128 | 60 | 1.0 M KOH | [254] | |
206 | 92.8 | 1.0 M PBS | |||
Mo2C/Co/CoO-NHCNFs | 143 | 74 | 1.0 M KOH | [297] | |
Pt/α-MoC1-x-CNFs | 38 | 27 | 0.5 M H2SO4 | [258] | |
MoxC-NPC | 125 | 70.1 | 0.5 M H2SO4 | [248] | |
71 | 114.1 | 1.0 M KOH | |||
Co3Mo/MoxC@NC | 114 | 86 | 0.5 M H2SO4 | [235] | |
Co-N-P-CNFs | 248 | 56.14 | 0.5 M H2SO4 | [94] | |
Pt/HCNF-III | 54 | 33 | 0.5 M H2SO4 | [108] | |
Ce@NiFe-LDH | 81 | 81 | 1.0 M KOH | [271] | |
0.15Co-NCNFs-5Rh | 18 | 73.8 | 0.5 M H2SO4 | [272] | |
13 | 27.2 | 1.0 M KOH | |||
Defect Engineering | MoS2/NCNFs | 135 | 48 | 0.5 M H2SO4 | [285] |
Co/CoOx@(PrBa0.8Ca0.2)0.95(Co1.5Fe0.5)0.9 | 224 (η20) | 42 | 1.0 M KOH | [200] | |
D-CoNiOx-P-NFs | 145 | 76 | 1.0 M KOH | [193] | |
Ru@TiO2-V | 34 | 35.4 | 1.0 M KOH | [192] | |
CoP-NTs | 152 | 50 | 0.5 M H2SO4 | [212] | |
CoP/NCF | 86 | 55 | 0.5 M H2SO4 | [208] | |
CoP@CF | 190 (η50) | 92.6 | 1.0 M KOH | [209] | |
Hierarchical Structure | MoS2-CNF | 120 | 45 | 0.5 M H2SO4 | [145] |
CNF@CoS2 | 110 | 66.8 | 0.5 M H2SO4 | [144] | |
CNF/Co3S4/MoS2 | 80 | 99.2 | 1.0 M KOH | [150] | |
CNF@CoP-CNTs | 65 | 80.79 | 0.5 M H2SO4 | [213] | |
CoFeP NS@NCNF | 113 | 108 | 1.0 M KOH | [234] | |
PrBa0.5Sr0.5Co2O5+δ@FeOOH | 280 | 70 | 0.1 M KOH | [179] | |
Porous Structure | Fe3C@FeNC-CNF | 86 | 140 | 1.0 M KOH | [250] |
Mo2C-MCNFs | 114 | 88 | 1.0 M KOH | [298] |
5.2. Increasing the Number of Active Sites
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cook, T.R.; Dogutan, D.K.; Reece, S.Y.; Surendranath, Y.; Teets, T.S.; Nocera, D.G. Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chem. Rev. 2010, 110, 6474–6502. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lin, J.; Wu, N.; Xie, S.; Meng, C.; Zheng, Y.; Wang, X.; Zhao, Y. Review and outlook on the international renewable energy development. Energy Built Environ. 2022, 3, 139–157. [Google Scholar] [CrossRef]
- Joo, J.; Kim, T.; Lee, J.; Choi, S.I.; Lee, K. Morphology-Controlled Metal Sulfides and Phosphides for Electrochemical Water Splitting. Adv. Mater. 2019, 31, e1806682. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Le, T.A.; Tran, N.Q.; Lee, H. Earth-Abundant Transition-Metal-Based Bifunctional Electrocatalysts for Overall Water Splitting in Alkaline Media. Chem. A Eur. J. 2020, 26, 6423–6436. [Google Scholar] [CrossRef]
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Mahmood Ali, B.; Algburi, S.; Alzoubi, H.M.; Khudhair Al-Jiboory, A.; Zuhair Sameen, A.; Salman, H.M.; Jaszczur, M. The renewable energy role in the global energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Jia, Y.; Jiang, K.; Wang, H.; Yao, X. The Role of Defect Sites in Nanomaterials for Electrocatalytic Energy Conversion. Chem 2019, 5, 1371–1397. [Google Scholar] [CrossRef]
- Wang, J.; Xu, F.; Jin, H.; Chen, Y.; Wang, Y. Non-Noble Metal-based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications. Adv. Mater. 2017, 29, 1605838. [Google Scholar] [CrossRef]
- Cui, W.; Cheng, N.; Liu, Q.; Ge, C.; Asiri, A.M.; Sun, X. Mo2C Nanoparticles Decorated Graphitic Carbon Sheets: Biopolymer-Derived Solid-State Synthesis and Application as an Efficient Electrocatalyst for Hydrogen Generation. ACS Catal. 2014, 4, 2658–2661. [Google Scholar] [CrossRef]
- Tian, J.; Liu, Q.; Asiri, A.M.; Sun, X. Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3D Hydrogen-Evolving Cathode over the Wide Range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590. [Google Scholar] [CrossRef]
- Zou, X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. [Google Scholar] [CrossRef]
- Mahmood, N.; Yao, Y.; Zhang, J.-W.; Pan, L.; Zhang, X.; Zou, J.-J. Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions. Adv. Sci. 2018, 5, 1700464. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Ding, J.; Wei, D.; Xie, X.; Li, B.; Lu, S.; Zhang, J.; Liu, Y.; Cai, Q.; Zang, S. Coupling of Ru and O-Vacancy on 2D Mo-Based Electrocatalyst Via a Solid-Phase Interface Reaction Strategy for Hydrogen Evolution Reaction. Adv. Energy Mater. 2021, 11, 2100141. [Google Scholar] [CrossRef]
- Pham, T.A.; Ping, Y.; Galli, G. Modelling heterogeneous interfaces for solar water splitting. Nat. Mater. 2017, 16, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Dou, S.; Wang, X.; Wang, S. Rational Design of Transition Metal-Based Materials for Highly Efficient Electrocatalysis. Small Methods 2019, 3, 1800211. [Google Scholar] [CrossRef]
- Kong, D.; Cha, J.J.; Wang, H.; Lee, H.R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553–3558. [Google Scholar] [CrossRef]
- Megía, P.J.; Vizcaíno, A.J.; Calles, J.A.; Carrero, A. Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy Fuels 2021, 35, 16403–16415. [Google Scholar] [CrossRef]
- Jiang, W.-J.; Tang, T.; Zhang, Y.; Hu, J.-S. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting. Acc. Chem. Res. 2020, 53, 1111–1123. [Google Scholar] [CrossRef]
- An, L.; Wei, C.; Lu, M.; Liu, H.; Chen, Y.; Scherer, G.G.; Fisher, A.C.; Xi, P.; Xu, Z.J.; Yan, C.-H. Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment. Adv. Mater. 2021, 33, 2006328. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541. [Google Scholar] [CrossRef]
- Zeng, K.; Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, C.; Huang, Y.; Fu, J. Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 2021, 80, 105545. [Google Scholar] [CrossRef]
- Younas, M.; Shafique, S.; Hafeez, A.; Javed, F.; Rehman, F. An Overview of Hydrogen Production: Current Status, Potential, and Challenges. Fuel 2022, 316, 123317. [Google Scholar] [CrossRef]
- Li, G.; Han, G.; Wang, L.; Cui, X.; Moehring, N.K.; Kidambi, P.R.; Jiang, D.-e.; Sun, Y. Dual hydrogen production from electrocatalytic water reduction coupled with formaldehyde oxidation via a copper-silver electrocatalyst. Nat. Commun. 2023, 14, 525. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhang, Y.; He, H.; Gao, D.; Hu, J.; Peng, H.; Peng, L.; Xiao, S.; Xiao, P. Carbon-incorporated NiO/Co3O4 concave surface microcubes derived from a MOF precursor for overall water splitting. Chem. Commun. 2019, 55, 6515–6518. [Google Scholar] [CrossRef]
- Shan, X.; Liu, J.; Mu, H.; Xiao, Y.; Mei, B.; Liu, W.; Lin, G.; Jiang, Z.; Wen, L.; Jiang, L. An Engineered Superhydrophilic/Superaerophobic Electrocatalyst Composed of the Supported CoMoS Chalcogel for Overall Water Splitting. Angew. Chem. Int. Ed. 2020, 59, 1659–1665. [Google Scholar] [CrossRef]
- Zheng, T.; Shang, C.; He, Z.; Wang, X.; Cao, C.; Li, H.; Si, R.; Pan, B.; Zhou, S.; Zeng, J. Intercalated Iridium Diselenide Electrocatalysts for Efficient pH-Universal Water Splitting. Angew. Chem. Int. Ed. 2019, 58, 14764–14769. [Google Scholar] [CrossRef]
- Wang, P.; Jia, T.; Wang, B. A critical review: 1D/2D nanostructured self-supported electrodes for electrochemical water splitting. J. Power Sources 2020, 474, 228621. [Google Scholar] [CrossRef]
- Wang, J.; Hu, J.; Niu, S.; Li, S.; Du, Y.; Xu, P. Crystalline-Amorphous Ni2P4O12/NiMoO Nanoarrays for Alkaline Water Electrolysis: Enhanced Catalytic Activity via In Situ Surface Reconstruction. Small 2022, 18, 2105972. [Google Scholar] [CrossRef]
- Lin, L.; Zhou, W.; Gao, R.; Yao, S.; Zhang, X.; Xu, W.; Zheng, S.; Jiang, Z.; Yu, Q.; Li, Y.-W.; et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83. [Google Scholar] [CrossRef]
- Tian, J.; Xu, Z.-Y.; Zhang, D.-W.; Wang, H.; Xie, S.-H.; Xu, D.-W.; Ren, Y.-H.; Wang, H.; Liu, Y.; Li, Z.-T. Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production. Nat. Commun. 2016, 7, 11580. [Google Scholar] [CrossRef]
- Wang, K.; Huang, B.; Lin, F.; Lv, F.; Luo, M.; Zhou, P.; Liu, Q.; Zhang, W.; Yang, C.; Tang, Y.; et al. Wrinkled Rh2P Nanosheets as Superior pH-Universal Electrocatalysts for Hydrogen Evolution Catalysis. Adv. Energy Mater. 2018, 8, 1801891. [Google Scholar] [CrossRef]
- Hou, J.; Wu, Y.; Zhang, B.; Cao, S.; Li, Z.; Sun, L. Rational Design of Nanoarray Architectures for Electrocatalytic Water Splitting. Adv. Funct. Mater. 2019, 29, 1808367. [Google Scholar] [CrossRef]
- Liang, C.; Zou, P.; Nairan, A.; Zhang, Y.; Liu, J.; Liu, K.; Hu, S.; Kang, F.; Fan, H.J.; Yang, C. Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86–95. [Google Scholar] [CrossRef]
- He, T.; Peng, Y.; Li, Q.; Lu, J.E.; Liu, Q.; Mercado, R.; Chen, Y.; Nichols, F.; Zhang, Y.; Chen, S. Nanocomposites Based on Ruthenium Nanoparticles Supported on Cobalt and Nitrogen-Codoped Graphene Nanosheets as Bifunctional Catalysts for Electrochemical Water Splitting. ACS Appl. Mater. Interfaces 2019, 11, 46912–46919. [Google Scholar] [CrossRef]
- Huang, Z.-F.; Wang, J.; Peng, Y.; Jung, C.-Y.; Fisher, A.; Wang, X. Design of Efficient Bifunctional Oxygen Reduction/Evolution Electrocatalyst: Recent Advances and Perspectives. Adv. Energy Mater. 2017, 7, 1700544. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Yang, Y.; Zhang, S.; Zhu, H.; Zhu, X.; Xing, H.; Zhang, Y.; Huang, B.; Guo, S.; et al. Co3O4/Fe0.33Co0.66P Interface Nanowire for Enhancing Water Oxidation Catalysis at High Current Density. Adv. Mater. 2018, 30, 1803551. [Google Scholar] [CrossRef]
- Dinh, K.N.; Liang, Q.; Du, C.-F.; Zhao, J.; Tok, A.I.Y.; Mao, H.; Yan, Q. Nanostructured metallic transition metal carbides, nitrides, phosphides, and borides for energy storage and conversion. Nano Today 2019, 25, 99–121. [Google Scholar] [CrossRef]
- Gao, R.; Yan, D. Recent Development of Ni/Fe-Based Micro/Nanostructures toward Photo/Electrochemical Water Oxidation. Adv. Energy Mater. 2020, 10, 1900954. [Google Scholar] [CrossRef]
- Yan, Y.; Xia, B.Y.; Zhao, B.; Wang, X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 2016, 4, 17587–17603. [Google Scholar] [CrossRef]
- Yan, X.-H.; Prabhu, P.; Xu, H.; Meng, Z.; Xue, T.; Lee, J.-M. Recent Progress of Metal Carbides Encapsulated in Carbon-Based Materials for Electrocatalysis of Oxygen Reduction Reaction. Small Methods 2020, 4, 1900575. [Google Scholar] [CrossRef]
- Prabhu, P.; Jose, V.; Lee, J.-M. Heterostructured Catalysts for Electrocatalytic and Photocatalytic Carbon Dioxide Reduction. Adv. Funct. Mater. 2020, 30, 1910768. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater. 2003, 15, 353–389. [Google Scholar] [CrossRef]
- Yuan, J.; Xu, Y.; Müller, A.H.E. One-dimensional magnetic inorganic–organic hybrid nanomaterials. Chem. Soc. Rev. 2011, 40, 640–655. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, W.; Wang, C.; Wen, T.-C.; Wei, Y. One-dimensional conducting polymer nanocomposites: Synthesis, properties and applications. Prog. Polym. Sci. 2011, 36, 671–712. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Y.; Song, N.; Wang, C.; Lu, X. Fabrication of Pt nanoparticles on nitrogen-doped carbon/Ni nanofibers for improved hydrogen evolution activity. J. Colloid Interface Sci. 2018, 514, 199–207. [Google Scholar] [CrossRef]
- Huang, Y.; Miao, Y.-E.; Zhang, L.; Tjiu, W.W.; Pan, J.; Liu, T. Synthesis of few-layered MoS2 nanosheet-coated electrospun SnO2 nanotube heterostructures for enhanced hydrogen evolution reaction. Nanoscale 2014, 6, 10673–10679. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.T.; Chen, Y.M.; Li, J.; Lou, X.W. Pie-like electrode design for high-energy density lithium–sulfur batteries. Nat. Commun. 2015, 6, 8850. [Google Scholar] [CrossRef]
- Ibrahim, K.B.; Tsai, M.-C.; Chala, S.A.; Berihun, M.K.; Kahsay, A.W.; Berhe, T.A.; Su, W.-N.; Hwang, B.-J. A review of transition metal-based bifunctional oxygen electrocatalysts. J. Chin. Chem. Soc. 2019, 66, 829–865. [Google Scholar] [CrossRef]
- Lyu, F.; Wang, Q.; Choi, S.M.; Yin, Y. Noble-Metal-Free Electrocatalysts for Oxygen Evolution. Small 2019, 15, 1804201. [Google Scholar] [CrossRef]
- Yu, F.; Yu, L.; Mishra, I.K.; Yu, Y.; Ren, Z.F.; Zhou, H.Q. Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis. Mater. Today Phys. 2018, 7, 121–138. [Google Scholar] [CrossRef]
- Wang, Y.; Kong, B.; Zhao, D.; Wang, H.; Selomulya, C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 2017, 15, 26–55. [Google Scholar] [CrossRef]
- Zeng, M.; Li, Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 14942–14962. [Google Scholar] [CrossRef]
- Li, W.; Guo, Z.; Yang, J.; Li, Y.; Sun, X.; He, H.; Li, S.; Zhang, J. Advanced Strategies for Stabilizing Single-Atom Catalysts for Energy Storage and Conversion. Electrochem. Energy Rev. 2022, 5, 9. [Google Scholar] [CrossRef]
- Yusuf, B.A.; Yaseen, W.; Xie, M.; Zayyan, R.S.; Muhammad, A.I.; Nankya, R.; Xie, J.; Xu, Y. Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: A comprehensive review. Adv. Colloid Interface Sci. 2023, 311, 102811. [Google Scholar] [CrossRef]
- Quan, L.; Jiang, H.; Mei, G.; Sun, Y.; You, B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem. Rev. 2024, 124, 3694–3812. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, X.; Kou, Z.; Song, N.; Nie, G.; Wang, C.; Verpoort, F.; Mu, S. Rational design of electrospun nanofiber-typed electrocatalysts for water splitting: A review. Chem. Eng. J. 2022, 428, 131133. [Google Scholar] [CrossRef]
- Zhu, J.; Yan, C.; Li, G.; Cheng, H.; Li, Y.; Liu, T.; Mao, Q.; Cho, H.; Gao, Q.; Gao, C.; et al. Recent developments of electrospun nanofibers for electrochemical energy storage and conversion. Energy Storage Mater. 2024, 65, 103111. [Google Scholar] [CrossRef]
- Lu, X.; Wang, C.; Favier, F.; Pinna, N. Electrospun Nanomaterials for Supercapacitor Electrodes: Designed Architectures and Electrochemical Performance. Adv. Energy Mater. 2017, 7, 1601301. [Google Scholar] [CrossRef]
- Nie, G.; Zhao, X.; Luan, Y.; Jiang, J.; Kou, Z.; Wang, J. Key issues facing electrospun carbon nanofibers in energy applications: On-going approaches and challenges. Nanoscale 2020, 12, 13225–13248. [Google Scholar] [CrossRef]
- Wang, X.-X.; Yu, G.-F.; Zhang, J.; Yu, M.; Ramakrishna, S.; Long, Y.-Z. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog. Mater. Sci. 2021, 115, 100704. [Google Scholar] [CrossRef]
- Han, T.; Reneker, D.H.; Yarin, A.L. Buckling of jets in electrospinning. Polymer 2007, 48, 6064–6076. [Google Scholar] [CrossRef]
- Reneker, D.H.; Yarin, A.L. Electrospinning jets and polymer nanofibers. Polymer 2008, 49, 2387–2425. [Google Scholar] [CrossRef]
- Li, L.; Peng, S.; Lee, J.K.Y.; Ji, D.; Srinivasan, M.; Ramakrishna, S. Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 2017, 39, 111–139. [Google Scholar] [CrossRef]
- Qin, Z.; Yan, G.; Zhang, X.; Yang, Z.; Li, H.; Wang, J. Finite element method assisted design of needleless electrospinning systems for mass production of polymer nanofibers. Chem. Eng. Sci. 2022, 259, 117817. [Google Scholar] [CrossRef]
- El-Sayed, H.; Vineis, C.; Varesano, A.; Mowafi, S.; Carletto, R.A.; Tonetti, C.; Taleb, M.A. A critique on multi-jet electrospinning: State of the art and future outlook. Nanotechnol. Rev. 2019, 8, 236–245. [Google Scholar] [CrossRef]
- Sun, Z.; Zussman, E.; Yarin, A.L.; Wendorff, J.H.; Greiner, A. Compound Core–Shell Polymer Nanofibers by Co-Electrospinning. Adv. Mater. 2003, 15, 1929–1932. [Google Scholar] [CrossRef]
- Gao, Q.; Agarwal, S.; Greiner, A.; Zhang, T. Electrospun fiber-based flexible electronics: Fiber fabrication, device platform, functionality integration and applications. Prog. Mater. Sci. 2023, 137, 101139. [Google Scholar] [CrossRef]
- Doshi, J.; Reneker, D.H. Electrospinning process and applications of electrospun fibers. J. Electrost. 1995, 35, 151–160. [Google Scholar] [CrossRef]
- Koski, A.; Yim, K.; Shivkumar, S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater. Lett. 2004, 58, 493–497. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, M.; Tao, S. Advanced electrospinning nanomaterials: From spinning fabrication techniques to electrochemical applications. Nano Res. 2024, 17, 7077–7116. [Google Scholar] [CrossRef]
- Fong, H.; Chun, I.; Reneker, D.H. Beaded nanofibers formed during electrospinning. Polymer 1999, 40, 4585–4592. [Google Scholar] [CrossRef]
- Matabola, K.P.; Moutloali, R.M. The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers- effect of sodium chloride. J. Mater. Sci. 2013, 48, 5475–5482. [Google Scholar] [CrossRef]
- Mokhtari, F.; Shamshirsaz, M.; Latifi, M. Investigation of β phase formation in piezoelectric response of electrospun polyvinylidene fluoride nanofibers: LiCl additive and increasing fibers tension. Polym. Eng. Sci. 2016, 56, 61–70. [Google Scholar] [CrossRef]
- Shokrollahzadeh, S.; Tajik, S. Fabrication of thin film composite forward osmosis membrane using electrospun polysulfone/polyacrylonitrile blend nanofibers as porous substrate. Desalination 2018, 425, 68–76. [Google Scholar] [CrossRef]
- Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B.S.; Chu, B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002, 43, 4403–4412. [Google Scholar] [CrossRef]
- Hu, J.; Wang, X.; Ding, B.; Lin, J.; Yu, J.; Sun, G. One-step Electro-spinning/netting Technique for Controllably Preparing Polyurethane Nano-fiber/net. Macromol. Rapid Commun. 2011, 32, 1729–1734. [Google Scholar] [CrossRef]
- Asmatulu, R.; Veisi, Z.; Uddin, M.N.; Mahapatro, A. Highly Sensitive and Reliable Electrospun Polyaniline Nanofiber Based Biosensor as a Robust Platform for COX-2 Enzyme Detections. Fibers Polym. 2019, 20, 966–974. [Google Scholar] [CrossRef]
- Topuz, F.; Abdulhamid, M.A.; Holtzl, T.; Szekely, G. Nanofiber engineering of microporous polyimides through electrospinning: Influence of electrospinning parameters and salt addition. Mater. Des. 2021, 198, 109280. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Y. Centrifugal Spinning: An Alternative Approach to Fabricate Nanofibers at High Speed and Low Cost. Polym. Rev. 2014, 54, 677–701. [Google Scholar] [CrossRef]
- Mit-uppatham, C.; Nithitanakul, M.; Supaphol, P. Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromol. Chem. Phys. 2004, 205, 2327–2338. [Google Scholar] [CrossRef]
- Casper, C.L.; Stephens, J.S.; Tassi, N.G.; Chase, D.B.; Rabolt, J.F. Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process. Macromolecules 2004, 37, 573–578. [Google Scholar] [CrossRef]
- Li, D.; Xia, Y. Electrospinning of Nanofibers: Reinventing the Wheel? Adv. Mater. 2004, 16, 1151–1170. [Google Scholar] [CrossRef]
- Ramasamy, E.; Lee, W.J.; Lee, D.Y.; Song, J.S. Nanocarbon counterelectrode for dye sensitized solar cells. Appl. Phys. Lett. 2007, 90, 173103. [Google Scholar] [CrossRef]
- Yu, X.; Ye, S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst. J. Power Sources 2007, 172, 133–144. [Google Scholar] [CrossRef]
- Koenigsmann, C.; Santulli, A.C.; Gong, K.; Vukmirovic, M.B.; Zhou, W.-p.; Sutter, E.; Wong, S.S.; Adzic, R.R. Enhanced Electrocatalytic Performance of Processed, Ultrathin, Supported Pd–Pt Core–Shell Nanowire Catalysts for the Oxygen Reduction Reaction. J. Am. Chem. Soc. 2011, 133, 9783–9795. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, Y.; Qiao, S.Z. Engineering of Carbon-Based Electrocatalysts for Emerging Energy Conversion: From Fundamentality to Functionality. Adv. Mater. 2015, 27, 5372–5378. [Google Scholar] [CrossRef]
- Chen, X.; Niu, K.; Xue, Z.; Liu, X.; Liu, B.; Zhang, B.; Zeng, H.; Lv, W.; Zhang, Y.; Wu, Y. Ultrafine platinum nanoparticles supported on N,S-codoped porous carbon nanofibers as efficient multifunctional materials for noticeable oxygen reduction reaction and water splitting performance. Nanoscale Adv. 2022, 4, 1639–1648. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Li, J.; Liu, G.; Gao, M.; Ren, S.; Liu, B.; Zhang, L.; Han, G.; Yu, J.; et al. Platinum Cluster/Carbon Quantum Dots Derived Graphene Heterostructured Carbon Nanofibers for Efficient and Durable Solar-Driven Electrochemical Hydrogen Evolution. Small Methods 2022, 6, 2101470. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, J.; Zhu, H.; Zhuang, Z.; Xu, F.; Hao, J.; Lu, S.; Li, H.; Duan, F.; Du, M. Simple construction of ruthenium single atoms on electrospun nanofibers for superior alkaline hydrogen evolution: A dynamic transformation from clusters to single atoms. Chem. Eng. J. 2020, 392, 123655. [Google Scholar] [CrossRef]
- He, R.; Yang, Y.; Yang, P.; Zhao, X.; Zhu, J.; Yang, R.; Huang, Q.; Yang, L. Electrospun nano-Ir anchored mesoporous carbon nanofibers for hydrogen evolution reaction. Chem. Phys. 2022, 554, 111403. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S.; Li, T.; Chen, J.; Zhu, H.; Du, M. Nitrogen and gold nanoparticles co-doped carbon nanofiber hierarchical structures for efficient hydrogen evolution reactions. Electrochim. Acta 2016, 208, 1–9. [Google Scholar] [CrossRef]
- Li, M.; Yu, J.; Liu, Q.; Liu, J.; Chen, R.; Zhu, J.; Li, R.; Wang, J. Atomically Dispersed Fe–N5 Sites Anchored in Porous N-Doped Carbon Nanofibers for Effective Hydrogen Evolution Reaction. ACS Sustain. Chem. Eng. 2022, 10, 13505–13513. [Google Scholar] [CrossRef]
- Wang, Z.; Zuo, P.; Fan, L.; Han, J.; Xiong, Y.; Yin, G. Facile electrospinning preparation of phosphorus and nitrogen dual-doped cobalt-based carbon nanofibers as bifunctional electrocatalyst. J. Power Sources 2016, 311, 68–80. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Li, K.; Ao, Z.; Wang, C.; Liu, H.; Sun, K.; Wang, G. Electrospun cobalt embedded porous nitrogen doped carbon nanofibers as an efficient catalyst for water splitting. J. Mater. Chem. A 2016, 4, 12818–12824. [Google Scholar] [CrossRef]
- Mukhiya, T.; Muthurasu, A.; Tiwari, A.P.; Chhetri, K.; Chae, S.-H.; Kim, H.; Dahal, B.; Lee, B.M.; Kim, H.Y. Integrating the Essence of a Metal–Organic Framework with Electrospinning: A New Approach for Making a Metal Nanoparticle Confined N-Doped Carbon Nanotubes/Porous Carbon Nanofibrous Membrane for Energy Storage and Conversion. ACS Appl. Mater. Interfaces 2021, 13, 23732–23742. [Google Scholar] [CrossRef]
- Ding, Q.; Liu, M.; Miao, Y.-E.; Huang, Y.; Liu, T. Electrospun nickel-decorated carbon nanofiber membranes as efficient electrocatalysts for hydrogen evolution reaction. Electrochim. Acta 2015, 159, 1–7. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, H.; Chen, J.; Zhang, B.; Zhang, M.; Wang, L.; Du, M. Small and well-dispersed Cu nanoparticles on carbon nanofibers: Self-supported electrode materials for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 2016, 41, 18044–18049. [Google Scholar] [CrossRef]
- Li, L.; Gu, J.; Ye, Y.; Guo, J.; Zhao, J.; Zou, G. Effective synergy between palladium nanoparticles and nitrogen-doped porous carbon fiber for hydrogen evolution reaction. Electrochim. Acta 2022, 409, 139959. [Google Scholar] [CrossRef]
- Guan, J.; Chen, W.; Zhu, Y.; Wang, L.; Fu, Y.; Guo, B.; Zhang, M. Integrating RuCo alloy in N-doped carbon nanofiber for efficient hydrogen evolution in alkaline media. J. Alloys Compd. 2023, 942, 168941. [Google Scholar] [CrossRef]
- Kwon, T.; Yu, A.; Kim, S.-j.; Kim, M.H.; Lee, C.; Lee, Y. Au-Ru alloy nanofibers as a highly stable and active bifunctional electrocatalyst for acidic water splitting. Appl. Surf. Sci. 2021, 563, 150293. [Google Scholar] [CrossRef]
- Kim, Y.; Yu, A.; Lee, Y. Iridium-cobalt alloy nanotubes as a bifunctional electrocatalyst for pH-universal overall water splitting. Bull. Korean Chem. Soc. 2021, 42, 1524–1533. [Google Scholar] [CrossRef]
- Jin, D.; Lee, Y.; Hwa Kim, M.; Lee, C. A fascinating pH independent catalyst for hydrogen evolution reaction: Crystalline bimetallic hcp-CoxRh1-x alloy nanofibers driven by thermally induced phase transition from a single phase of CoRh2O4. Appl. Surf. Sci. 2021, 553, 149568. [Google Scholar] [CrossRef]
- Nam, Y.; Jin, D.; Lee, C.; Lee, Y. Fe-Cu-Rh ternary alloy nanofibers as an outstanding pH-universal electrocatalyst for hydrogen evolution reaction: The catalytic roles of Fe depending on pH. Appl. Surf. Sci. 2023, 611, 155484. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, H.; Zou, M.; Liu, X.; Yang, H.; Zhang, M.; Wu, W.; Yao, J.; Du, M. Design and fabrication of size-controlled Pt–Au bimetallic alloy nanostructure in carbon nanofibers: A bifunctional material for biosensors and the hydrogen evolution reaction. J. Mater. Sci. 2017, 52, 8207–8218. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, Z.; Dai, L. Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 2015, 1, e1500564. [Google Scholar] [CrossRef]
- Shanmugapriya, S.; Zhu, P.; Yan, C.; Asiri, A.M.; Zhang, X.; Selvan, R.K. Multifunctional High-Performance Electrocatalytic Properties of Nb2O5 Incorporated Carbon Nanofibers as Pt Support Catalyst. Adv. Mater. Interfaces 2019, 6, 1900565. [Google Scholar] [CrossRef]
- Shanmugapriya, S.; Zhu, P.; Ganeshbabu, M.; Sung Lee, Y.; Zhang, X.; Kalai Selvan, R. Improved electrocatalytic properties of bundled B/N co-doped electrospun carbon nanofibers with Pt nanostructures through dopant-induced metal-support interaction (DIMSI). Mater. Sci. Eng. B 2022, 284, 115880. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Yang, T.; Wang, L.; Zhu, H.; Wang, S.; Du, M. Carbon nanofibers as nanoreactors in the construction of PtCo alloy carbon core-shell structures for highly efficient and stable water splitting. Mater. Des. 2016, 109, 162–170. [Google Scholar] [CrossRef]
- Wang, P.; Jiang, K.; Wang, G.; Yao, J.; Huang, X. Phase and Interface Engineering of Platinum–Nickel Nanowires for Efficient Electrochemical Hydrogen Evolution. Angew. Chem. Int. Ed. 2016, 55, 12859–12863. [Google Scholar] [CrossRef]
- Zhai, H.; Xu, G.; Liu, J.; Xu, T.; Li, C.; Bai, J. Boosting activity and stability by coupling Pt–Ni nanoparticles with La-modified flexible carbon nanofibers for hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 2423–2432. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.W.; Chen, J.D.; Zhu, H.; Zhang, M.; Du, M.L. Designed Synthesis of Size-Controlled Pt—Cu Alloy Nanoparticles Encapsulated in Carbon Nanofibers and Their High Efficient Electrocatalytic Activity Toward Hydrogen Evolution Reaction. Adv. Mater. Interfaces 2017, 4, 1700005. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, W.; Dang, S.; Cao, Y. Sub-5 nm octahedral platinum-copper nanostructures anchored on nitrogen-doped porous carbon nanofibers for remarkable electrocatalytic hydrogen evolution. J. Colloid Interface Sci. 2020, 560, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Duan, H.; Liu, W.; Zhou, C.; Wang, B.; Jiang, Q.; Feng, S.; Yan, W.; Tan, T.; Zhang, R. Engineering the electronic structure of platinum single-atom sites via tailored porous carbon nanofibers for large-scale hydrogen production. Appl. Catal. B Environ. 2023, 335, 122898. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.; Zhu, W.; Li, W.; Wang, C.; Lu, X. RuNi Nanoparticles Embedded in N-Doped Carbon Nanofibers as a Robust Bifunctional Catalyst for Efficient Overall Water Splitting. Adv. Sci. 2020, 7, 1901833. [Google Scholar] [CrossRef]
- Chen, X.; Yan, S.; Wen, S.; Chen, J.; Xu, J.; Wang, C.; Lu, X. Chelating adsorption-engaged synthesis of ultrafine iridium nanoparticles anchored on N-doped carbon nanofibers toward highly efficient hydrogen evolution in both alkaline and acidic media. J. Colloid Interface Sci. 2023, 641, 782–790. [Google Scholar] [CrossRef]
- Chen, X.; Gou, W.; Xu, J.; Qi, R.; Ren, S.; Wang, C.; Chen, W.; Yu, G.; Lu, X. Low-loading and ultrasmall Ir nanoparticles coupled with Ni/nitrogen-doped carbon nanofibers with Pt-like hydrogen evolution performance in both acidic and alkaline media. Chem. Eng. J. 2023, 471, 144481. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Yu, D.; Zhang, M.; Zhu, H.; Du, M. Carbon nanofiber-supported PdNi alloy nanoparticles as highly efficient bifunctional catalysts for hydrogen and oxygen evolution reactions. Electrochim. Acta 2017, 246, 17–26. [Google Scholar] [CrossRef]
- Quaino, P.; Juarez, F.; Santos, E.; Schmickler, W. Volcano plots in hydrogen electrocatalysis—Uses and abuses. Beilstein J. Nanotechnol. 2014, 5, 846–854. [Google Scholar] [CrossRef]
- Zhu, L.; Lin, H.; Li, Y.; Liao, F.; Lifshitz, Y.; Sheng, M.; Lee, S.-T.; Shao, M. A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials. Nat. Commun. 2016, 7, 12272. [Google Scholar] [CrossRef]
- Yu, A.; Kim, S.Y.; Lee, C.; Kim, M.H.; Lee, Y. Boosted Electron-Transfer Kinetics of Hydrogen Evolution Reaction at Bimetallic RhCo Alloy Nanotubes in Acidic Solution. ACS Appl. Mater. Interfaces 2019, 11, 46886–46893. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, H.; Yu, D.; Chen, J.; Chen, J.; Zhang, M.; Wang, L.; Du, M. Engineering the Composition and Structure of Bimetallic Au–Cu Alloy Nanoparticles in Carbon Nanofibers: Self-Supported Electrode Materials for Electrocatalytic Water Splitting. ACS Appl. Mater. Interfaces 2017, 9, 19756–19765. [Google Scholar] [CrossRef] [PubMed]
- Alali, K.T.; Jing, y.; Moharram, D.; Liu, Q.; Chen, R.; Zhu, J.; Li, R.; Liu, P.; Liu, J.; Wang, J. In situ construction of 3-dimensional hierarchical carbon nanostructure; investigation of the synthesis parameters and hydrogen evolution reaction performance. Carbon 2021, 178, 48–57. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Wang, X.; Li, L.; Qin, J.; Cao, M. Carbon hybrid with 3D nano-forest architecture in-situ catalytically constructed by CoFe alloy as advanced multifunctional electrocatalysts for Zn-air batteries-driven water splitting. J. Energy Chem. 2021, 53, 422–432. [Google Scholar] [CrossRef]
- Cardoso, D.S.P.; Amaral, L.; Santos, D.M.F.; Šljukić, B.; Sequeira, C.A.C.; Macciò, D.; Saccone, A. Enhancement of hydrogen evolution in alkaline water electrolysis by using nickel-rare earth alloys. Int. J. Hydrogen Energy 2015, 40, 4295–4302. [Google Scholar] [CrossRef]
- Li, T.; Li, S.; Liu, Q.; Yin, J.; Sun, D.; Zhang, M.; Xu, L.; Tang, Y.; Zhang, Y. Immobilization of Ni3Co Nanoparticles into N-Doped Carbon Nanotube/Nanofiber Integrated Hierarchically Branched Architectures toward Efficient Overall Water Splitting. Adv. Sci. 2020, 7, 1902371. [Google Scholar] [CrossRef]
- Zhang, B.; Shan, J.; Yu, J.; Wang, W.; Li, W.; Li, N.; Li, Y. Electrospun prussian blue analogue derived NiCo@N-doped carbon nanofibers as efficient and highly stable electrocatalysts for neutral overall water splitting. Int. J. Hydrogen Energy 2021, 46, 8871–8884. [Google Scholar] [CrossRef]
- Li, C.; Liu, J.; Gao, R.; Ouyang, H.; Huang, J.; Huang, Q.; Liu, Y. Tailoring CoNi alloy embedded carbon nano-fibers by thiourea for enhanced hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 34471–34482. [Google Scholar] [CrossRef]
- Li, M.; Liu, T.; Bo, X.; Zhou, M.; Guo, L. A novel flower-like architecture of FeCo@NC-functionalized ultra-thin carbon nanosheets as a highly efficient 3D bifunctional electrocatalyst for full water splitting. J. Mater. Chem. A 2017, 5, 5413–5425. [Google Scholar] [CrossRef]
- Aftab, F.; Duran, H.; Kirchhoff, K.; Zaheer, M.; Iqbal, B.; Saleem, M.; Arshad, S.N. A Facile Synthesis of FeCo Nanoparticles Encapsulated in Hierarchical N-Doped Carbon Nanotube/Nanofiber Hybrids for Overall Water Splitting. ChemCatChem 2020, 12, 932–943. [Google Scholar] [CrossRef]
- Li, T.; Luo, G.; Liu, K.; Li, X.; Sun, D.; Xu, L.; Li, Y.; Tang, Y. Encapsulation of Ni3Fe Nanoparticles in N-Doped Carbon Nanotube–Grafted Carbon Nanofibers as High-Efficiency Hydrogen Evolution Electrocatalysts. Adv. Funct. Mater. 2018, 28, 1805828. [Google Scholar] [CrossRef]
- Sun, M.; Ye, Q.; Lin, L.; Wang, Y.; Zheng, Z.; Chen, F.; Cheng, Y. NiMo solid-solution alloy porous nanofiber as outstanding hydrogen evolution electrocatalyst. J. Colloid Interface Sci. 2023, 637, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Liu, M.; Wang, Q.; Xu, J.; Zou, Y.; Xiang, C.; Xu, F.; Sun, L.; Jiang, M.; Hu, Z. Three-dimensional carbon nanofiber networks encapsulated in cobalt–molybdenum metal clusters on nitrogen-doped carbon as ultra-efficient electrocatalysts for hydrogen evolution reactions. J. Alloys Compd. 2023, 937, 168316. [Google Scholar] [CrossRef]
- Ghouri, Z.K.; Badreldin, A.; Elsaid, K.; Kumar, D.; Youssef, K.; Abdel-Wahab, A. Theoretical and experimental investigations of Co-Cu bimetallic alloys-incorporated carbon nanowires as an efficient bi-functional electrocatalyst for water splitting. J. Ind. Eng. Chem. 2021, 96, 243–253. [Google Scholar] [CrossRef]
- Guan, J.; Liu, Y.; Fang, Y.; Du, X.; Fu, Y.; Wang, L.; Zhang, M. Co-Ni alloy nanoparticles supported by carbon nanofibers for hydrogen evolution reaction. J. Alloys Compd. 2021, 868, 159172. [Google Scholar] [CrossRef]
- Sankar, S.S.; Karthick, K.; Kumaravel, S.; Karmakar, A.; Ragunath, M.; Kundu, S. Temperature-Controlled Structural Variations of Meticulous Fibrous Networks of NiFe-Polymeric Zeolite Imidazolate Frameworks for Enhanced Performance in Electrocatalytic Water-Splitting Reactions. Inorg. Chem. 2021, 60, 12467–12480. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, T.; Zhu, H.; Zhang, M.; Wu, W.; Du, M. Synthesis of a MoS2(1−x)Se2x ternary alloy on carbon nanofibers as the high efficient water splitting electrocatalyst. Int. J. Hydrogen Energy 2017, 42, 1912–1918. [Google Scholar] [CrossRef]
- Heo, E.; Noh, S.; Jo, H.; Lee, H.; Lee, S.; Kim, M.; Lee, J.; Yoon, H. Carbon Nanofibers Featuring Bimetallic Nanoparticle-in-Pore Structures as Water-Splitting Electrocatalysts. ACS Appl. Nano Mater. 2021, 4, 11031–11041. [Google Scholar] [CrossRef]
- Zhu, H.; Du, M.; Zhang, M.; Zou, M.; Yang, T.; Wang, S.; Yao, J.; Guo, B. S-rich single-layered MoS2 nanoplates embedded in N-doped carbon nanofibers: Efficient co-electrocatalysts for the hydrogen evolution reaction. Chem. Commun. 2014, 50, 15435–15438. [Google Scholar] [CrossRef]
- Liu, P.; Li, J.; Lu, Y.; Xiang, B. Facile synthesis of NiS2 nanowires and its efficient electrocatalytic performance for hydrogen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 72–77. [Google Scholar] [CrossRef]
- Manjunatha, C.; Patil, R.S.; Sudeep, M.; Srinivasa, N.; Kumar, R.C.; Sham Aan, M.P.; Ashoka, S. Rational design and synthesis of hetero-nanostructured electrospun PU@PANI@FeS2: A surface tailored hybrid catalyst for H2 production via electrochemical splitting of water. Surf. Interfaces 2020, 18, 100445. [Google Scholar] [CrossRef]
- Zhu, W.; Cheng, Y.; Wang, C.; Pinna, N.; Lu, X. Transition metal sulfides meet electrospinning: Versatile synthesis, distinct properties and prospective applications. Nanoscale 2021, 13, 9112–9146. [Google Scholar] [CrossRef] [PubMed]
- Yun, Q.; Li, L.; Hu, Z.; Lu, Q.; Chen, B.; Zhang, H. Layered Transition Metal Dichalcogenide-Based Nanomaterials for Electrochemical Energy Storage. Adv. Mater. 2020, 32, 1903826. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Huang, Y.; Zuo, L.; Fan, W.; Liu, T. Electrospun carbon nanofiber@CoS2 core/sheath hybrid as an efficient all-pH hydrogen evolution electrocatalyst. Inorg. Chem. Front. 2016, 3, 1280–1288. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Leng, X.; Crespi, V.H.; Kang, F.; Lv, R. Controllable Edge Exposure of MoS2 for Efficient Hydrogen Evolution with High Current Density. ACS Appl. Energy Mater. 2018, 1, 1268–1275. [Google Scholar] [CrossRef]
- Zhu, H.; Du, M.; Zhang, M.; Zou, M.; Yang, T.; Fu, Y.; Yao, J. The design and construction of 3D rose-petal-shaped MoS2 hierarchical nanostructures with structure-sensitive properties. J. Mater. Chem. A 2014, 2, 7680–7685. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Guo, Y.; Liu, D.; You, T. Amorphous flower-like molybdenum-sulfide-@-nitrogen-doped-carbon-nanofiber film for use in the hydrogen-evolution reaction. J. Colloid Interface Sci. 2016, 472, 69–75. [Google Scholar] [CrossRef]
- Zhu, X.; Mo, L.; Wu, Y.; Lai, F.; Han, X.; Ling, X.Y.; Liu, T.; Miao, Y.-E. Self-supported MoS2@NHCF fiber-in-tube composites with tunable voids for efficient hydrogen evolution reaction. Compos. Commun. 2018, 9, 86–91. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, Y.; Li, S.; He, B.; Liu, H.; Zeng, X.; Zhang, J.; Wang, G. P doped MoS2 nanoplates embedded in nitrogen doped carbon nanofibers as an efficient catalyst for hydrogen evolution reaction. J. Colloid Interface Sci. 2019, 547, 291–298. [Google Scholar] [CrossRef]
- Guan, J.; Chen, W.; Fang, Y.; Wang, L.; Fu, Y.; Guo, B.; Zhang, M. Electrospinning derivative fabrication of sandwich-structured CNF/Co3S4/MoS2 as self-supported electrodes to accelerate electron transport in HER. Int. J. Hydrogen Energy 2022, 47, 14930–14941. [Google Scholar] [CrossRef]
- Yu, S.; Kim, J.; Yoon, K.R.; Jung, J.-W.; Oh, J.; Kim, I.-D. Rational Design of Efficient Electrocatalysts for Hydrogen Evolution Reaction: Single Layers of WS2 Nanoplates Anchored to Hollow Nitrogen-Doped Carbon Nanofibers. ACS Appl. Mater. Interfaces 2015, 7, 28116–28121. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, N.; Su, C.; Zhao, H.; Xu, L.; Yin, Z.; Li, J.; Du, Y. Colloidal synthesis of 1T’ phase dominated WS2 towards endurable electrocatalysis. Nano Energy 2018, 50, 176–181. [Google Scholar] [CrossRef]
- Zheng, X.; Xiao, Y.; Miao, X.; Wang, Y.; Chen, Y.; Hu, T.; Gong, X.; Wu, C.; Wang, G.; Liu, H. Structure tailorable and flexible electrospun Poly(vinylidene fluoride)@WS2 membrane with enhanced hydrogen evolution reaction activity and mechanical properties. Polym. Test. 2022, 113, 107668. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, J.; Ma, J.; Liu, P.; Gao, D.; Tao, K.; Xue, D. N-doped WS2 nanosheets: A high-performance electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 11234–11238. [Google Scholar] [CrossRef]
- Chakrapani, V.; Thangala, J.; Sunkara, M.K. WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production. Int. J. Hydrogen Energy 2009, 34, 9050–9059. [Google Scholar] [CrossRef]
- Wan, M.; Li, J.; Li, T.; Zhu, H.; Wu, W.; Du, M. Nitrogen anion-decorated cobalt tungsten disulfides solid solutions on the carbon nanofibers for water splitting. Nanotechnology 2018, 29, 385602. [Google Scholar] [CrossRef]
- Wan, S.; Liu, Y.; Li, G.-D.; Li, X.; Wang, D.; Zou, X. Well-dispersed CoS2 nano-octahedra grown on a carbon fibre network as efficient electrocatalysts for hydrogen evolution reaction. Catal. Sci. Technol. 2016, 6, 4545–4553. [Google Scholar] [CrossRef]
- Li, Y.; Ma, W.; Zeng, Y.; Chen, X.; Wang, J.; Zhong, Q. A monolith electrode featuring FeS2 embedded in porous carbon nanofibers for efficient hydrogen evolution. Electrochim. Acta 2022, 421, 140471. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Zhang, B.; Ruan, Y.; Lv, L.; Ji, X.; Xu, K.; Miao, L.; Jiang, J. Hierarchical NiCo2S4@NiFe LDH Heterostructures Supported on Nickel Foam for Enhanced Overall-Water-Splitting Activity. ACS Appl. Mater. Interfaces 2017, 9, 15364–15372. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, J.; Huang, G.; Fan, R.; Ju, S.; Mi, Z.; Shen, M. A bifunctional and stable Ni–Co–S/Ni–Co–P bistratal electrocatalyst for 10.8%-efficient overall solar water splitting. J. Mater. Chem. A 2018, 6, 20297–20303. [Google Scholar] [CrossRef]
- Xia, C.; Li, P.; Gandi, A.N.; Schwingenschlögl, U.; Alshareef, H.N. Is NiCo2S4 Really a Semiconductor? Chem. Mater. 2015, 27, 6482–6485. [Google Scholar] [CrossRef]
- Ma, L.; Hu, Y.; Chen, R.; Zhu, G.; Chen, T.; Lv, H.; Wang, Y.; Liang, J.; Liu, H.; Yan, C.; et al. Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy 2016, 24, 139–147. [Google Scholar] [CrossRef]
- Gu, H.; Fan, W.; Liu, T. Phosphorus-doped NiCo2S4 nanocrystals grown on electrospun carbon nanofibers as ultra-efficient electrocatalysts for the hydrogen evolution reaction. Nanoscale Horiz. 2017, 2, 277–283. [Google Scholar] [CrossRef]
- Yin, X.; Sun, G.; Wang, L.; Bai, L.; Su, L.; Wang, Y.; Du, Q.; Shao, G. 3D hierarchical network NiCo2S4 nanoflakes grown on Ni foam as efficient bifunctional electrocatalysts for both hydrogen and oxygen evolution reaction in alkaline solution. Int. J. Hydrogen Energy 2017, 42, 25267–25276. [Google Scholar] [CrossRef]
- Zhou, J.; Dou, Y.; He, T.; Zhou, A.; Kong, X.-J.; Wu, X.-Q.; Liu, T.; Li, J.-R. Revealing the effect of anion-tuning in bimetallic chalcogenides on electrocatalytic overall water splitting. Nano Res. 2021, 14, 4548–4555. [Google Scholar] [CrossRef]
- Ranjith, K.S.; Kwak, C.H.; Ghoreishian, S.M.; Im, J.S.; Huh, Y.S.; Han, Y.-K. Ultrathin rGO-wrapped free-standing bimetallic CoNi2S4-carbon nanofibers: An efficient and robust bifunctional electrocatalyst for water splitting. Nanotechnology 2020, 31, 275402. [Google Scholar] [CrossRef]
- Yu, S.; Zou, Y.; Wang, Q.; Xu, J.; Xiang, C.; Xu, F.; Sun, L.; Yang, F. Self-supported Co–Mo sulfide in electrospun carbon nanofibers as electrocatalysts for hydrogen evolution reaction in alkaline medium. J. Alloys Compd. 2022, 911, 165094. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Sasidharan, M.; Jin, W. Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Prog. Mater. Sci. 2019, 106, 100574. [Google Scholar] [CrossRef]
- Hwang, J.; Rao, R.R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756. [Google Scholar] [CrossRef]
- Xue, Y.; Sun, S.; Wang, Q.; Dong, Z.; Liu, Z. Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes. J. Mater. Chem. A 2018, 6, 10595–10626. [Google Scholar] [CrossRef]
- Chen, Z.; Duan, X.; Wei, W.; Wang, S.; Ni, B.-J. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J. Mater. Chem. A 2019, 7, 14971–15005. [Google Scholar] [CrossRef]
- Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H.M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Zhou, W.; Tsai, M.-C.; Zhou, J.; Guan, M.; Lin, M.-C.; Zhang, B.; Hu, Y.; Wang, D.-Y.; Yang, J.; et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 2014, 5, 4695. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Wang, D.-Y.; Chen, C.-C.; Hwang, B.-J.; Dai, H. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28–46. [Google Scholar] [CrossRef]
- Chen, J.; Yu, D.; Liao, W.; Zheng, M.; Xiao, L.; Zhu, H.; Zhang, M.; Du, M.; Yao, J. WO3–x Nanoplates Grown on Carbon Nanofibers for an Efficient Electrocatalytic Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2016, 8, 18132–18139. [Google Scholar] [CrossRef]
- Cho, Y.-B.; Yu, A.; Lee, C.; Kim, M.H.; Lee, Y. Fundamental Study of Facile and Stable Hydrogen Evolution Reaction at Electrospun Ir and Ru Mixed Oxide Nanofibers. ACS Appl. Mater. Interfaces 2018, 10, 541–549. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, W.; Zhong, Y.; Bu, Y.; Chen, X.; Zhong, Q.; Liu, M.; Shao, Z. A Perovskite Nanorod as Bifunctional Electrocatalyst for Overall Water Splitting. Adv. Energy Mater. 2017, 7, 1602122. [Google Scholar] [CrossRef]
- Hua, B.; Li, M.; Zhang, Y.-Q.; Sun, Y.-F.; Luo, J.-L. All-In-One Perovskite Catalyst: Smart Controls of Architecture and Composition toward Enhanced Oxygen/Hydrogen Evolution Reactions. Adv. Energy Mater. 2017, 7, 1700666. [Google Scholar] [CrossRef]
- Zhang, Z.; He, B.; Chen, L.; Wang, H.; Wang, R.; Zhao, L.; Gong, Y. Boosting Overall Water Splitting via FeOOH Nanoflake-Decorated PrBa0.5Sr0.5Co2O5+δ Nanorods. ACS Appl. Mater. Interfaces 2018, 10, 38032–38041. [Google Scholar] [CrossRef]
- He, B.; Tan, K.; Gong, Y.; Wang, R.; Wang, H.; Zhao, L. Coupling amorphous cobalt hydroxide nanoflakes on Sr2Fe1.5Mo0.5O5+δ perovskite nanofibers to induce bifunctionality for water splitting. Nanoscale 2020, 12, 9048–9057. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, W.; Xiong, T.; Wang, A.; Chen, S.; Chu, B. Enhanced electrocatalytic activity of Co@N-doped carbon nanotubes by ultrasmall defect-rich TiO2 nanoparticles for hydrogen evolution reaction. Nano Res. 2017, 10, 2599–2609. [Google Scholar] [CrossRef]
- Chinnappan, A.; Dongxiao, J.; Jayathilaka, W.A.D.M.; Baskar, C.; Qin, X.; Ramakrishna, S. Facile synthesis of electrospun C@NiO/Ni nanofibers as an electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 15217–15224. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, X.; Wei, Y.; Yang, P. Ni/NiO nanoparticles embedded inporous graphite nanofibers towards enhanced electrocatalytic performance. Int. J. Hydrogen Energy 2019, 44, 19792–19804. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, X.; Yang, R.; Zhao, P.; Li, Y.; Yang, P.; Wang, J.; Astruc, D. In-situ growth of carbon nanotubes on Ni/NiO nanofibers as efficient hydrogen evolution reaction catalysts in alkaline media. Appl. Surf. Sci. 2019, 491, 294–300. [Google Scholar] [CrossRef]
- Surendran, S.; Jesudass, S.C.; Janani, G.; Kim, J.Y.; Lim, Y.; Park, J.; Han, M.-K.; Cho, I.S.; Sim, U. Sulphur Assisted Nitrogen-Rich CNF for Improving Electronic Interactions in Co-NiO Heterostructures Toward Accelerated Overall Water Splitting. Adv. Mater. Technol. 2023, 8, 2200572. [Google Scholar] [CrossRef]
- Zhong, M.; Yan, S.; Xu, J.; Wang, C.; Lu, X. Manipulating Ru oxidation within electrospun carbon nanofibers to boost hydrogen and oxygen evolution for electrochemical overall water splitting. Inorg. Chem. Front. 2022, 9, 4881–4891. [Google Scholar] [CrossRef]
- Anis, S.F.; Mostafa, A.O.; Hilal, N.; Hashaikeh, R. Nanocrystalline NiWO4-WO3-WO2.9 Composite Strings: Fabrication, Characterization and their Electrocatalytic Performance for Hydrogen Evolution Reaction. Metall. Mater. Trans. A 2020, 51, 1264–1274. [Google Scholar] [CrossRef]
- Cui, F.; Tang, L.; Han, W.; Liu, Y.-T.; Kim, H.Y.; Yu, J.; Ding, B. Novel synthesis of Al-amorphized, flexible Fe2O3 nanofibrous membranes for enhanced electrocatalytic H2 evolution. Compos. Commun. 2020, 22, 100470. [Google Scholar] [CrossRef]
- Navarro-Pardo, F.; Liu, J.; Abdelkarim, O.; Selopal, G.S.; Yurtsever, A.; Tavares, A.C.; Zhao, H.; Wang, Z.M.; Rosei, F. 1D/2D Cobalt-Based Nanohybrids as Electrocatalysts for Hydrogen Generation. Adv. Funct. Mater. 2020, 30, 1908467. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Yu, P.Y.; Mao, S.S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746–750. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, C.; Zhang, L.; Zhang, X.; Yao, H.; Shi, J. Pd-catalyzed instant hydrogenation of TiO2 with enhanced photocatalytic performance. Energy Environ. Sci. 2016, 9, 2410–2417. [Google Scholar] [CrossRef]
- Yu, J.; Wang, X.; Huang, X.; Cao, J.; Huo, Q.; Mi, L.; Yang, H.; Hu, Q.; He, C. Confining ultrafine Ru clusters into TiO2 lattice frameworks to yield efficient and ultrastable electrocatalysts towards practical hydrogen evolution. Chem. Eng. J. 2022, 446, 137248. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, Z.; Huang, X.; Qin, Y.; Yang, H.; Ren, X.; Zhang, Q.; Liu, J.; He, C. A unique space confined strategy to construct defective metal oxides within porous nanofibers for electrocatalysis. Energy Environ. Sci. 2020, 13, 5097–5103. [Google Scholar] [CrossRef]
- Yang, H.; Liu, Y.; Luo, S.; Zhao, Z.; Wang, X.; Luo, Y.; Wang, Z.; Jin, J.; Ma, J. Lateral-Size-Mediated Efficient Oxygen Evolution Reaction: Insights into the Atomically Thin Quantum Dot Structure of NiFe2O4. ACS Catal. 2017, 7, 5557–5567. [Google Scholar] [CrossRef]
- Yue, Q.; Liu, C.; Wan, Y.; Wu, X.; Zhang, X.; Du, P. Defect engineering of mesoporous nickel ferrite and its application for highly enhanced water oxidation catalysis. J. Catal. 2018, 358, 1–7. [Google Scholar] [CrossRef]
- Selvasundarasekar, S.S.; Bijoy, T.K.; Kumaravel, S.; Karmakar, A.; Madhu, R.; Bera, K.; Nagappan, S.; Dhandapani, H.N.; Lee, S.-C.; Kundu, S. Constructing electrospun spinel NiFe2O4 nanofibers decorated with palladium ions as nanosheets heterostructure: Boosting electrocatalytic activity of HER in alkaline water electrolysis. Nanoscale 2022, 14, 10360–10374. [Google Scholar] [CrossRef]
- Chen, D.; Chen, C.; Baiyee, Z.M.; Shao, Z.; Ciucci, F. Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chem. Rev. 2015, 115, 9869–9921. [Google Scholar] [CrossRef]
- Hong, W.T.; Risch, M.; Stoerzinger, K.A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 2015, 8, 1404–1427. [Google Scholar] [CrossRef]
- Lee, D.U.; Xu, P.; Cano, Z.P.; Kashkooli, A.G.; Park, M.G.; Chen, Z. Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal–air batteries. J. Mater. Chem. A 2016, 4, 7107–7134. [Google Scholar] [CrossRef]
- Hua, B.; Li, M.; Sun, Y.-F.; Zhang, Y.-Q.; Yan, N.; Chen, J.; Thundat, T.; Li, J.; Luo, J.-L. A coupling for success: Controlled growth of Co/CoOx nanoshoots on perovskite mesoporous nanofibres as high-performance trifunctional electrocatalysts in alkaline condition. Nano Energy 2017, 32, 247–254. [Google Scholar] [CrossRef]
- Li, S.; Xia, T.; Dou, Y.; Xie, Y.; Wang, J.; Zhao, H.; Huo, L. Phosphatizing Engineering of Perovskite Oxide Nanofibers for Hydrogen Evolution Reaction to Achieve Extraordinary Electrocatalytic Performance. Adv. Funct. Mater. 2022, 32, 2112164. [Google Scholar] [CrossRef]
- Kim, S.-j.; Jung, H.; Lee, C.; Kim, M.H.; Lee, Y. Comparative Study on Hydrogen Evolution Reaction Activity of Electrospun Nanofibers with Diverse Metallic Ir and IrO2 Composition Ratios. ACS Sustain. Chem. Eng. 2019, 7, 8613–8620. [Google Scholar] [CrossRef]
- Fan, L.; Li, Q.; Wang, D.; Meng, T.; Yan, M.; Xing, Z.; Wang, E.; Yang, X. Electrospun Ru–RuO2/MoO3 carbon nanorods with multi-active components: A Pt-like catalyst for the hydrogen evolution reaction. Chem. Commun. 2020, 56, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cui, W.; Liu, Q.; Xing, Z.; Asiri, A.M.; Sun, X. Recent Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical Water Splitting. Adv. Mater. 2016, 28, 215–230. [Google Scholar] [CrossRef]
- Zhu, R.; Chen, F.; Wang, J.; Song, Y.; Cheng, J.; Mao, M.; Ma, H.; Lu, J.; Cheng, Y. Multi-channel V-doped CoP hollow nanofibers as high-performance hydrogen evolution reaction electrocatalysts. Nanoscale 2020, 12, 9144–9151. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, G.; Wei, Y.; Ji, L.; Wang, T.; Liu, Z.; Wang, S. Temperature-controlled synthesis of heterostructured Ru-Ru2P nanoparticles embedded in carbon nanofibers for highly efficient hydrogen production. Sci. China Mater. 2022, 65, 2675–2684. [Google Scholar] [CrossRef]
- Kumaravel, S.; Karthick, K.; Sam Sankar, S.; Karmakar, A.; Madhu, R.; Bera, K.; Kundu, S. Recent Progresses in Engineering of Ni and Co based Phosphides for Effective Electrocatalytic Water Splitting. ChemElectroChem 2021, 8, 4638–4685. [Google Scholar] [CrossRef]
- Tong, J.; Li, Y.; Bo, L.; Li, W.; Li, T.; Zhang, Q.; Kong, D.; Wang, H.; Li, C. CoP/N-Doped Carbon Hollow Spheres Anchored on Electrospinning Core–Shell N-Doped Carbon Nanofibers as Efficient Electrocatalysts for Water Splitting. ACS Sustain. Chem. Eng. 2019, 7, 17432–17442. [Google Scholar] [CrossRef]
- Hu, J.; Qin, Y.; Sun, H.; Ma, Y.; Lin, L.; Peng, Y.; Zhong, J.; Chen, M.; Zhao, X.; Deng, Z. Combining Multivariate Electrospinning with Surface MOF Functionalization to Construct Tunable Active Sites toward Trifunctional Electrocatalysis. Small 2022, 18, 2106260. [Google Scholar] [CrossRef]
- Xie, X.-Q.; Liu, J.; Gu, C.; Li, J.; Zhao, Y.; Liu, C.-S. Hierarchical structured CoP nanosheets/carbon nanofibers bifunctional eletrocatalyst for high-efficient overall water splitting. J. Energy Chem. 2022, 64, 503–510. [Google Scholar] [CrossRef]
- Ren, A.; Yu, B.; Huang, M.; Liu, Z. Encapsulation of cobalt prussian blue analogue-derived ultra-small CoP nanoparticles in electrospun N-doped porous carbon nanofibers as an efficient bifunctional electrocatalyst for water splitting. Int. J. Hydrogen Energy 2024, 51, 490–502. [Google Scholar] [CrossRef]
- Miao, Y.-E.; Li, F.; Zhou, Y.; Lai, F.; Lu, H.; Liu, T. Engineering a nanotubular mesoporous cobalt phosphide electrocatalyst by the Kirkendall effect towards highly efficient hydrogen evolution reactions. Nanoscale 2017, 9, 16313–16320. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Guo, X.; Chang, X.; Ma, X.; Zhang, M. Assembled cobalt phosphide nanoparticles on carbon nanofibers as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction. Sustain. Energy Fuels 2022, 6, 5000–5007. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, W.; Wang, X.; Ren, A.; Huang, M.; Ramakrishna, S.; Liu, Z. Prussian blue analog derived CoP nanoparticles decorated on electrospun carbon nanofibers for efficient hydrogen evolution. J. Alloys Compd. 2023, 938, 168674. [Google Scholar] [CrossRef]
- Chen, X.; Yu, B.; Dong, Y.; Zhu, X.; Zhang, W.; Ramakrishna, S.; Liu, Z. Electrospun porous carbon nanofibers decorated with iron-doped cobalt phosphide nanoparticles for hydrogen evolution. J. Alloys Compd. 2022, 918, 165733. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Cao, K.; Jin, T.; Wang, X.; Sun, H.; Ning, J.; Wang, Y.; Jiao, L. Electrospun three dimensional Co/CoP@nitrogen-doped carbon nanofibers network for efficient hydrogen evolution. Energy Storage Mater. 2018, 12, 44–53. [Google Scholar] [CrossRef]
- Quan, X.; Ouyang, C.; Pan, Y.; Zhang, C.; Wu, Z.; Hong, Z.; Zhi, M. Electrospinning metal Phosphide/Carbon nanofibers from Phytic Acid for hydrogen evolution reaction catalysts. Nanotechnology 2020, 31, 415602. [Google Scholar] [CrossRef]
- Streckova, M.; Mudra, E.; Orinakova, R.; Markusova-Buckova, L.; Sebek, M.; Kovalcikova, A.; Sopcak, T.; Girman, V.; Dankova, Z.; Micusik, M.; et al. Nickel and nickel phosphide nanoparticles embedded in electrospun carbon fibers as favourable electrocatalysts for hydrogen evolution. Chem. Eng. J. 2016, 303, 167–181. [Google Scholar] [CrossRef]
- Streckova, M.; Orinakova, R.; Hovancova, J.; Kobera, L.; Brus, J.; Hungria, A.B.; Girman, V.; Mudra, E.; Heckova, M.; Podobova, M.; et al. Fibrous electrocatalytic materials based on carbon/copper/copper phosphides for effective hydrogen evolution. Appl. Surf. Sci. 2019, 479, 70–76. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, P.; Zhou, L.; He, R.; Hao, Y.; Wang, J.; Qiu, R.; Zhao, X.; Yang, L. Electrospun IrP2-carbon nanofibers for hydrogen evolution reaction in alkaline medium. Appl. Surf. Sci. 2021, 565, 150461. [Google Scholar] [CrossRef]
- Cao, B.; Cheng, Y.; Hu, M.; Jing, P.; Ma, Z.; Liu, B.; Gao, R.; Zhang, J. Efficient and Durable 3D Self-Supported Nitrogen-Doped Carbon-Coupled Nickel/Cobalt Phosphide Electrodes: Stoichiometric Ratio Regulated Phase- and Morphology-Dependent Overall Water Splitting Performance. Adv. Funct. Mater. 2019, 29, 1906316. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S.L.; Maijenburg, A.W.; Wehrspohn, R.B. Bifunctional Heterostructure Assembly of NiFe LDH Nanosheets on NiCoP Nanowires for Highly Efficient and Stable Overall Water Splitting. Adv. Funct. Mater. 2018, 28, 1706847. [Google Scholar] [CrossRef]
- Zhao, Z.; Yuan, Z.; Fang, Z.; Jian, J.; Li, J.; Yang, M.; Mo, C.; Zhang, Y.; Hu, X.; Li, P.; et al. In Situ Activating Strategy to Significantly Boost Oxygen Electrocatalysis of Commercial Carbon Cloth for Flexible and Rechargeable Zn-Air Batteries. Adv. Sci. 2018, 5, 1800760. [Google Scholar] [CrossRef] [PubMed]
- Streckova, M.; Petrus, O.; Guboova, A.; Orinakova, R.; Girman, V.; Bera, C.; Batkova, M.; Balaz, M.; Shepa, J.; Dusza, J. Nanoarchitectonics of binary transition metal phosphides embedded in carbon fibers as a bifunctional electrocatalysts for electrolytic water splitting. J. Alloys Compd. 2022, 923, 166472. [Google Scholar] [CrossRef]
- Ďurovič, M.; Hnát, J.; Strečková, M.; Bouzek, K. Efficient cathode for the hydrogen evolution reaction in alkaline membrane water electrolysis based on NiCoP embedded in carbon fibres. J. Power Sources 2023, 556, 232506. [Google Scholar] [CrossRef]
- Wei, B.; Xu, G.; Hei, J.; Zhang, L.; Huang, T. PBA derived FeCoP nanoparticles decorated on NCNFs as efficient electrocatalyst for water splitting. Int. J. Hydrogen Energy 2021, 46, 2225–2235. [Google Scholar] [CrossRef]
- Gong, Y.; Xu, L.-H.; Li, J.; Shan, D. Confinement of transition metal phosphides in N, P-doped electrospun carbon fibers for enhanced electrocatalytic hydrogen evolution. J. Alloys Compd. 2021, 875, 159934. [Google Scholar] [CrossRef]
- Huang, T.; Xu, G.; Ding, H.; Zhang, L.; Wei, B.; Liu, X. Ultrafine cobalt molybdenum phosphide nanoparticles embedded in crosslinked nitrogen-doped carbon nanofiber as efficient bifunctional catalyst for overall water splitting. J. Colloid Interface Sci. 2022, 625, 956–964. [Google Scholar] [CrossRef]
- Yang, L.; Xu, P.; Zhang, W.; Chen, M.; Feng, C.; Yuan, X. Facile synthesis of one-dimensional MoWP hybrid nanowires and their enhanced electrochemical catalytic activities. Chem. Phys. Lett. 2020, 741, 137107. [Google Scholar] [CrossRef]
- Surendran, S.; Shanmugapriya, S.; Sivanantham, A.; Shanmugam, S.; Kalai Selvan, R. Electrospun Carbon Nanofibers Encapsulated with NiCoP: A Multifunctional Electrode for Supercapattery and Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. Adv. Energy Mater. 2018, 8, 1800555. [Google Scholar] [CrossRef]
- Mo, Q.; Zhang, W.; He, L.; Yu, X.; Gao, Q. Bimetallic Ni2-xCoxP/N-doped carbon nanofibers: Solid-solution-alloy engineering toward efficient hydrogen evolution. Appl. Catal. B Environ. 2019, 244, 620–627. [Google Scholar] [CrossRef]
- Sun, X.; Wei, P.; Zhang, J.; Gu, S.; Yang, R.; Fang, C.; Li, Q.; Han, J.; Jiang, Z.; He, J. P, N-codoped carbon nanofibers confined ultra-small bimetallic NiCoP for highly efficient overall water splitting. Appl. Surf. Sci. 2021, 570, 151247. [Google Scholar] [CrossRef]
- Chen, J.; Huang, F.; Ke, S.; Shen, J.; Li, Y.; Zheng, F.; Li, S. A dual-confinement strategy to construct cobalt-based phosphide nanoclusters within carbon nanofibers for bifunctional water splitting electrocatalysts. Dalton Trans. 2022, 51, 5168–5174. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Xu, G.; Hei, J.; Zhang, L.; Huang, T.; Wang, Q. CoFeP hierarchical nanoarrays supported on nitrogen-doped carbon nanofiber as efficient electrocatalyst for water splitting. J. Colloid Interface Sci. 2021, 602, 619–626. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Yu, J.; Guan, D.; She, S.; Zhou, W.; Shao, Z. Self-catalyzed formation of strongly interconnected multiphase molybdenum-based composites for efficient hydrogen evolution. Carbon Energy 2021, 4, 77–87. [Google Scholar] [CrossRef]
- Chen, X.; Le, F.; Lu, Z.; Zhou, D.; Yao, H.; Jia, W. Ultrafine Electrospun Cobalt-Molybdenum Bimetallic Nitride as a Durable Electrocatalyst for Hydrogen Evolution. Inorg. Chem. 2023, 62, 11207–11214. [Google Scholar] [CrossRef]
- Tian, D.; Denny, S.R.; Li, K.; Wang, H.; Kattel, S.; Chen, J.G. Density functional theory studies of transition metal carbides and nitrides as electrocatalysts. Chem. Soc. Rev. 2021, 50, 12338–12376. [Google Scholar] [CrossRef]
- Gao, B.; Li, X.; Ding, K.; Huang, C.; Li, Q.; Chu, P.K.; Huo, K. Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage. J. Mater. Chem. A 2019, 7, 14–37. [Google Scholar] [CrossRef]
- Xie, J.; Xie, Y. Transition Metal Nitrides for Electrocatalytic Energy Conversion: Opportunities and Challenges. Chem. A Eur. J. 2016, 22, 3588–3598. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Lee, S.J.; Murthy, A.P.; Madhavan, J.; Choi, M.Y. Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: A review. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100805. [Google Scholar] [CrossRef]
- Peng, X.; Pi, C.; Zhang, X.; Li, S.; Huo, K.; Chu, P.K. Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustain. Energy Fuels 2019, 3, 366–381. [Google Scholar] [CrossRef]
- Mukkavilli, R.S.; Ichangi, A.; Thiyagarajan, G.B.; Vollnhals, F.; Wilhelm, M.; Bhardwaj, A.; Christiansen, S.; Neelakantan, L.; Mathur, S.; Kumar, R. Electrospun 1D Ta3N5 -(O) nanofibers as advanced electrocatalysts for hydrogen evolution reaction in proton exchange membrane water electrolyser. Open Ceram. 2022, 10, 100267. [Google Scholar] [CrossRef]
- Wan, C.; Regmi, Y.N.; Leonard, B.M. Multiple Phases of Molybdenum Carbide as Electrocatalysts for the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2014, 53, 6407–6410. [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, W.; Shi, Z.; Yang, L.; Tang, Y. Structural Design and Electronic Modulation of Transition-Metal-Carbide Electrocatalysts toward Efficient Hydrogen Evolution. Adv. Mater. 2019, 31, 1802880. [Google Scholar] [CrossRef]
- Lu, X.; Li, M.; Wang, H.; Wang, C. Advanced electrospun nanomaterials for highly efficient electrocatalysis. Inorg. Chem. Front. 2019, 6, 3012–3040. [Google Scholar] [CrossRef]
- Gao, W.; Shi, Y.; Zuo, L.; Fan, W.; Liu, T. Rough-surfaced molybdenum carbide nanobeads grown on graphene-coated carbon nanofibers membrane as free-standing hydrogen evolution reaction electrocatalyst. Mater. Today Chem. 2016, 1–2, 32–39. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.; Zhu, Y.; Tian, D.; Wang, C.; Lu, X. Mo/Mo2C encapsulated in nitrogen-doped carbon nanofibers as efficiently integrated heterojunction electrocatalysts for hydrogen evolution reaction in wide pH range. Appl. Surf. Sci. 2019, 496, 143672. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, D.; Bo, L.; Shi, W.; Guan, X.; Wang, Y.; Lei, Z.; Tong, J. Electrospinning Preparation of N, P Dual-Doped Molybdenum Carbide/Porous Carbon Fibers with Highly Improved Electrocatalytic Activity for Hydrogen Evolution Reaction. ACS Appl. Energy Mater. 2021, 4, 13051–13060. [Google Scholar] [CrossRef]
- Yuan, X.; Huang, W.; Kong, L.; Guo, S.; Cheng, Y. Ditungsten carbide nanoparticles homogeneously embedded in carbon nanofibers for efficient hydrogen production. Chem. Eng. J. 2021, 420, 130480. [Google Scholar] [CrossRef]
- Ji, D.; Peng, S.; Lu, J.; Li, L.; Yang, S.; Yang, G.; Qin, X.; Srinivasan, M.; Ramakrishna, S. Design and synthesis of porous channel-rich carbon nanofibers for self-standing oxygen reduction reaction and hydrogen evolution reaction bifunctional catalysts in alkaline medium. J. Mater. Chem. A 2017, 5, 7507–7515. [Google Scholar] [CrossRef]
- Ouyang, T.; Chen, A.-N.; He, Z.-Z.; Liu, Z.-Q.; Tong, Y. Rational design of atomically dispersed nickel active sites in β-Mo2C for the hydrogen evolution reaction at all pH values. Chem. Commun. 2018, 54, 9901–9904. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Chen, L.; Ma, B.; Wang, J.; Song, W.; Fan, X.; Li, Y.; Zhang, F.; Peng, W. Ultra-small Mo2C nanodots encapsulated in nitrogen-doped porous carbon for pH-universal hydrogen evolution: Insights into the synergistic enhancement of HER activity by nitrogen doping and structural defects. J. Mater. Chem. A 2019, 7, 4734–4743. [Google Scholar] [CrossRef]
- Xiao, P.; Ge, X.; Wang, H.; Liu, Z.; Fisher, A.; Wang, X. Novel Molybdenum Carbide–Tungsten Carbide Composite Nanowires and Their Electrochemical Activation for Efficient and Stable Hydrogen Evolution. Adv. Funct. Mater. 2015, 25, 1520–1526. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, R.; Cheng, J.; Song, Y.; Mao, M.; Chen, F.; Cheng, Y. Co, Mo2C encapsulated in N-doped carbon nanofiber as self-supported electrocatalyst for hydrogen evolution reaction. Chem. Eng. J. 2020, 397, 125481. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, K.; Ma, J.; Wang, J.; Liu, Z.; Xing, R.; Jiao, T. Coupled Sn/Mo2C nanoparticles wrapped in carbon nanofibers by electrospinning as high-performance electrocatalyst for hydrogen evolution reaction. Appl. Surf. Sci. 2021, 566, 150754. [Google Scholar] [CrossRef]
- Sun, J.; Liu, J.; Chen, H.; Han, X.; Wu, Y.; He, J.; Han, C.; Yang, G.; Shan, Y. Strongly coupled Mo2C and Ni nanoparticles with in-situ formed interfaces encapsulated by porous carbon nanofibers for efficient hydrogen evolution reaction under alkaline conditions. J. Colloid Interface Sci. 2020, 558, 100–105. [Google Scholar] [CrossRef]
- Yang, P.; Zhao, H.; Yang, Y.; Zhao, P.; Zhao, X.; Yang, L. Fabrication of N, P-codoped Mo2C/Carbon Nanofibers via Electrospinning as Electrocatalyst for Hydrogen Evolution Reaction. ES Mater. Manuf. 2020, 7, 34–39. [Google Scholar]
- Pan, X.; Lu, S.; Zhang, D.; Zhang, Y.; Duan, F.; Zhu, H.; Gu, H.; Wang, S.; Du, M. Atom-precise incorporation of platinum into ultrafine transition metal carbides for efficient synergetic electrochemical hydrogen evolution. J. Mater. Chem. A 2020, 8, 4911–4919. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Y.; Wang, H.; Wang, C.; Pinna, N.; Lu, X. Ni Strongly Coupled with Mo2C Encapsulated in Nitrogen-Doped Carbon Nanofibers as Robust Bifunctional Catalyst for Overall Water Splitting. Adv. Energy Mater. 2019, 9, 1803185. [Google Scholar] [CrossRef]
- Heckova, M.; Streckova, M.; Orinakova, R.; Hovancova, J.; Guboova, A.; Sopcak, T.; Kovalcikova, A.; Plesingerova, B.; Medved, D.; Szabo, J.; et al. Porous carbon fibers for effective hydrogen evolution. Appl. Surf. Sci. 2020, 506, 144955. [Google Scholar] [CrossRef]
- Gao, Y.; Xiao, Z.; Kong, D.; Iqbal, R.; Yang, Q.-H.; Zhi, L. N,P co-doped hollow carbon nanofiber membranes with superior mass transfer property for trifunctional metal-free electrocatalysis. Nano Energy 2019, 64, 103879. [Google Scholar] [CrossRef]
- Sun, J.; Ge, Q.; Guo, L.; Yang, Z. Nitrogen doped carbon fibers derived from carbonization of electrospun polyacrylonitrile as efficient metal-free HER electrocatalyst. Int. J. Hydrogen Energy 2020, 45, 4035–4042. [Google Scholar] [CrossRef]
- Li, H.; Ren, B.; Liu, W.; Jing, L.; Tay, R.Y.; Tsang, S.H.; Ricardez–Sandoval, L.; Yu, A.; Teo, E.H.T. Boron nanosheets induced microstructure and charge transfer tailoring in carbon nanofibrous mats towards highly efficient water splitting. Nano Energy 2021, 88, 106246. [Google Scholar] [CrossRef]
- Li, J.; Qian, J.; Chen, X.; Zeng, X.; Li, L.; Ouyang, B.; Kan, E.; Zhang, W. Three-dimensional hierarchical graphitic carbon encapsulated CoNi alloy/N-doped CNTs/carbon nanofibers as an efficient multifunctional electrocatalyst for high-performance microbial fuel cells. Compos. Part B Eng. 2022, 231, 109573. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, W.; Bo, L.; Shen, Y.; Ji, X.; Xia, L.; Guan, X.; Wang, Y.; Tong, J. Electrospinning construction of heterostructural Co3W3C/CoP nanoparticles embedded in N, P-doped hierarchically porous carbon fibers as excellent multifunctional electrocatalyst for Zn-air batteries and water splitting. Chem. Eng. J. 2022, 431, 134188. [Google Scholar] [CrossRef]
- Gu, L.; Zhu, H.; Yu, D.; Zhang, S.; Chen, J.; Wang, J.; Wan, M.; Zhang, M.; Du, M. A Facile Strategy to Synthesize Cobalt-Based Self-Supported Material for Electrocatalytic Water Splitting. Part. Part. Syst. Charact. 2017, 34, 1700189. [Google Scholar] [CrossRef]
- Sun, C.; Wang, C.; Xie, H.; Han, G.; Zhang, Y.; Zhao, H. 2D Cobalt Chalcogenide Heteronanostructures Enable Efficient Alkaline Hydrogen Evolution Reaction. Small 2023, 19, 2302056. [Google Scholar] [CrossRef]
- Mugheri, A.Q.; Ali, S.; Narejo, G.S.; Otho, A.A.; Lal, R.; Abro, M.A.; Memon, S.H.; Abbasi, F. Electrospun fibrous active bimetallic electrocatalyst for hydrogen evolution. Int. J. Hydrogen Energy 2020, 45, 21502–21511. [Google Scholar] [CrossRef]
- El-Maghrabi, H.H.; Nada, A.A.; Bekheet, M.F.; Roualdes, S.; Riedel, W.; Iatsunskyi, I.; Coy, E.; Gurlo, A.; Bechelany, M. Coaxial nanofibers of nickel/gadolinium oxide/nickel oxide as highly effective electrocatalysts for hydrogen evolution reaction. J. Colloid Interface Sci. 2021, 587, 457–466. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, F.; Han, L.; Xiao, J.; Zeng, X.; Zhang, C.; Dong, P.; Li, M.; Zhang, Y. Manganese Oxide/Iron Carbide Encapsulated in Nitrogen and Boron Codoped Carbon Nanowire Networks as Accelerated Alkaline Hydrogen Evolution and Oxygen Reduction Bifunctional Electrocatalysts. ACS Appl. Mater. Interfaces 2022, 14, 13280–13294. [Google Scholar] [CrossRef]
- Nagappan, S.; Karmakar, A.; Madhu, R.; N Dhandapani, H.; Bera, K.; De, A.; Kundu, S. Electronically Modified Ce3+ Ion Doped 2D NiFe-LDH Nanosheets over a 1D Microfiber: A High-Performance Electrocatalyst for Overall Water Splitting. ACS Appl. Energy Mater. 2022, 5, 12768–12781. [Google Scholar] [CrossRef]
- Chen, X.; Li, W.; Wang, C.; Lu, X. Wet chemical synthesis of rhodium nanoparticles anchored on cobalt/nitrogen-doped carbon nanofibers for high-performance alkaline and acidic hydrogen evolution. J. Colloid Interface Sci. 2023, 650, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-L.; Xie, Y.; Liu, J.-T.; Cao, F.-H.; Cong, H.-P.; Li, H. 1D Core−Shell MOFs derived CoP Nanoparticles-Embedded N-doped porous carbon nanotubes anchored with MoS2 nanosheets as efficient bifunctional electrocatalysts. Chem. Eng. J. 2021, 419, 129977. [Google Scholar] [CrossRef]
- Liu, H.; Sun, J.; Xu, Z.; Zhou, W.; Han, C.; Yang, G.; Shan, Y. Ru nanoparticles decorated Ni-V2NO heterostructures in carbon nanofibers as efficient electrocatalysts for hydrogen evolution reaction. J. Electroanal. Chem. 2022, 911, 116213. [Google Scholar] [CrossRef]
- Zhang, L.; Yin, J.; Wei, K.; Li, B.; Jiao, T.; Chen, Y.; Zhou, J.; Peng, Q. Fabrication of hierarchical SrTiO3@MoS2 heterostructure nanofibers as efficient and low-cost electrocatalysts for hydrogen-evolution reactions. Nanotechnology 2020, 31, 205604. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Liu, X.; Wang, H.; Ma, R.; Sasaki, T. Recent advances in developing high-performance nanostructured electrocatalysts based on 3d transition metal elements. Nanoscale Horiz. 2019, 4, 789–808. [Google Scholar] [CrossRef]
- Luo, X.; Zhou, Q.; Du, S.; Li, J.; Zhong, J.; Deng, X.; Liu, Y. Porous Co9S8/Nitrogen, Sulfur-Doped Carbon@Mo2C Dual Catalyst for Efficient Water Splitting. ACS Appl. Mater. Interfaces 2018, 10, 22291–22302. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, J.; Guo, H.; Liu, J.; Liu, Q.; Song, D.; Chen, R.; Li, R.; Liu, P.; Wang, J. Heterogeneous CoSe2–CoO nanoparticles immobilized into N-doped carbon fibers for efficient overall water splitting. Electrochim. Acta 2020, 356, 136822. [Google Scholar] [CrossRef]
- Long, X.; Lin, H.; Zhou, D.; An, Y.; Yang, S. Enhancing Full Water-Splitting Performance of Transition Metal Bifunctional Electrocatalysts in Alkaline Solutions by Tailoring CeO2–Transition Metal Oxides–Ni Nanointerfaces. ACS Energy Lett. 2018, 3, 290–296. [Google Scholar] [CrossRef]
- Wang, C.; Lu, H.; Mao, Z.; Yan, C.; Shen, G.; Wang, X. Bimetal Schottky Heterojunction Boosting Energy-Saving Hydrogen Production from Alkaline Water via Urea Electrocatalysis. Adv. Funct. Mater. 2020, 30, 2000556. [Google Scholar] [CrossRef]
- Chen, S.; Wang, C.; Liu, S.; Huang, M.; Lu, J.; Xu, P.; Tong, H.; Hu, L.; Chen, Q. Boosting Hydrazine Oxidation Reaction on CoP/Co Mott–Schottky Electrocatalyst through Engineering Active Sites. J. Phys. Chem. Lett. 2021, 12, 4849–4856. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liao, T.; Wei, Z.; Sun, J.; Guo, J.; Sun, Z. Heteroatom-Doping of Non-Noble Metal-Based Catalysts for Electrocatalytic Hydrogen Evolution: An Electronic Structure Tuning Strategy. Small Methods 2021, 5, 2000988. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, C.; Meng, T.; Pu, Z.; Jin, H.; He, D.; Zhang, J.; Mu, S. Iron oxide and phosphide encapsulated within N,P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc-air batteries. J. Power Sources 2019, 413, 367–375. [Google Scholar] [CrossRef]
- Song, Y.; Cheng, J.; Liu, J.; Ye, Q.; Gao, X.; Lu, J.; Cheng, Y. Modulating electronic structure of cobalt phosphide porous nanofiber by ruthenium and nickel dual doping for highly-efficiency overall water splitting at high current density. Appl. Catal. B Environ. 2021, 298, 120488. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, X.; Zhang, X.; You, T. Defect- and S-rich ultrathin MoS2 nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution. J. Mater. Chem. A 2015, 3, 15927–15934. [Google Scholar] [CrossRef]
- Zhu, Y.; Song, L.; Song, N.; Li, M.; Wang, C.; Lu, X. Bifunctional and Efficient CoS2–C@MoS2 Core–Shell Nanofiber Electrocatalyst for Water Splitting. ACS Sustain. Chem. Eng. 2019, 7, 2899–2905. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Zhu, H.; Lu, S.; Ma, P.; Dong, W.; Duan, F.; Chen, M.; Du, M. Understanding the Role of Nanoscale Heterointerfaces in Core/Shell Structures for Water Splitting: Covalent Bonding Interaction Boosts the Activity of Binary Transition-Metal Sulfides. ACS Appl. Mater. Interfaces 2020, 12, 6250–6261. [Google Scholar] [CrossRef]
- Chen, W.; Lan, W.; Wang, H.; Zhang, A.; Liu, C. Engineering of sugarcane bagasse based porous carbon nanofiber-supported the CoP/Co2P heterostructure for efficient overall water splitting. Electrochim. Acta 2022, 404, 139578. [Google Scholar] [CrossRef]
- Zhang, Y.-Q.; Tao, H.-B.; Chen, Z.; Li, M.; Sun, Y.-F.; Hua, B.; Luo, J.-L. In situ grown cobalt phosphide (CoP) on perovskite nanofibers as an optimized trifunctional electrocatalyst for Zn–air batteries and overall water splitting. J. Mater. Chem. A 2019, 7, 26607–26617. [Google Scholar] [CrossRef]
- Li, T.; Yin, J.; Sun, D.; Zhang, M.; Pang, H.; Xu, L.; Zhang, Y.; Yang, J.; Tang, Y.; Xue, J. Manipulation of Mott−Schottky Ni/CeO2 Heterojunctions into N-Doped Carbon Nanofibers for High-Efficiency Electrochemical Water Splitting. Small 2022, 18, 2106592. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, W.; Shi, Z.; Che, M.; Yu, X.; Tang, Y.; Gao, Q. Electrospinning Hetero-Nanofibers of Fe3C-Mo2C/Nitrogen-Doped-Carbon as Efficient Electrocatalysts for Hydrogen Evolution. ChemSusChem 2017, 10, 2597–2604. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Zhang, J.; Liu, Y.; Hou, L.; Deng, J.; Yuan, C. Construction of hetero-phase Mo2C-CoO@N-CNFs film as a self-supported Bi-functional catalyst towards overall water splitting. Chem. Eng. J. 2023, 451, 139025. [Google Scholar] [CrossRef]
- Li, F.; Xu, R.; Li, Y.; Liang, F.; Zhang, D.; Fu, W.-F.; Lv, X.-J. N-doped carbon coated NiCo2S4 hollow nanotube as bifunctional electrocatalyst for overall water splitting. Carbon 2019, 145, 521–528. [Google Scholar] [CrossRef]
- Zheng, Y.; Hu, H.; Zhu, Y.; Rong, J.; Zhang, T.; Yang, D.; Wen, Q.; Qiu, F. ZIF-67-Derived (NiCo)S2@NC Nanosheet Arrays Hybrid for Efficient Overall Water Splitting. Inorg. Chem. 2022, 61, 14436–14446. [Google Scholar] [CrossRef]
- Guo, D.; Wang, J.; Zhang, L.; Chen, X.; Wan, Z.; Xi, B. Strategic Atomic Layer Deposition and Electrospinning of Cobalt Sulfide/Nitride Composite as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Small 2020, 16, 2002432. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, G.; Hao, J.; Wang, M.; Zhu, H.; Lu, S.; Duan, F.; Dong, W.; Du, M.; Zhao, Y. Low-Electronegativity Vanadium Substitution in Cobalt Carbide Induced Enhanced Electron Transfer for Efficient Overall Water Splitting. ACS Appl. Mater. Interfaces 2019, 11, 43261–43269. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; He, W.; Liu, D.; Shao, H.; Yu, W.; Yin, D.; Dong, X. Mo2C regulated by cobalt components doping in N-doped hollow carbon nanofibers as an efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 29337–29347. [Google Scholar] [CrossRef]
- Ji, C.; Yang, G.; Ilango, P.R.; Song, J.; Yu, D.; Han, S.; Zhang, D.; Li, L.; Peng, S. Molybdenum Carbide-Embedded Multichannel Hollow Carbon Nanofibers as Bifunctional Catalysts for Water Splitting. Chem. Asian J. 2020, 15, 1957–1962. [Google Scholar] [CrossRef]
Influence Factors | Electrospinning Parameters | Variations of Micro/Nanofiber Diameter and Morphology | Ref. |
---|---|---|---|
Molecular Weight (↑) | Diameter (↑); Smooth surface | [69] | |
Concentration (↑) | Diameter (↑); Beaded fibers | [70] | |
Solution Properties | Surface Tension (↑) | Diameter (↓); Beaded fibers | [71] |
Conductivity (↑) | Diameter (↓); Beaded fibers | [72,73,74] | |
Applied Voltage (↑) | Diameter (↓) within a specific range | [75,76] | |
Processing Parameters | Feed Flow Rate (↑) | Diameter (↑); Beaded fibers | [77,78] |
Collector Distance (↑) | Diameter (↓); Difficult to collect | [79,80] | |
Environmental Conditions | Temperature (↑) | Diameter (↓) | [81] |
Humidity (↑) | Fiber of porous structure | [81,82,83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; He, Y.; Li, K.; Zhang, S.; Hu, X.; Li, Y.; Zhang, D.; Liu, Y. Electrospun Micro/Nanofiber-Based Electrocatalysts for Hydrogen Evolution Reaction: A Review. Polymers 2024, 16, 3155. https://doi.org/10.3390/polym16223155
Li X, He Y, Li K, Zhang S, Hu X, Li Y, Zhang D, Liu Y. Electrospun Micro/Nanofiber-Based Electrocatalysts for Hydrogen Evolution Reaction: A Review. Polymers. 2024; 16(22):3155. https://doi.org/10.3390/polym16223155
Chicago/Turabian StyleLi, Xiuhong, Youqi He, Kai Li, Shuailong Zhang, Xinyu Hu, Yi Li, Daode Zhang, and Yong Liu. 2024. "Electrospun Micro/Nanofiber-Based Electrocatalysts for Hydrogen Evolution Reaction: A Review" Polymers 16, no. 22: 3155. https://doi.org/10.3390/polym16223155
APA StyleLi, X., He, Y., Li, K., Zhang, S., Hu, X., Li, Y., Zhang, D., & Liu, Y. (2024). Electrospun Micro/Nanofiber-Based Electrocatalysts for Hydrogen Evolution Reaction: A Review. Polymers, 16(22), 3155. https://doi.org/10.3390/polym16223155