Repeated Fed-Batch Culture Strategy for the Synthesis of Polyhydroxybutyrate (PHB) Biopolymers from Sugar Cane Juice Using Azotobacter vinelandii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Initial Inoculum Preparation
2.2. Preparation of Sugar Cane Juice (SCJ)
2.3. Fed-Batch Fermentation
2.3.1. Variations of Fermentation Times
2.3.2. Variations of Sugar Concentrations in Culture Medium
2.4. Repeated Fed-Batch Fermentation
2.5. Recovery of PHA Product and Its Characteristic
2.6. Analytical Techniques
3. Results and Discussion
3.1. Characteristics of Sugar Cane Juice (SCJ)
3.2. Variations of Incubation Time in Fed-Batch Fermentation
3.3. Variations of Sugar Concentrations in Culture Medium Under Fed-Batch Fermentation
3.4. Repeated Fed-Batch Fermentation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Surendran, A.; Lakshmanan, M.; Chee, J.Y.; Sulaiman, A.M.; Thuo, D.V.; Sudesh, K. Can Polyhydroxyalkanoates be produced efficiently from waste plant and animal oils? Front. Bioeng. Biotechnol. 2020, 8, 169. [Google Scholar] [CrossRef] [PubMed]
- Suwannasing, W.; Tanamool, V.; Singhaboot, P.; Kaewkannetra, P. Valorisation of Pineapple Cannery Waste as a Cost Effective Carbon Source for Poly 3-hydroxyabutyrate (P3HB) Production. Polymers 2023, 15, 3297. [Google Scholar] [CrossRef] [PubMed]
- Poirier, Y.; Nawrath, C.; Somerville, C. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plant. Biotechnology 1995, 13, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Steinbuchel, A. Polyhydroxyalkanoic acids. In Biomaterials: Novel Materials from Biological Sources; Byrom, D., Ed.; Stockton: New York, NY, USA, 1991; pp. 124–213. [Google Scholar]
- Byrom, D. Polyhydroxyalkanoates. In Plastic from Microbes: Microbial Synthesis of Polymers and Polymer Precursors; Mobley, D.P., Ed.; Hanser Munich: Munich, Germany, 1994; pp. 5–33. [Google Scholar]
- Park, S.J.; Kim, T.W.; Kim, M.K.; Lee, S.Y.; Lim, S.-C. Advanced bacterial polyhydroxyalkanoates: Towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol. Adv. 2012, 30, 1196–1206. [Google Scholar] [CrossRef]
- Barham, P.J. Physical properties of poly (hydroxybutyrate) and poly (hydroxybutyrate-co-hydroxyvalerate). In Novel Biodegradable Microbial Polymers; Dawes, E.A., Ed.; Kluwer: Dordrecht, The Netherlands, 1990; pp. 81–96. [Google Scholar]
- Luzier, W.D. Materials derived from biomass/biodegradable. Proc. Natl. Acad. Sci. USA 1992, 89, 839–842. [Google Scholar] [CrossRef]
- Lee, S.Y. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 1996, 49, 1–14. [Google Scholar] [CrossRef]
- Ojumu, T.V.; Yu, J.; Solomon, B.O. Production of Polyhydroxyalkanoates, a bacterial biodegradable polymer. Afr. J. Biotechnol. 2004, 3, 18–24. [Google Scholar] [CrossRef]
- Singhaboot, P.; Kaewkannetra, P. Effectiveness enhancement of sugar cane juice fermentation for polyhydroxyalkanoates (PHAs) production. Asia-Pac. J. Sci. Technol. 2014, 19, 9–18. [Google Scholar]
- Suwannasing, W.; Imai, T.; Kaewkannetra, P. Cost-effective defined medium for the production of polyhydroxyalkanoates using agricultural raw materials. Bioresour Technol. 2015, 194, 67–74. [Google Scholar]
- Singhaboot, P.; Kaewkannetra, P. A higher in value biopolymer product of polyhydroxyalkanoates (PHAs) synthesized by Alcaligenes latus in batch/repeated batch fermentation processes of sugar cane juice. Ann. Microbiol. 2015, 65, 2081–2089. [Google Scholar] [CrossRef]
- Tanamool, V.; Imai, T.; Danvirutai, P.; Kaewkannetra, P. An Alternative Approach to the Fermentation of Sweet Sorghum Juice into Biopolymer of Poly-β-hydroxyalkanoates (PHAs) by Newly Isolated, Bacillus aryabhattai PKV01. Biotechnol. Bioprocess Eng. 2013, 18, 65–74. [Google Scholar] [CrossRef]
- Tanamool, V.; Imai, T.; Danvirutai, P.; Kaewkannetra, P. Biopolymer generation from sweet sorghum juice: Screening, isolation, identification, and fermentative polyhydroxyalkanoate production by Bacillus aryabhattai. Turk. J. Biol. 2013, 37, 259–264. [Google Scholar] [CrossRef]
- Yezza, A.; Halasz, A.; Levadoux, W.; Hawari, J. Production of poly-β-hydroxybutyrate (PHB) by Alcaligenes latus from maple sap. Appl. Microbiol. Biotechnol. 2007, 77, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Page, W.J. Production of polyhydroxyalkanoates by Azotobacter vinelandii UWD in beet molasses culture. FEMS Microbiol. Rev. 1992, 103, 149–157. [Google Scholar] [CrossRef]
- Gojgic-Cvijovic, G.; Jakovljevic, D.; Loncarevic, B.; Todorovic, N.; Pergal, M.; Ciric, J.; Loos, K.; Beskoski, V.; Vrvic, M. Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium. Int. J. Biol. Macromol. 2018, 121, 142–151. [Google Scholar] [CrossRef]
- Diaz-Barrera, A.; Soto, E. Biotechnological uses of Azotobacter vinelandii: Current state, limits and prospects. Afr. J. Biotechnol. 2010, 9, 5240–5250. [Google Scholar]
- Page, W.J.; Cornish, A. Growth of Azotobacter vinelandii UWD in fish peptone medium and simplified extraction of poly-β-hydroxybutyrate. Appl. Environ. Microbiol. 1993, 59, 4236–4244. [Google Scholar] [CrossRef]
- Qu, L.; Ren, L.J.; Sun, G.N.; Ji, X.J.; Nie, Z.K.; Huang, H. Batch, fed-batch and repeated fed-batch fermentation processes of the marine thraustochytrid Schizochytrium sp. for producing docosahexaenoic acid. Bioprocess Biosyst. Eng. 2013, 36, 1905–1912. [Google Scholar] [CrossRef]
- Tanamool, V.; Enmak, P.; Kaewkannetra, P. Batch fermentation of salt-acclimatizing microalga for omega-3 docosahexaenoic acid production using biodiesel-derived crude glycerol waste as a low-cost substrate. Fermentation 2024, 10, 86. [Google Scholar] [CrossRef]
- Ito, T.; Sota, H.; Honda, H.; Shimizu, K.; Kobayashi, T. Efficient acetic acid production by repeated fed-batch fermentation using two fermenters. Appl. Microbiol. Biotechnol. 1991, 36, 295–299. [Google Scholar] [CrossRef]
- Lu, X.; Li, Y.; Duan, Z.; Shi, Z.; Mao, Z. A novel, repeated fed-batch, ethanol production system with extremely long term stability achieved by fully recycling fermented supernatants. Biotechnol. Lett. 2003, 25, 1819–1826. [Google Scholar] [CrossRef] [PubMed]
- Baea, S.M.; Parka, Y.C.; Leea, T.H.; Kweona, D.H.; Choia, J.H.; Kimb, S.K. Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations. Enzym. Microb. Technol. 2004, 35, 545–549. [Google Scholar] [CrossRef]
- Lia, C.Y.; Chenb, S.J.; Chenga, C.Y.; Chena, T.L. Production of Acinetobacter radioresistens lipase with repeated fed-batch culture. Biochem. Eng. J. 2005, 25, 195–199. [Google Scholar] [CrossRef]
- Bauer, R.; Katsikis, N.; Varga, S.; Hekmat, D. Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process. Bioprocess Biosyst. Eng. 2005, 28, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Wei, Y.H.; Chang, J.S. Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2. Appl. Microbiol. Biotechnol. 2007, 76, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S.; Srivastava, A.K. Repeated batch cultivation of Ralstonia eutropha for poly (β- hydroxybutyrate) production. Biotechnol. Lett. 2005, 27, 1401–1403. [Google Scholar] [CrossRef]
- Chala, A.T.; Matula, S.; Báťková, K.; Doležal, F. Evaluation of methods for water and non-volatile LNAPL content measurement in porous media. Soil Water Res. 2019, 14, 47–56. [Google Scholar] [CrossRef]
- Kumalaningsih, S.; Nur, H.; Nur, A. Optimisation of polyhydroxyalkanoate (PHA) production from liquid bean curd waste by Alcaligenes latus bacteria. J. Agric. Food Technol. 2011, 1, 63–67. [Google Scholar]
- Grothe, E.; Moo-Young, M.; Chisti, Y. Fermentation optimization for the production of (hydroxybutyric acid) microbial thermoplastic. Enzym. Microb. Technol. 1999, 25, 132–141. [Google Scholar] [CrossRef]
- Yang, X.; Tsao, G.T. Enhanced acetone-butanol fermentation using repeated fed-batch operation coupled with cell recycle by membrane and simultaneous removal of inhibitory products by adsorption. Biotechnol. Bioeng. 1995, 47, 444–450. [Google Scholar] [CrossRef]
- Novak, N.; Gerdin, S.; Berovic, B. Increased lovastatin formation by Aspergillus terreus using repeated fed-batch process. Biotechnol. Lett. 1997, 19, 947–948. [Google Scholar] [CrossRef]
- Kumar, M.S.; Jana, S.K.; Senthil, V.; Shashanka, V.; Kumar, S.V.; Sadhukhan, A.K. Repeated fed-batch process for improving lovastatin production. Process Biochem. 2000, 6, 363–368. [Google Scholar] [CrossRef]
Component | Concentration | |
---|---|---|
Sugar | Sucrose | 202 g/L |
Glucose | 8.7 g/L | |
Fructose | 5.4 g/L | |
Total sugar | 216.10 g/L | |
Elements | Potassium (K) | 5223 mg/L |
Sodium (Na) | 8.1 mg/L | |
Calcium (Ca) | 21.43 mg/L | |
Magnesium (Mg) | 142 mg/L | |
Zinc (Zn) | 0.3 mg/L | |
Nitrogen % (w/v) | 1.40 | |
pH | 5.7 | |
Total soluble solids (°Brx) | 22 |
Cycle | Time | DCW | PHAs | PHA Content | Productivity |
---|---|---|---|---|---|
(h) | (g/L) | (g/L) | (%) | (g/L·h) | |
1 | 96 | 8.37 ± 0.06 | 6.07 ± 0.12 | 72.51 | 0.063 |
2 | 84 | 9.17 ± 0.06 | 6.70 ± 0.10 | 73.09 | 0.080 |
3 | 84 | 11.60 ± 0.20 | 8.70 ± 0.10 | 75.00 | 0.104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dujjanutat, P.; Singhaboot, P.; Kaewkannetra, P. Repeated Fed-Batch Culture Strategy for the Synthesis of Polyhydroxybutyrate (PHB) Biopolymers from Sugar Cane Juice Using Azotobacter vinelandii. Polymers 2024, 16, 3156. https://doi.org/10.3390/polym16223156
Dujjanutat P, Singhaboot P, Kaewkannetra P. Repeated Fed-Batch Culture Strategy for the Synthesis of Polyhydroxybutyrate (PHB) Biopolymers from Sugar Cane Juice Using Azotobacter vinelandii. Polymers. 2024; 16(22):3156. https://doi.org/10.3390/polym16223156
Chicago/Turabian StyleDujjanutat, Praepilas, Pakjirat Singhaboot, and Pakawadee Kaewkannetra. 2024. "Repeated Fed-Batch Culture Strategy for the Synthesis of Polyhydroxybutyrate (PHB) Biopolymers from Sugar Cane Juice Using Azotobacter vinelandii" Polymers 16, no. 22: 3156. https://doi.org/10.3390/polym16223156
APA StyleDujjanutat, P., Singhaboot, P., & Kaewkannetra, P. (2024). Repeated Fed-Batch Culture Strategy for the Synthesis of Polyhydroxybutyrate (PHB) Biopolymers from Sugar Cane Juice Using Azotobacter vinelandii. Polymers, 16(22), 3156. https://doi.org/10.3390/polym16223156