Comparative Analysis of Modern 3D-Printed Hybrid Resin-Ceramic Materials for Indirect Restorations: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Design and Manufacturing
2.2. Surface Treatment
2.3. Thermocycling
2.4. Surface Roughness
2.5. Color Stability
2.6. Biocompatibility
2.7. SEM Analysis
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- In an untreated state, SM has an advantage over AM in terms of surface roughness. However, polishing and coating reduce the surface roughness, making it comparable to the SM group.
- Color changes occur for all materials due to surface treatment, with glazing causing a higher color change than mechanical polishing.
- All tested materials demonstrate acceptable biocompatibility.
- Artificial aging of 5000 thermal cycles affects color stability and biocompatibility but not surface roughness. All materials show acceptable color changes and no cytotoxicity.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valenti, C.; Federici, M.I.; Masciotti, F.; Marinucci, L.; Xhimitiku, I.; Cianetti, S.; Pagano, S. Mechanical properties of 3D printed prosthetic materials compared with milled and conventional processing: A systematic review and meta-analysis of in vitro studies. J. Prosthet. Dent. 2022, 132, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Nam, N.E.; Hwangbo, N.K.; Kim, J.E. Effects of surface glazing on the mechanical and biological properties of 3D printed permanent dental resin materials. J. Prosthodont. Res. 2023, 68, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Van Noort, R. The future of dental devices is digital. Dent. Mater. 2012, 28, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Sayed, M.E.; Shetty, M.; Alqahtani, S.M.; Al Wadei, M.H.D.; Gupta, S.G.; Othman, A.A.A.; Alshehri, A.H.; Alqarni, H.; Mobarki, A.H.; et al. Physical and Mechanical Properties of 3D-Printed Provisional Crowns and Fixed Dental Prosthesis Resins Compared to CAD/CAM Milled and Conventional Provisional Resins: A Systematic Review and Meta-Analysis. Polymers 2022, 14, 2691. [Google Scholar] [CrossRef]
- Goodacre, B.J.; Goodacre, C.J. Additive Manufacturing for Complete Denture Fabrication: A Narrative Review. J. Prosthodont. 2022, 31 (Suppl. S1), 47–51. [Google Scholar] [CrossRef]
- Prause, E.; Malgaj, T.; Kocjan, A.; Beuer, F.; Hey, J.; Jevnikar, P.; Schmidt, F. Mechanical properties of 3D-printed and milled composite resins for definitive restorations: An in vitro comparison of initial strength and fatigue behavior. J. Esthet. Restor. Dent. 2024, 36, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Thurzo, A.; Šufliarsky, B.; Urbanová, W.; Čverha, M.; Strunga, M.; Varga, I. Pierre Robin Sequence and 3D Printed Personalized Composite Appliances in Interdisciplinary Approach. Polymers 2022, 14, 3858. [Google Scholar] [CrossRef]
- Unkovskiy, A.; Wahl, E.; Huettig, F.; Keutel, C.; Spintzyk, S. Multimaterial 3D printing of a definitive silicone auricular prosthesis: An improved technique. J. Prosthet. Dent. 2021, 125, 946–950. [Google Scholar] [CrossRef]
- Rosentritt, M.; Rauch, A.; Hahnel, S.; Schmidt, M. In-vitro performance of subtractively and additively manufactured resin-based molar crowns. J. Mech. Behav. Biomed. Mater. 2023, 141, 105806. [Google Scholar] [CrossRef]
- Stansbury, J.W.; Idacavage, M.J. 3D Printing with polymers: Challenges among expanding options and opportunities. Dent. Mater. 2016, 32, 54–64. [Google Scholar] [CrossRef]
- Li, P.; Fernandez, P.K.; Spintzyk, S.; Schmidt, F.; Beuer, F.; Unkovskiy, A. Effect of additive manufacturing method and build angle on surface characteristics and Candida albicans adhesion to 3D printed denture base polymers. J. Dent. 2022, 116, 103889. [Google Scholar] [CrossRef]
- Grau, A.; Stawarczyk, B.; Roos, M.; Theelke, B.; Hampe, R. Reliability of wear measurements of CAD-CAM restorative materials after artificial aging in a mastication simulator. J. Mech. Behav. Biomed. Mater. 2018, 86, 185–190. [Google Scholar] [CrossRef]
- Bayarsaikhan, E.; Gu, H.; Hwangbo, N.-K.; Lim, J.-H.; Shim, J.-S.; Lee, K.-W.; Kim, J.-E. Influence of different postcuring parameters on mechanical properties and biocompatibility of 3D printed crown and bridge resin for temporary restorations. J. Mech. Behav. Biomed. Mater. 2022, 128, 105127. [Google Scholar] [CrossRef]
- Grymak, A.; Aarts, J.M.; Cameron, A.B.; Choi, J.J.E. Evaluation of wear resistance and surface properties of additively manufactured restorative dental materials. J. Dent. 2024, 147, 105120. [Google Scholar] [CrossRef]
- Corbani, K.; Hardan, L.; Skienhe, H.; Ozcan, M.; Alharbi, N.; Salameh, Z. Effect of material thickness on the fracture resistance and failure pattern of 3D-printed composite crowns. Int. J. Comput. Dent. 2020, 23, 225–233. [Google Scholar]
- Myagmar, G.; Lee, J.-H.; Ahn, J.-S.; Yeo, I.-S.L.; Yoon, H.-I.; Han, J.-S. Wear of 3D printed and CAD/CAM milled interim resin materials after chewing simulation. J. Adv. Prosthodont. 2021, 13, 144–151. [Google Scholar] [CrossRef]
- Mao, Z.; Schmidt, F.; Beuer, F.; Yassine, J.; Hey, J.; Prause, E. Effect of surface treatment strategies on bond strength of additively and subtractively manufactured hybrid materials for permanent crowns. Clin. Oral Investig. 2024, 28, 371. [Google Scholar] [CrossRef]
- Kraemer Fernandez, P.; Unkovskiy, A.; Benkendorff, V.; Klink, A.; Spintzyk, S. Surface Characteristics of Milled and 3D Printed Denture Base Materials Following Polishing and Coating: An In-Vitro Study. Materials 2020, 13, 3305. [Google Scholar] [CrossRef]
- Morresi, A.L.; D’Amario, M.; Capogreco, M.; Gatto, R.; Marzo, G.; D’Arcangelo, C.; Monaco, A. Thermal cycling for restorative materials: Does a standardized protocol exist in laboratory testing? A literature review. J. Mech. Behav. Biomed. Mater. 2014, 29, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Wee, A.G.; Lindsey, D.T.; Shroyer, K.M.; Johnston, W.M. Use of a porcelain color discrimination test to evaluate color difference formulas. J. Prosthet. Dent. 2007, 98, 101–109. [Google Scholar] [CrossRef] [PubMed]
- EN ISO 10993-12:2021-08; D.E.I., Biological Evaluation of Medical Devices—Part 12: Sample Preparation and Reference Materials (ISO 10993-12:2021). ISO: Geneva, Switzerland, 2021.
- EN ISO 10993-5:2009-10; D.E.I., Biological Evaluation of Medical Devices—Part 5: Tests for in vitro cytotoxicity (ISO 10993-5:2009). ISO: Geneva, Switzerland, 2009.
- Ozer, N.E.; Sahin, Z.; Yikici, C.; Duyan, S.; Kilicarslan, M.A. Bacterial adhesion to composite resins produced by additive and subtractive manufacturing. Odontology 2023, 112, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Al-Qahtani, A.S.; Tulbah, H.I.; Binhasan, M.; Abbasi, M.S.; Ahmed, N.; Shabib, S.; Farooq, I.; Aldahian, N.; Nisar, S.S.; Tanveer, S.A.; et al. Surface Properties of Polymer Resins Fabricated with Subtractive and Additive Manufacturing Techniques. Polymers 2021, 13, 4077. [Google Scholar] [CrossRef]
- Prause, E.; Hey, J.; Beuer, F.; Yassine, J.; Hesse, B.; Weitkamp, T.; Gerber, J.; Schmidt, F. Microstructural investigation of hybrid CAD/CAM restorative dental materials by micro-CT and SEM. Dent. Mater. 2024, 40, 930–940. [Google Scholar] [CrossRef]
- Rutkunas, V.; Sabaliauskas, V.; Mizutani, H. Effects of different food colorants and polishing techniques on color stability of provisional prosthetic materials. Dent. Mater. J. 2010, 29, 167–176. [Google Scholar] [CrossRef]
- Karaarslan, E.S.; Bulbul, M.; Yildiz, E.; Secilmis, A.; Sari, F.; Usumez, A. Effects of different polishing methods on color stability of resin composites after accelerated aging. Dent. Mater. J. 2013, 32, 58–67. [Google Scholar] [CrossRef]
- Ruyter, I.; Nilner, K.; Möller, B. Color stability of dental composite resin materials for crown and bridge veneers. Dent. Mater. 1987, 3, 246–251. [Google Scholar] [CrossRef]
- Krajangta, N.; Klaisiri, A.; Leelaponglit, S.; Intralawan, N.; Tiansuwan, P.; Pisethsalasai, N. Color alteration of CAD/CAM 3D-printed, milled resin-ceramic hybrid material compared to enamel. Dent. Mater. J. 2024, 43, 386–393. [Google Scholar] [CrossRef]
- Daher, R.; Ardu, S.; di Bella, E.; Krejci, I.; Duc, O. Efficiency of 3D printed composite resin restorations compared with subtractive materials: Evaluation of fatigue behavior, cost, and time of production. J. Prosthet. Dent. 2024, 131, 943–950. [Google Scholar] [CrossRef]
- Prause, E.; Schmidt, F.; Unkovskiy, A.; Beuer, F.; Hey, J. Survival and complications of 3D-printed, non-invasive restorations for prosthetic rehabilitations: A 12-month preliminary observational study. Int. J. Comput. Dent. 2024, 27, 1–10. [Google Scholar]
- Schmidt, F.; Kühbacher, M.; Gross, U.; Kyriakopoulos, A.; Schubert, H.; Zehbe, R. From 2D slices to 3D volumes: Image based reconstruction and morphological characterization of hippocampal cells on charged and uncharged surfaces using FIB/SEM serial sectioning. Ultramicroscopy 2011, 111, 259–266. [Google Scholar] [CrossRef]
- Alves, M.F.R.P.; Fernandes, M.H.F.V.; Daguano, J.K.M.B.; Rodas, A.C.D.; Amarante, J.E.V.; dos Santos, C. Effect of the surface finish on the mechanical properties and cellular adhesion in (Ce,Y)-TZP/Al2O3 ceramic composites for denture implants. J. Mech. Behav. Biomed. Mater. 2022, 134, 105363. [Google Scholar]
- Kreve, S.; dos Reis, A.C. Effect of surface properties of ceramic materials on bacterial adhesion: A systematic review. J. Esthet. Restor. Dent. 2022, 34, 461–472. [Google Scholar] [CrossRef]
Manufacturing Method | Material (Manufacturer) | Code | Composition |
---|---|---|---|
DLP printing | VarseoSmile Crown plus A3 (BEGO, Bremen, Germany) | BV | Ceramic-filled (30–50 wt% inorganic fillers; particle size 0.7 μm) silanized dental glass, methyl benzoylformate, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide hybrid material |
DLP printing | HARZ Labs Dental Sand Pro A1-A2 (HARZ Labs, Riga, Latvia) | HL | Ceramic-filled composite resin with urethane methacrylate oligomer (50–70%), reactive diluent (30–50%), 2-hydroxypropyl methacrylate (1–5%), diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (1–3%), filler (10–30%) |
DLP printing | Voco V-Print c&b temp A3 (VOCO, Cuxhaven, Germany) | VV | Ceramic-filled (26 wt% inorganic fillers) hybrid material with aliphatic urethane dimethacrylate (>10–25%), aliphatic acrylate (>2.5–10%), triethylene glycol dimethacrylate (>2.5–10%), diphenyl(2,4,6- trimethylbenzoyl)phosphine oxide (max. 2.5%) |
Milling | Voco Grandio blocs A3 LT (VOCO, Cuxhaven, Germany) | VG | Resin nanohybrid composite (86 wt% inorganic fillers), embedded in a polymer matrix (14% urethane dimethacrylate + dimethacrylate) |
Optiglaze Color Transparent (GC Corp., Tokyo, Japan) | Methyl methacrylate (25 ≤ 50%), silicon dioxide (5 ≤ 10%), diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (3 ≤ 5%) | ||
HARZ Labs Glaze (HARZ Labs, Riga, Latvia) | Urethane methacrylate oligomer (10–40%), vinyl monomer (10–15%), diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (1–5%), solvent (5–40%) | ||
Easy Glaze (VOCO, Cuxhaven, Germany) | Dipenta-erythritol pentaacrylat (50–100%), methyl methacrylate (25–50%), initiators (2.5–5%) |
Material (Code) | Machine | Printing Orientation | Settings | Post-Processing |
---|---|---|---|---|
BEGO Varseo Smile Crown plus A3 (BV) | Varseo XS, BEGO, Bremen, Germany (additive) | Angulation of 20 degrees on build platform using slicing software BEGO CAMcreator Print, Version 1.32, Bremen, Germany | 50 µm print layer thickness, 9 specimens per print job | Cleaning: ultrasonic bath with ethanol (96%): 3 min in reusable solution, then 2 min in fresh solution; Drying: in compressed air; removal of support structures with a cutting wheel; Sandblasting: Perlablast Micro at maximum blasting pressure of 1.5 bar; Postcuring: light curing unit (Otoflash; BEGO) for 2 × 1500 flashes, turning specimens between exposure cycles |
HARZ Labs Dental Sand Pro A1-A2 (HL) | 3Demax, DMG, Hamburg, Germany (additive) | Angulation of 20 degrees on build platform using nesting software Netfabb Basic 2022.0, Autodesk | 50 µm print layer thickness, 40 specimens per print job | Cleaning: ultrasonic bath with isopropanol (99%) twice for 3 min each; Drying: in compressed air; Postcuring: light chamber (FormCure; Formlabs), preheated to 70 °C for 20 min; Removal of support structures |
Voco V-Print c&b temp A3 (VV) | W2P-Solflex 163 Full HD, W2P, Vienna, Austria (additive) | Angulation of 20 degrees on build platform using slicing software Netfabb Basic 2023.1, Autodesk | 50 µm print layer thickness, 15 specimens per print job | Cleaning: with a brush soaked in isopropanol (99%); Drying: in compressed air; removal of support structures; drying for 15 min; Postcuring: light curing unit (Otoflash, BEGO, Bremen, Germany) with 2 × 2000 flashes with a 2 min break in between |
Voco Grandio blocs A3 LT (VG) | N4, vhf camfacture, Ammerbuch, Germany (milling) | Wet conditions, 2 samples milled from each block (size 14 L) | No post-processing |
Roughness and Color Stability | Biocompatibility (Indirect) | Biocompatibility (Direct) | ||
---|---|---|---|---|
Additive manufacturing (BEGO VarseoSmile Crown plus A3: n = 66 Harz labs Model Sand Pro A1–2: n = 66 Voco V-Print c&b temp A3: n = 66) | Untreated, no aging | n = 7 | n = 2 | n = 2 |
Untreated, after aging | n = 7 | n = 2 | n = 2 | |
Polished, no aging | n = 7 | n = 2 | n = 2 | |
Polished, after aging | n = 7 | n = 2 | n = 2 | |
Glazed, no aging | n = 7 | n = 2 | n = 2 | |
Glazed, after aging | n = 7 | n = 2 | n = 2 | |
Subtractive manufacturing (Voco Grandio Blocs A3 LT: n = 27) | Untreated, no aging | n = 5 | n = 2 | n = 2 |
Polished, no aging | n = 5 | n = 2 | n = 2 | |
Polished, after aging | n = 5 | n = 2 | n = 2 |
Material | Aging? | Color | Untreated (Mean/SD) | Polished (Mean/SD) | Glazed (Mean SD) |
---|---|---|---|---|---|
BV | No | L* | 72.20 ± 0.90 | 69.94 ± 1.43 | 67.54 ± 0.34 |
a* | 2.17 ± 0.60 | 2.02 ± 0.76 | 1.19 ± 0.18 | ||
b* | 11.93 ± 1.29 | 14.46 ± 0.96 | 12.71 ± 0.55 | ||
Yes | L* | 69.87 ± 0.58 | 69.80 ± 0.99 | 67.28 ± 0.43 | |
a* | 1.39 ± 0.13 | 1.77 ± 0.55 | 1.20 ± 0.15 | ||
b* | 11.37 ± 0.61 | 14.27 ± 0.63 | 12.92 ± 0.38 | ||
HL | No | L* | 74.65 ± 0.38 | 73.29 ± 0.31 | 72.28 ± 0.34 |
a* | −2.69 ± 0.10 | −3.02 ± 0.09 | −2.61 ± 0.07 | ||
b* | 11.56 ± 0.42 | 12.82 ± 0.16 | 13.65 ± 0.38 | ||
Yes | L* | 74.71 ± 0.56 | 73.94 ± 0.22 | 73.22 ± 0.35 | |
a* | −2.37 ± 0.15 | −3.07 ± 0.04 | −2.66 ± 0.11 | ||
b* | 11.15 ± 0.44 | 12.97 ± 0.14 | 12.70 ± 0.70 | ||
VV | No | L* | 66.59 ± 0.48 | 66.88 ± 0.22 | 65.79 ± 0.22 |
a* | 0.75 ± 0.17 | 0.95 ± 0.16 | 1.00 ± 0.15 | ||
b* | 12.36 ± 0.37 | 13.25 ± 0.33 | 13.39 ± 0.20 | ||
Yes | L* | 67.51 ± 0.45 | 67.05 ± 0.38 | 66.22 ± 0.46 | |
a* | 0.66 ± 0.10 | 0.68 ± 0.27 | 0.53 ± 0.15 | ||
b* | 11.52 ± 0.54 | 13.08 ± 0.45 | 12.69 ± 0.34 | ||
VG | No | L* | 71.77 ± 0.42 | 68.78 ± 0.43 | |
a* | 1.23 ± 0.10 | 1.50 ± 0.12 | |||
b* | 7.75 ± 0.58 | 10.58 ± 0.55 | |||
Yes | L* | 68.97 ± 0.26 | |||
a* | 1.32 ± 0.10 | ||||
b* | 10.40 ± 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albrecht, M.; Schmidt, F.; Menzel, F.; Yassine, J.; Beuer, F.; Unkovskiy, A. Comparative Analysis of Modern 3D-Printed Hybrid Resin-Ceramic Materials for Indirect Restorations: An In Vitro Study. Polymers 2024, 16, 3161. https://doi.org/10.3390/polym16223161
Albrecht M, Schmidt F, Menzel F, Yassine J, Beuer F, Unkovskiy A. Comparative Analysis of Modern 3D-Printed Hybrid Resin-Ceramic Materials for Indirect Restorations: An In Vitro Study. Polymers. 2024; 16(22):3161. https://doi.org/10.3390/polym16223161
Chicago/Turabian StyleAlbrecht, Miriam, Franziska Schmidt, Franziska Menzel, Jamila Yassine, Florian Beuer, and Alexey Unkovskiy. 2024. "Comparative Analysis of Modern 3D-Printed Hybrid Resin-Ceramic Materials for Indirect Restorations: An In Vitro Study" Polymers 16, no. 22: 3161. https://doi.org/10.3390/polym16223161
APA StyleAlbrecht, M., Schmidt, F., Menzel, F., Yassine, J., Beuer, F., & Unkovskiy, A. (2024). Comparative Analysis of Modern 3D-Printed Hybrid Resin-Ceramic Materials for Indirect Restorations: An In Vitro Study. Polymers, 16(22), 3161. https://doi.org/10.3390/polym16223161