Adding Mandarin Peel Waste to a Biodegradable Polymeric Matrix: Reinforcement or Degradation Effect?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Preparation of BF/MPP Biocomposites
2.3. Characterization
2.3.1. Dynamic Mechanical Thermal Analysis (DMTA)
2.3.2. Differential Scanning Calorimetry (DSC) Analysis
2.3.3. Mechanical Characterization
2.3.4. Morphological Analysis (SEM)
2.3.5. Rheological Characterization
2.3.6. Intrinsic Viscosity
2.3.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plastics Europe Plastics—Plastics—The Facts 2022. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed on 8 March 2024).
- Charles, D.; Kimman, L.; Saran, N. The Plastic Waste Maker Index. Revealing the Source of the Single-Use Plastics Crisis Minderoo Foundation. 2021. Available online: https://cdn.minderoo.org/content/uploads/2023/02/04205527/Plastic-Waste-Makers-Index-2023.pdf (accessed on 10 March 2024).
- Millican, J.M.; Agarwal, S. Plastic Pollution: A Material Problem? Macromolecules 2021, 54, 4455–4469. [Google Scholar] [CrossRef]
- European Bioplastics. Available online: https://www.European-Bioplastics.Org/ (accessed on 5 November 2024).
- Yadav, R.; Singh, M.; Shekhawat, D.; Lee, S.-Y.; Park, S.-J. The Role of Fillers to Enhance the Mechanical, Thermal, and Wear Characteristics of Polymer Composite Materials: A Review. Compos. Part Appl. Sci. Manuf. 2023, 175, 107775. [Google Scholar] [CrossRef]
- Nilagiri Balasubramanian, K.B.; Ramesh, T. Role, Effect, and Influences of Micro and Nano-fillers on Various Properties of Polymer Matrix Composites for Microelectronics: A Review. Polym. Adv. Technol. 2018, 29, 1568–1585. [Google Scholar] [CrossRef]
- Lima, E.M.B.; Middea, A.; Neumann, R.; Thiré, R.M.D.S.M.; Pereira, J.F.; De Freitas, S.C.; Penteado, M.S.; Lima, A.M.; Minguita, A.P.D.S.; Mattos, M.D.C.; et al. Biocomposites of PLA and Mango Seed Waste: Potential Material for Food Packaging and a Technological Alternative to Reduce Environmental Impact. Starch—Stärke 2021, 73, 2000118. [Google Scholar] [CrossRef]
- Komal, U.K.; Lila, M.K.; Singh, I. PLA/Banana Fiber Based Sustainable Biocomposites: A Manufacturing Perspective. Compos. Part B Eng. 2020, 180, 107535. [Google Scholar] [CrossRef]
- Cree, D.; Soleimani, M. Bio-Based White Eggshell as a Value-Added Filler in Poly(Lactic Acid) Composites. J. Compos. Sci. 2023, 7, 278. [Google Scholar] [CrossRef]
- Ceraulo, M.; La Mantia, F.P.; Mistretta, M.C.; Titone, V. The Use of Waste Hazelnut Shells as a Reinforcement in the Development of Green Biocomposites. Polymers 2022, 14, 2151. [Google Scholar] [CrossRef]
- Wu, C.-S.; Tsou, C.-H. Fabrication, Characterization, and Application of Biocomposites from Poly(Lactic Acid) with Renewable Rice Husk as Reinforcement. J. Polym. Res. 2019, 26, 44. [Google Scholar] [CrossRef]
- Ramos, M.; Dominici, F.; Luzi, F.; Jiménez, A.; Garrigós, M.C.; Torre, L.; Puglia, D. Effect of Almond Shell Waste on Physicochemical Properties of Polyester-Based Biocomposites. Polymers 2020, 12, 835. [Google Scholar] [CrossRef]
- Bruna, J.E.; Castillo, M.; López De Dicastillo, C.; Muñoz-Shugulí, C.; Lira, M.; Guarda, A.; Rodríguez-Mercado, F.J.; Galotto, M.J. Development of Active Biocomposite Films Based on Poly(Lactic Acid) and Wine By-product: Effect of Grape Pomace Content and Extrusion Temperature. J. Appl. Polym. Sci. 2023, 140, e54425. [Google Scholar] [CrossRef]
- Picard, M.C.; Rodriguez-Uribe, A.; Thimmanagari, M.; Misra, M.; Mohanty, A.K. Sustainable Biocomposites from Poly(Butylene Succinate) and Apple Pomace: A Study on Compatibilization Performance. Waste Biomass Valorization 2020, 11, 3775–3787. [Google Scholar] [CrossRef]
- Aliotta, L.; Vannozzi, A.; Bonacchi, D.; Coltelli, M.-B.; Lazzeri, A. Analysis, Development, and Scaling-Up of Poly(Lactic Acid) (PLA) Biocomposites with Hazelnuts Shell Powder (HSP). Polymers 2021, 13, 4080. [Google Scholar] [CrossRef] [PubMed]
- Carnaval, L.D.S.C.; Jaiswal, A.K.; Jaiswal, S. Agro-Food Waste Valorization for Sustainable Bio-Based Packaging. J. Compos. Sci. 2024, 8, 41. [Google Scholar] [CrossRef]
- Fragassa, C.; Vannucchi De Camargo, F.; Santulli, C. Sustainable Biocomposites: Harnessing the Potential of Waste Seed-Based Fillers in Eco-Friendly Materials. Sustainability 2024, 16, 1526. [Google Scholar] [CrossRef]
- Sathish Kumar, R.K.; Sasikumar, R.; Dhilipkumar, T. Exploiting Agro-Waste for Cleaner Production: A Review Focusing on Biofuel Generation, Bio-Composite Production, and Environmental Considerations. J. Clean. Prod. 2024, 435, 140536. [Google Scholar] [CrossRef]
- Râpă, M.; Darie-Niță, R.N.; Coman, G. Valorization of Fruit and Vegetable Waste into Sustainable and Value-Added Materials. Waste 2024, 2, 258–278. [Google Scholar] [CrossRef]
- Kumar Gupta, R.; Ae Ali, E.; Abd El Gawad, F.; Mecheal Daood, V.; Sabry, H.; Karunanithi, S.; Prakash Srivastav, P. Valorization of Fruits and Vegetables Waste Byproducts for Development of Sustainable Food Packaging Applications. Waste Manag. Bull. 2024, 2, 21–40. [Google Scholar] [CrossRef]
- Hayat, K.; Hussain, S.; Abbas, S.; Farooq, U.; Ding, B.; Xia, S.; Jia, C.; Zhang, X.; Xia, W. Optimized Microwave-Assisted Extraction of Phenolic Acids from Citrus Mandarin Peels and Evaluation of Antioxidant Activity in Vitro. Sep. Purif. Technol. 2009, 70, 63–70. [Google Scholar] [CrossRef]
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting Citrus Wastes into Value-Added Products: Economic and Environmently Friendly Approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef]
- Titone, V.; Mistretta, M.C.; Botta, L.; La Mantia, F.P. Toward the Decarbonization of Plastic: Monopolymer Blend of Virgin and Recycled Bio-Based, Biodegradable Polymer. Polymers 2022, 14, 5362. [Google Scholar] [CrossRef]
- EU Rules on Packaging and Packaging Waste, Including Design and Waste Management. Available online: https://Environment.Ec.Europa.Eu/Topics/Waste-and-Recycling/Packaging-Waste_en (accessed on 5 November 2024).
- Ciaculli Late Season Mandarin. Available online: https://www.fondazioneslowfood.com/en/slow-food-presidia/ciaculli-late-winter-mandarino/ (accessed on 2 March 2023).
- Titone, V.; Correnti, A.; La Mantia, F.P. Effect of Moisture Content on the Processing and Mechanical Properties of a Biodegradable Polyester. Polymers 2021, 13, 1616. [Google Scholar] [CrossRef] [PubMed]
- ASTM Subcommittee D20 10 on Mechanical Properties Standard Test Method for Tensile Properties of Plastics; American Society for Testing and Materials: West Conshohocken, PA, USA, 1998.
- Solomon, O.F.; Ciutǎ, I.Z. Détermination de La Viscosité Intrinsèque de Solutions de Polymères Par Une Simple Détermination de La Viscosité. J. Appl. Polym. Sci. 1962, 6, 683–686. [Google Scholar] [CrossRef]
- Meng, Q.; Heuzey, M.-C.; Carreau, P.J. Control of Thermal Degradation of Polylactide/Clay Nanocomposites during Melt Processing by Chain Extension Reaction. Polym. Degrad. Stab. 2012, 97, 2010–2020. [Google Scholar] [CrossRef]
- De Andrade, M.F.; Filho, L.E.P.T.D.M.; Silva, I.D.D.L.; Lima, J.C.D.C.; De Carvalho, L.H.; De Almeida, Y.M.B.; Vinhas, G.M. Influence of Gamma Radiation on the Properties of Biodegradable PBAT—Poly (Butylene Adipate Co-terephthalate) Active Films with Orange Essential Oil. Macromol. Symp. 2020, 394, 2000057. [Google Scholar] [CrossRef]
- Ornaghi, H.L.; Bolner, A.S.; Fiorio, R.; Zattera, A.J.; Amico, S.C. Mechanical and Dynamic Mechanical Analysis of Hybrid Composites Molded by Resin Transfer Molding. J. Appl. Polym. Sci. 2010, 118, 887–896. [Google Scholar] [CrossRef]
- Guo, J.; Chen, X.; Wang, J.; He, Y.; Xie, H.; Zheng, Q. The Influence of Compatibility on the Structure and Properties of PLA/Lignin Biocomposites by Chemical Modification. Polymers 2019, 12, 56. [Google Scholar] [CrossRef]
- Åkesson, D.; Vrignaud, T.; Tissot, C.; Skrifvars, M. Mechanical Recycling of PLA Filled with a High Level of Cellulose Fibres. J. Polym. Environ. 2016, 24, 185–195. [Google Scholar] [CrossRef]
- Balart, J.F.; García-Sanoguera, D.; Balart, R.; Boronat, T.; Sánchez-Nacher, L. Manufacturing and Properties of Biobased Thermoplastic Composites from Poly(Lactid Acid) and Hazelnut Shell Wastes. Polym. Compos. 2018, 39, 848–857. [Google Scholar] [CrossRef]
- Salazar-Cruz, B.A.; Chávez-Cinco, M.Y.; Morales-Cepeda, A.B.; Ramos-Galván, C.E.; Rivera-Armenta, J.L. Evaluation of Thermal Properties of Composites Prepared from Pistachio Shell Particles Treated Chemically and Polypropylene. Molecules 2022, 27, 426. [Google Scholar] [CrossRef]
- García-García, D.; Carbonell, A.; Samper, M.D.; García-Sanoguera, D.; Balart, R. Green Composites Based on Polypropylene Matrix and Hydrophobized Spend Coffee Ground (SCG) Powder. Compos. Part B Eng. 2015, 78, 256–265. [Google Scholar] [CrossRef]
- Herschel, W.H.; Bulkley, R. Konsistenzmessungen von Gummi-Benzollösungen. Kolloid-Z 1926, 39, 291–300. [Google Scholar] [CrossRef]
- Botta, L.; Titone, V.; Mistretta, M.C.; La Mantia, F.P.; Modica, A.; Bruno, M.; Sottile, F.; Lopresti, F. PBAT Based Composites Reinforced with Microcrystalline Cellulose Obtained from Softwood Almond Shells. Polymers 2021, 13, 2643. [Google Scholar] [CrossRef] [PubMed]
- Chabrat, E.; Abdillahi, H.; Rouilly, A.; Rigal, L. Influence of Citric Acid and Water on Thermoplastic Wheat Flour/Poly(Lactic Acid) Blends. I: Thermal, Mechanical and Morphological Properties. Ind. Crops Prod. 2012, 37, 238–246. [Google Scholar] [CrossRef]
- Scaffaro, R.; Maio, A.; Gulino, E.F.; Megna, B. Structure-Property Relationship of PLA-Opuntia Ficus Indica Biocomposites. Compos. Part B Eng. 2019, 167, 199–206. [Google Scholar] [CrossRef]
- Malainine, M.E.; Mahrouz, M.; Dufresne, A. Lignocellulosic Flour from Cladodes of Opuntia Ficus-indica Reinforced Poly(Propylene) Composites. Macromol. Mater. Eng. 2004, 289, 855–863. [Google Scholar] [CrossRef]
- Borchani, K.E.; Carrot, C.; Jaziri, M. Rheological Behavior of Short Alfa Fibers Reinforced Mater-Bi® Biocomposites. Polym. Test. 2019, 77, 105895. [Google Scholar] [CrossRef]
- Bek, M.; Gonzalez-Gutierrez, J.; Kukla, C.; Pušnik Črešnar, K.; Maroh, B.; Slemenik Perše, L. Rheological Behaviour of Highly Filled Materials for Injection Moulding and Additive Manufacturing: Effect of Particle Material and Loading. Appl. Sci. 2020, 10, 7993. [Google Scholar] [CrossRef]
- Titone, V.; La Mantia, F.P.; Botta, L. Recyclability of a Bio-Based Biocomposite under Different Reprocessing Conditions. J. Mater. Sci. 2023, 58, 17459–17469. [Google Scholar] [CrossRef]
Sample Code | C |
---|---|
BF/MPP 10% | 0.958 |
BF/MPP 20% | 0.918 |
Sample Code | Tglass, °C | Tmelt, °C | , g/J |
---|---|---|---|
BF | 1.1 | 1.2 | 0.4 |
BF/MPP 10% | 0.8 | 1.6 | 0.7 |
BF/MPP 20% | 0.6 | 1.8 | 1.2 |
Sample Code | E, MPa | TS, MPa | EB, % |
---|---|---|---|
BF | 7.2 a | 1.2 a | 21 a |
BF/MPP 10% | 9.7 b | 0.8 b | 3.4 b |
BF/MPP 20% | 12 b | 0.7 c | 1.1 c |
Property | PLA | PLA/MPP 10% | PBAT | PBAT/MPP 10% |
---|---|---|---|---|
, dL/g | 0.03 | 0.01 | 0.02 | 0.01 |
Mw, Da | 105 | 104 | 104 | 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Titone, V.; Mistretta, M.C.; Botta, L. Adding Mandarin Peel Waste to a Biodegradable Polymeric Matrix: Reinforcement or Degradation Effect? Polymers 2024, 16, 3172. https://doi.org/10.3390/polym16223172
Titone V, Mistretta MC, Botta L. Adding Mandarin Peel Waste to a Biodegradable Polymeric Matrix: Reinforcement or Degradation Effect? Polymers. 2024; 16(22):3172. https://doi.org/10.3390/polym16223172
Chicago/Turabian StyleTitone, Vincenzo, Maria Chiara Mistretta, and Luigi Botta. 2024. "Adding Mandarin Peel Waste to a Biodegradable Polymeric Matrix: Reinforcement or Degradation Effect?" Polymers 16, no. 22: 3172. https://doi.org/10.3390/polym16223172
APA StyleTitone, V., Mistretta, M. C., & Botta, L. (2024). Adding Mandarin Peel Waste to a Biodegradable Polymeric Matrix: Reinforcement or Degradation Effect? Polymers, 16(22), 3172. https://doi.org/10.3390/polym16223172