Biodegradable Food Packaging Films Using a Combination of Hemicellulose and Cellulose Derivatives †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Hemicellulose B (HB)
2.3. Preparation of HB/MC 90/10 and HB/CMC 60/40 Films
2.4. Film Characterization
2.4.1. Physical Attributes
2.4.2. Colorimetry
2.4.3. Film Thickness and Moisture
2.5. Physiochemical Properties of Films
2.5.1. Oxygen Transmission
2.5.2. Water Vapor Permeability
2.6. Mechanical Properties
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physical Attributes
3.2. Film Color
3.3. Film Thickness and Moisture Content
3.4. Physiochemical Properties of Films
3.4.1. Oxygen Transmission
3.4.2. Water Vapor Permeability (WVP)
3.4.3. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plastics Europe. Plastics—The Facts 2019. European Association of Plastics Recycling & Recovery Oranganisations (EPRO). Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2019 (accessed on 17 October 2019).
- Aryan, Y.; Yadav, P.; Samadder, S.R. Life Cycle Assessment of the existing and proposed plastic waste management options in India: A case study. J. Clean. Prod. 2019, 211, 1268–1283. [Google Scholar] [CrossRef]
- Mangaraj, S.; Yadav, A.; Bal, L.M.; Dash, S.K.; Mahanti, N.K. Application of biodegradable polymers in food packaging industry: A comprehensive review. J. Packag. Technol. Res. 2019, 3, 77–96. [Google Scholar] [CrossRef]
- Astner, A.F.; Hayes, D.G.; O’Neill, H.; Evans, B.R.; Pingali, S.V.; Urban, V.S.; Young, T.M. Mechanical formation of micro and nano-plastic materials for environmental studies in agricultural ecosystems. Sci. Total. Environ. 2019, 685, 1097–1106. [Google Scholar] [CrossRef]
- Allen, D.; Allen, S.; Abbasi, S.; Baker, A.; Bergmann, M.; Brahney, J.; Butler, T.; Duce, R.A.; Eckhardt, S.; Evangeliou, N.; et al. Microplastics and nanoplastics in the marine-atmosphere environment. Nat. Rev. Earth. Environ. 2022, 3, 393–405. [Google Scholar] [CrossRef]
- Li, W.; Wufuer, R.; Duo, J.; Wang, S.; Luo, Y.; Zhang, D.; Pan, X. Microplastics in agricultural soils: Extraction and characterization after different periods of polythene film mulching in an arid region. Sci. Total. Environ. 2020, 749, 141420. [Google Scholar] [CrossRef]
- Zhu, K.; Jia, H.; Sun, Y.; Dai, Y.; Zhang, C.; Guo, X.; Wang, T.; Zhu, L. Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species. Water Res. 2020, 173, 115564. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Z.; Chen, Y.; Yang, F.; Yao, W.; Xie, Y. Microplastics and nanoplastics: Emergingcontaminants in food. J. Agric. Food Chem. 2021, 69, 10450–10468. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, Q.; Jia, W.; Yan, C.; Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef]
- Federation of Indian Chambers of Commerce & Industry (FICCI). Knowledge Paper on New Horizons for Indian Plastics Processing Industry. Available online: https://ficci.in/public/storage/SPDocument/20512/Kowledge-charu.pdf (accessed on 8 December 2014).
- Foolmaun, R.K.; Ramjeeawon, T. Disposal of post-consumer polyethylene terephthalate (PET) bottles: Comparison of five disposal alternatives in the small island state of Mauritius using a life cycle assessment tool. Environ. Technol. 2012, 33, 563–572. [Google Scholar] [CrossRef]
- Luckachan, G.E.; Pillai, C.K.S. Biodegradable polymers—A review on recent trends and emerging perspectives. J. Polym. Environ. 2011, 19, 637–676. [Google Scholar] [CrossRef]
- Ivonkovic, A.; Zeljko, K.; Talic, S.; Lasic, M. Biodegradable packaging in the food industry. J. Food Saf. Food Qual. 2017, 68, 23–38. [Google Scholar] [CrossRef]
- van den Oever, M.; Molenveld, K.; van der Zee, M.; Bos, H. Bio-Based and Biodegradable Plastics—Facts and Figures: Focus on Food Packaging in the Netherlands; Report No. 1722; Wageningen Food & Biobased Research: Wageningen, The Netherlands, 2017; p. 65. Available online: https://edepot.wur.nl/408350 (accessed on 1 April 2017).
- Ahvenainen, R. Novel Food Packaging Techniques; Ahvenainen, R., Ed.; CRC Press LLC: Boca Raton, FL, USA, 2003. [Google Scholar]
- Shah, Y.A.; Bhatia, S.; Al-Harrasi, A.; Khan, T.S. Advancements in the biopolymer films for food packaging applications: A short review. Biotechnol. Sustain. Mater. 2024, 1, 2. [Google Scholar] [CrossRef]
- Jahangiri, F.; Mohanty, A.K.; Misra, M. Sustainable biodegradable coatings for food packaging: Challenges and opportunities. Green Chem. 2024, 26, 4934–4974. [Google Scholar] [CrossRef]
- Wanjuu, C.W. Biodegradable Cellulose Films as Alternatives to Plastics. Master’s Thesis, South Dekota State University, Brookings, SD, USA, 2020. [Google Scholar]
- Bhattarai, S. Preparation and Characterization of Cellulose-Based Biodegradable Films from Switchgrass and Spent Coffee Grounds. Master’s Thesis, South Dakota State University, Brookings, SD, USA, 2022. [Google Scholar]
- Jin, T.; Gurtler, J.B. Inactivation of Salmonella on tomato stem scars by edible chitosan and organic acid coatings. J. Food Prot. 2012, 75, 1368–1372. [Google Scholar] [CrossRef]
- Jin, T.Z.; Liu, L.S. Roles of green polymer materials in active packaging. In Innovative Uses of Agricultural Products and Byproducts; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2020; Volume 1347, pp. 83–107. [Google Scholar]
- Paudel, S.; Regmi, S.; Janaswamy, S. Effect of glycerol and sorbitol on cellulose-based biodegradable films. Food Packag. Shelf Life 2023, 37, 101090. [Google Scholar] [CrossRef]
- Ahmed, S.; Janaswamy, S. Strong and biodegradable films from avocado peel fiber. Ind. Crops Prod. 2023, 201, 116926. [Google Scholar] [CrossRef]
- Scaffaro, R.; Maio, A.; Gammino, M. Hybrid biocomposites based on polylactic acid and natural fillers from Chamaerops humilis dwarf palm and Posidonia oceanica leaves. Adv. Compos. Hybrid Mater. 2022, 5, 1988–2001. [Google Scholar] [CrossRef]
- Xiong, J.; Hu, Q.; Wu, J.; Jia, Z.; Ge, S.; Cao, Y.; Zhou, J.; Wang, Y.; Yan, J.; Xie, L.; et al. Structurally stable electrospun nanofibrous cellulose acetate/chitosan biocomposite membranes for the removal of chromium ions from the polluted water. Adv. Compos. Hybrid Mater. 2023, 6, 99. [Google Scholar] [CrossRef]
- Pang, J.; Wu, M.; Zhang, Q.; Tan, X.; Xu, F.; Zhang, X.; Sun, R. Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid. Carbohydr. Polym. 2015, 121, 71–78. [Google Scholar] [CrossRef]
- Zhang, P.; Whistler, R.L. Mechanical properties and water vapor permeability of thin film from corn hull arabinoxylan. J. Appl. Polym. Sci. 2004, 93, 2896–2902. [Google Scholar] [CrossRef]
- Ahmad, N.; Tayyeb, D.; Ali, I.; Alruwaili, N.K.; Ahmad, W.; ur Rehman, A.; Khan, A.H.; Iqbal, M.S. Development and Characterization of Hemicellulose-Based Films for Antibacterial Wound-Dressing Application. Polymers 2020, 12, 548. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sun, H.; Yang, B.; Weng, Y. Hemicellulose-based film: Potential green films for food packaging. Polymers 2020, 12, 1775. [Google Scholar] [CrossRef] [PubMed]
- Bourbon, A.I.; Costa, M.J.; Maciel, L.C.; Pastrana, L.; Vicente, A.A.; Cerqueira, M.A. Active carboxymethylcellulose-based edible films: Influence of free and encapsulated curcumin on films’ properties. Foods 2021, 10, 1512. [Google Scholar] [CrossRef]
- Yao, Y.; Sun, Z.; Li, X.; Tang, Z.; Li, X.; Morrell, J.J.; Liu, Y.; Li, C.; Luo, Z. Effects of raw material source on the properties of CMC composite films. Polymers 2021, 14, 32. [Google Scholar] [CrossRef]
- Rahman, M.S.; Hasan, M.S.; Nitai, A.S.; Nam, S.; Karmakar, A.K.; Ahsan, M.S.; Shiddiky, M.J.A.; Ahmed, M.B. Recent developments of carboxymethyl cellulose. Polymers 2021, 13, 1345. [Google Scholar] [CrossRef]
- Dürig, T.; Karan, K. Binders in Wet Granulation. In Handbook of Pharmaceutical Wet Granulation: Theory and Practice in a Quality by Design Paradigm; Narang, A.S., Badawy, S.I.F., Eds.; Academic Press: Cambridge, MA, USA, 2018; Chapter 9; pp. 317–349. [Google Scholar]
- Liu, G.; Shi, K.; Sun, H. Research progress in hemicellulose-based nanocomposite film as food packaging. Polymers 2023, 15, 979. [Google Scholar] [CrossRef]
- Sun, S.; Sun, S.; Cao, X.; Sun, R. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour. Technol. 2016, 199, 49–58. [Google Scholar] [CrossRef]
- Saleem, M. Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon 2022, 8, e08905. [Google Scholar] [CrossRef]
- Doner, L.W.; Hicks, K.B. Isolation of hemicellulose from corn fiber by alkaline hydrogen peroxide extraction. Cereal Chem. 1997, 74, 176–181. [Google Scholar] [CrossRef]
- Hicks, K.B.; Moreau, R.A.; Johnston, D.B.; Doner, L.W.; Fishman, M.L.; Dien, B.S. Nutraceuticals and novel food ingredients from corn milling by-products. In Proceedings of the 225th Annual Meeting of the American Chemical Society, New Orleans, LA, USA, 23–27 March 2003. [Google Scholar]
- Yadav, M.P.; Hicks, K.B.; Johnston, D.B.; Hanah, K.A.; Shukla, T.P. Bio-Based Fiber Gums (BFGs) and Processes for Producing BFGs. US94,347,88 B2, 6 September 2016. [Google Scholar]
- Yadav, M.P.; Kale, M.S.; Hicks, K.B.; Hanah, K. Isolation, characterization and the functional properties of cellulosic arabinoxylan fiber isolated from agricultural processing by-products, agricultural residues and energy crops. Food Hydrocoll. 2017, 63, 545–551. [Google Scholar] [CrossRef]
- Yadav, M.P.; Hicks, K.B.; Johnston, D.B.; Hanah, K.A.; Kale, M.S. Insoluble Biomass Gel (IBG) and Methods of Preparing. US10,595,551 B2, 24 March 2020. [Google Scholar]
- Yadav, M.P.; Hicks, K.B. Isolation, characterization and functionalities of bio-fiber gums isolated from grain processing by-products, agricultural residues and energy crops. Food Hydrocoll. 2018, 78, 120–127. [Google Scholar] [CrossRef]
- Yadav, M.P.; Hanah, K.A.; Kale, M.S. Methods of Decreasing the Viscosity of a Dietary Fiber. US10,226,063 B2, 12 March 2019. [Google Scholar]
- Stoklosa, R.J.; Latona, R.J.; Bonnaillie, L.M.; Yadav, M.P. Evaluation of arabinoxylan isolated from sorghum bran, biomass, and bagasse for film formation. Carbohydr. Polym. 2019, 213, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Amaral, P.F.F.; Ferreira, T.F.; Fontes, G.C.; Coelho, M.A.Z. Glycerol valorization: New biotechnological routes. Food Bioprod. Process. 2009, 87, 179–186. [Google Scholar] [CrossRef]
- Guo, M.; Jin, T.Z.; Yadav, M.P.; Yang, R. Antimicrobial property and microstructure of micro-emulsion edible composite films against Listeria. Int. J. Food Microbiol. 2015, 208, 58–64. [Google Scholar] [CrossRef]
- Yadav, M.P.; Strahan, G.D.; Mukhopadhyay, S.; Hotchkiss, A.T., Jr.; Hicks, K.B. Formation of corn fiber gum–milk protein conjugates and their molecular characterization. Food Hydrocoll. 2012, 26, 326–333. [Google Scholar] [CrossRef]
- Nunes, C.; Silva, M.; Farinha, D.; Sales, H.; Pontes, R.; Nunes, J. Edible coatings and future trends in active food packaging—fruits’ and traditional sausages’ shelf life increasing. Foods 2023, 12, 3308. [Google Scholar] [CrossRef] [PubMed]
- Galdeano, M.C.; Mali, S.; Grossmann, M.V.E.; Yamashita, F.; García, M.A. Effects of plasticizers on the properties of oat starch films. Mater. Sci. Eng. C 2009, 29, 532–538. [Google Scholar] [CrossRef]
- Mohammed, A.A.B.A.; Hasan, Z.; Omran, A.A.B.; Elfaghi, A.M.; Khattak, M.A.; Ilyas, R.A.; Sapuan, S.M. Effect of various plasticizers in different concentrations on physical, thermal, mechanical, and structural properties of wheat starch-based films. Polymers 2022, 15, 63. [Google Scholar] [CrossRef]
- Razavi, S.M.A.; Amini, A.M.; Zahedi, Y. Characterisation of a new biodegradable edible film based on sage seed gum: Influence of plasticiser type and concentration. Food Hydrocoll. 2015, 43, 290–298. [Google Scholar] [CrossRef]
- Jouki, M.; Khazaei, N.; Ghasemlou, M.; HadiNezhad, M. Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydr. Polym. 2013, 96, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, R.; Kalbasi-Ashtari, A.; Oromiehie, A.; Yarmand, M.-S.; Jahandideh, F. Development and characterization of a novel biodegradable edible film obtained from psyllium seed (Plantago ovata Forsk). J. Food Eng. 2012, 109, 745–751. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Khodaiyan, F.; Oromiehie, A. Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydr. Polym. 2011, 84, 477–483. [Google Scholar] [CrossRef]
- Imran, M.; El-Fahmy, S.; Revol-Junelles, A.-M.; Desobry, S. Cellulose derivative based active coatings: Effects of nisin and plasticizer on physico-chemical and antimicrobial properties of hydroxypropyl methylcellulose films. Carbohydr. Polym. 2010, 81, 219–225. [Google Scholar] [CrossRef]
- Sanyang, M.L.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Sahari, J. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (Arenga pinnata) starch for food packaging. J. Food Sci. Technol. 2016, 53, 326–336. [Google Scholar] [CrossRef]
- Sothornvit, R.; Krochta, J.M. Plasticizer effect on oxygen permeability of β-lactoglobulin films. J. Agric. Food Chem. 2000, 48, 6298–6302. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.L.; Nguyen, P.K.V.; Nguyen, H.T.; Nguyen, V.K.; Pham, T.T.H.; Nguyen, T.T. Effects of plasticizers on mechanical properties, oxygen permeability, and microstructural characteristics of HPMC/Beeswax composite film. Nano Hybrids Compos. 2021, 32, 25–34. [Google Scholar] [CrossRef]
- Donhowe, I.G.; Fennema, O. The effects of plasticizers on crystallinity, permeability, and mechanical properties of methylcellulose films. J. Food Process. Preserv. 1993, 17, 247–257. [Google Scholar] [CrossRef]
- Cinelli, P.; Schmid, M.; Bugnicourt, E.; Wildner, J.; Bazzichi, A.; Anguillesi, I.; Lazzeri, A. Whey protein layer applied on biodegradable packaging film to improve barrier properties while maintaining biodegradability. Polym. Degrad. Stab. 2014, 108, 151–157. [Google Scholar] [CrossRef]
- Virgili, T.; Pasini, M.; Guizzardi, M.; Tizro, N.; Bollani, M. Natural dyes used as organic coatings UV protecting for food packages. Coatings 2022, 12, 417. [Google Scholar] [CrossRef]
- Rezaei, M.; Motamedzadegan, A. The effect of plasticizers on mechanical properties and water vapor permeability of gelatin-based edible films containing clay nanoparticles. World J. Nano Sci. Eng. 2015, 5, 178–193. [Google Scholar] [CrossRef]
- Sobral, P.J.A.; Menegalli, F.C.; Hubinger, M.D.; Roques, M.A. Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocoll. 2001, 15, 423–432. [Google Scholar] [CrossRef]
- Vanin, F.M.; Sobral, P.J.A.; Menegalli, F.C.; Carvalho, R.A.; Habitante, A.M.Q.B. Effects of plasticizers and their concentrations on thermal and functional properties of gelatin-based films. Food Hydrocoll. 2005, 19, 899–907. [Google Scholar] [CrossRef]
- Khan, A.; Niazi, M.B.K.; Naqvi, S.R.; Farooq, W. Influence of plasticizers on mechanical and thermal properties of methyl cellulose-based edible films. J. Polym. Environ. 2018, 26, 291–300. [Google Scholar] [CrossRef]
- Huang, F.; Tian, Z.; Ma, H.; Ding, Z.; Ji, X.; Si, C.; Wang, D. Combined alkali impregnation and poly dimethyl diallyl ammonium chloride-assisted cellulase absorption for high-efficiency pretreatment of wheat straw. Adv. Compos. Hybrid Mater. 2023, 6, 230. [Google Scholar] [CrossRef]
- Fazlina, F.; Abu Hassan, N.A.; Nurul Fazita, M.R.; Leh, C.P.; Kosugi, A.; Arai, T.; Mohamad Haafiz, M.K. Exploring the Mechanical and Thermal Properties of Hemicelluloses Film Fabricated from Oil Palm Trunk. In Proceedings of the 19th Asian Workshop on Polymer Processing (AWPP 2022); Chow, W.S., Jaafar, M., Mohamad Ariff, Z., Shuib, R.K., Ahmad Zubir, S., Eds.; Springer Proceedings in Materials: Singapore, 2023; 24. [Google Scholar] [CrossRef]
- Mokwena, K.K.; Tang, J. Ethylene Vinyl Alcohol: A Review of Barrier Properties for Packaging Shelf Stable Foods. Crit. Rev. Food Sci. Nutr. 2012, 52, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Feng, E.; Song, J. Renaissance of Aliphatic Polycarbonates: New Techniques and Biomedical Applications. J. Polym. Sci. 2014, 131, 39822. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roldi-Oliveira, M.; Diniz, L.M.; Elias, A.L.; Luz, S.M. Hemicellulose Films from Curaua Fibers (Ananas erectifolius): Extraction and Thermal and Mechanical Characterization. Polymers 2022, 14, 2999. [Google Scholar] [CrossRef]
- Azeredo, H.M.C.; Kontou-Vrettou, C.; Moates, G.K.; Wellner, N.; Cross, K.; Pereira, P.H.F.; Waldron, K.W. Wheat straw hemicellulose films as affected by citric acid. Food Hydrocoll. 2015, 50, 1–6. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, B.; Wang, Z.; Ni, Y. Mechanical and water vapor barrier properties of bagasse hemicellulose-based films. BioResource 2016, 11, 4226–4236. [Google Scholar] [CrossRef]
- Weerasooriya, P.R.D.; Nadhilah, R.; Owolabi, F.A.T.; Hashim, R.; Abdul Khalil, H.P.S.; Syahariza, Z.A.; Hussin, M.H.; Hiziroglu, S.; Haafiz, M.K.M. Exploring the properties of hemicellulose based carboxymethyl cellulose film as a potential green packaging. Curr. Res. Green Sustain. Chem. 2020, 1–2, 20–28. [Google Scholar] [CrossRef]
- da Silva Braga, R.; Poletto, M. Preparation and characterization of hemicellulose films from sugarcane bagasse. Materials 2020, 13, 941. [Google Scholar] [CrossRef] [PubMed]
- Wypych, G. Handbook of Plasticizers; ChemTec Publishing: Toronto, ON, Canada, 2004; p. 687. [Google Scholar]
- Bhattarai, S.; Janaswamy, S. Biodegradable, UV-blocking, and antioxidant films from lignocellulosic fibers of spent coffee grounds. Int. J. Biol. Macromol. 2023, 253, 126798. [Google Scholar] [CrossRef]
- Jin, T.Z.; Yadav, M.P.; Qi, P.X. Antimicrobial and physiochemical properties of films and coatings prepared from bio-fiber gum and whey protein isolate conjugates. Food Control 2023, 148, 109666. [Google Scholar] [CrossRef]
- Gupta, V.; Biswas, D.; Roy, S. A comprehensive review of biodegradable polymer-based films and coatings and their food packaging applications. Materials 2022, 15, 5899. [Google Scholar] [CrossRef]
- Gu, J.-D. Biodegradability of plastics: The issues, recent advances, and future perspectives. Environ. Sci. Pollut. Res. 2021, 28, 1278–1282. [Google Scholar] [CrossRef]
- Dirpan, A.; Ainani, A.F.; Djalal, M. A review on biopolymer-based biodegradable film for food packaging: Trends over the last decade and future research. Polymers 2023, 15, 2781. [Google Scholar] [CrossRef] [PubMed]
- Goel, P.; Arora, R.; Haleem, R.; Shukla, S.K. Advances in bio-degradable polymer composites-based packaging material. Chem. Afr. 2023, 6, 95–115. [Google Scholar] [CrossRef]
- Kumari, S.; Debbarma, R.; Nasrin, N.; Khan, T.; Taj, S.; Bhuyan, T. Recent advances in packaging materials for food products. Food Bioeng. 2024, 3, 236–249. [Google Scholar] [CrossRef]
- Kaur, R.; Chauhan, I. Biodegradable plastics: Mechanisms of degradation and generated bio microplastic impact on soil health. Biodegradation 2024, 35, 863–892. [Google Scholar] [CrossRef]
- Razza, F.; Cerutti, A.K. Life cycle and environmental cycle assessment of biodegradable plastics for agriculture. In Soil Degradable Bioplastics for a Sustainable Modern Agriculture; Malinconico, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 169–185. [Google Scholar]
- de Sadeleer, I.; Woodhouse, A. Environmental impact of biodegradable and non-biodegradable agricultural mulch film: A case study for Nordic conditions. Int. J. Life Cycle Assess. 2024, 29, 275–290. [Google Scholar] [CrossRef]
- Chen, T.; Pang, Z.; He, S.; Li, Y.; Shrestha, S.; Little, J.M.; Yang, H.; Chung, T.-C.; Sun, J.; Whitley, H.C.; et al. Machine intelligence-accelerated discovery of all-natural plastic substitutes. Nat. Nanotechnol. 2024, 19, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.K. Popular Science Why Seaweed Is a Natural Fit for Replacing Certain Plastics. Available online: https://www.popsci.com/environment/seaweed-bioplastic (accessed on 20 March 2022).
- Kumar, L.; Ramakanth, D.; Akhila, K.; Gaikwad, K.K. Edible films and coatings for food packaging applications: A review. Environ. Chem. Lett. 2022, 20, 875–900. [Google Scholar] [CrossRef]
Film Composition | L* | a* | b* | Whiteness Index | Yellowness Index | Total Color Difference (TCD) |
---|---|---|---|---|---|---|
HB/MC 90/10 | 86.29 ± 0.16 | 2.34 ± 0.01 | 15.60 ± 0.02 | 79.10 ± 0.91 | 25.82 ± 1.01 | 92.70 ± 1.02 |
HB/MC + 15% GLY | 85.36 ± 0.39 a | 2.59 ± 0.02 a | 17.30 ± 0.04 a | 77.19 ± 0.02 a | 28.96 ± 0.92 a | 112.35 ± 1.07 a |
HB/MC + 20% GLY | 85.67 ± 0.21 a | 2.65 ± 0.01 a | 17.99 ± 0.16 a | 76.85 ± 0.44 ba | 30.00 ± 0.23 a | 107.55 ± 1.04 a |
HB/MC + 15% PEG 1000 | 84.73 ± 0.32 b | 2.96 ± 0.01 | 18.37 ± 0.05 | 75.92 ± 0.43 a | 30.98 ± 0.34 a | 127.67 ± 1.11 |
HB/MC + 20% PEG 1000 | 84.38 ± 0.42 b | 2.65 ± 0.02 a | 17.99 ± 0.11 a | 76.03 ± 0.33 a | 30.46 ± 0.11 a | 132.91 ± 1.21 |
HB/CMC 60/40 | 86.09 ± 0.09 | 1.181 ± 0.05 | 11.65 ± 0.19 A | 81.77 ± 1.08 A | 19.33 ± 1.15 A | 14.99 ± 0.07 |
HB/CMC + 15% GLY | 87.68 ± 0.17 A | 1.49 ± 0.021 | 11.65 ± 0.15 A | 82.98 ± 1.12 A | 18.98 ± 1.2 A | 64.10 ± 1.32 A |
HB/CMC + 20% GLY | 88.00 ± 0.18 | 1.56 ± 0.031 A | 11.72 ± 0.18 A | 83.15 ± 1.22 A | 19.03 ± 1.18 A | 59.91 ± 0.92 |
HB/CMC + 15% PEG 300 | 87.66 ± 0.20 A | 1.51 ± 0.032 A | 11.75 ± 0.11 A | 82.89 ± 1.31 A | 19.15 ± 1.22 A | 64.59 ± 0.33 A |
HB/CMC + 20% PEG 300 | 87.41 ± 0.26 A | 1.53 ± 0.032 A | 11.95 ± 0.12 | 82.57 ± 1.11 A | 19.54 ± 1.31 A | 68.58 ± 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, S.A.; Yadav, M.P.; Sharma, B.K.; Qi, P.X.; Jin, T.Z. Biodegradable Food Packaging Films Using a Combination of Hemicellulose and Cellulose Derivatives. Polymers 2024, 16, 3171. https://doi.org/10.3390/polym16223171
Hussain SA, Yadav MP, Sharma BK, Qi PX, Jin TZ. Biodegradable Food Packaging Films Using a Combination of Hemicellulose and Cellulose Derivatives. Polymers. 2024; 16(22):3171. https://doi.org/10.3390/polym16223171
Chicago/Turabian StyleHussain, Syed Ammar, Madhav P. Yadav, Brajendra K. Sharma, Phoebe X. Qi, and Tony Z. Jin. 2024. "Biodegradable Food Packaging Films Using a Combination of Hemicellulose and Cellulose Derivatives" Polymers 16, no. 22: 3171. https://doi.org/10.3390/polym16223171
APA StyleHussain, S. A., Yadav, M. P., Sharma, B. K., Qi, P. X., & Jin, T. Z. (2024). Biodegradable Food Packaging Films Using a Combination of Hemicellulose and Cellulose Derivatives. Polymers, 16(22), 3171. https://doi.org/10.3390/polym16223171