The Use of Rubber-Polymer Composites in Bitumen Modification for the Disposal of Rubber and Polymer Waste
Abstract
:1. Introduction
2. Materials and Methods
- Crushed rubber from worn rubber tires 70–94%;
- Thermoplastic polymer (waste), e.g., polypropylene or polyethylene 1–23%;
- Additives 5–12%.
- Heating of road bitumen in an oven to 140 °C degrees;
- The ELTC modifier is added (in parts) to 20% of the road bitumen mass and mixed at a speed of 6000 rpm and 170–180 °C degrees;
- Mixing from 15 to 90 min;
3. Results and Discussion
- (1)
- ELTC is dispersed in bitumen/asphalt in the form of roundish particles forming non-continuous phase.
- (2)
- Some poorly dispersed agglomerated ELTC particles also are observed within bitumen/asphalt matrix.
- (3)
- Increased mixing/dispergation time reduce the formation of agglomerates.
- (4)
- The largest particle images observed during investigation are around 200 µm.
- (5)
- Finely, dispersed ELTC particles distributed in bitumen homogeneously can have a positive effect on storage stability.
- (6)
- Coarser undispersed particles are unevenly distributed in the system and influence storage stability.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- WBCSD & The Tire Industry Project, Global ELT Management-a Global State of Knowledge on Regulation, Management Systems, Impacts of Recovery and Technologies. 2019. Available online: https://docs.wbcsd.org/2019/12/Global_ELT_Management–A_global_state_of_knowledge_on_regulation_management_systems_impacts_of_recovery_and_technologies.pdf (accessed on 1 December 2019).
- Grammelis, P.; Margaritis, N.; Dallas, P.; Rakopoulos, D.; Mavrias, G. A review on management of end of life tires (ELTs) and alternative uses of textile fibers. Energies 2021, 14, 571. [Google Scholar] [CrossRef]
- Rahimi, A.R.; García, J.M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 46. [Google Scholar] [CrossRef]
- Gondal, M.A.; Siddiqui, M.N. Identification of different kinds of plastics using laser-induced breakdown spectroscopy for waste management. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2007, 42, 1989–1997. [Google Scholar] [CrossRef]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Q.; Wu, X.; Zhang, Y. Asphalt modified by thermoplastic elastomer based on recycled rubber. Constr. Build. Mater. 2015, 93, 678–684. [Google Scholar] [CrossRef]
- Wang, T.; Xiao, F.; Zhu, X.; Huang, B.; Wang, J.; Amirkhanian, S. Energy consumption and environmental impact of rubberized asphalt pavement. J. Clean. Prod. 2018, 180, 139–158. [Google Scholar] [CrossRef]
- Imanbayev, Y.; Bussurmanova, A.; Ongarbayev, Y.; Serikbayeva, A.; Sydykov, S.; Tabylganov, M.; Akkenzheyeva, A.; Izteleu, N.; Mussabekova, Z.; Amangeldin, D.; et al. Modification of Bitumen with Recycled PET Plastics from Waste Materials. Polymers 2022, 14, 4719. [Google Scholar] [CrossRef]
- Akkenzheyeva, A.; Haritonovs, V.; Bussurmanova, A.; Merijs-Meri, R.; Imanbayev, Y.; Riekstins, A.; Serikbayeva, A.; Sydykov, S.; Aimova, M.; Mustapayeva, G. Study of the Viscoelastic and Rheological Properties of Rubber-Bitumen Binders Obtained from Rubber Waste. Polymers 2024, 16, 114. [Google Scholar] [CrossRef]
- Yildirim, Y. Polymer modified asphalt binders. Constr. Build. Mater. 2007, 21, 66–72. [Google Scholar] [CrossRef]
- Brasileiro, L.; Moreno-Navarro, F.; Tauste-Martínez, R.; Matos, J.; Rubio-Gámez, M.d.C. Reclaimed polymers as asphalt binder modifiers for more sustainable roads: A review. Sustainability 2019, 11, 646. [Google Scholar] [CrossRef]
- Li, J.; Xing, X.; Hou, X.; Wang, T.; Wang, J.; Xiao, F. Determination of SARA fractions in asphalts by mid-infrared spectroscopy and multivariate calibration. Measurement 2022, 198, 111361. [Google Scholar] [CrossRef]
- Wang, T.; Xiao, F.; Amirkhanian, S.; Huang, W.; Zheng, M. A review on low temperature performances of rubberized asphalt materials. Constr. Build. Mater. 2017, 145, 483–505. [Google Scholar] [CrossRef]
- Zanetti, M.C.; Fiore, S.; Ruffino, B.; Santagata, E.; Dalmazzo, D.; Lanotte, M. Characterization of crumb rubber from end-of-life tyres for paving applications. Waste Manag. 2015, 45, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Nejad, F.M.; Aghajani, P.; Modarres, A.; Firoozifar, H. Investigating the properties of crumb rubber modified bitumen using classic and SHRP testing methods. Constr. Build. Mater. 2012, 26, 481–489. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, Z.; Yu, T.; Liu, S.; Jiang, H. Experimental evaluation of crumb rubber and polyethylene integrated modified asphalt mixture upon related properties. Road Mater. Pavement Des. 2019, 20, 1413–1428. [Google Scholar] [CrossRef]
- Sienkiewicz, M.; Borzędowska-Labuda, K.; Wojtkiewicz, A.; Janik, H. Development of methods improving storage stability of bitumen modified with ground tire rubber: A review. Fuel Process. Technol. 2017, 159, 272–279. [Google Scholar] [CrossRef]
- Navarro, F.J.; Partal, P.; Martínez-Boza, F.; Gallegos, C. Thermo-rheological behaviour and storage stability of ground tire rubber-modified bitumens. Fuel 2004, 83, 2041–2049. [Google Scholar] [CrossRef]
- Rodríguez-Alloza, A.M.; Gallego, J. Mechanical performance of asphalt rubber mixtures with warm mix asphalt additives. Mater. Struct. 2017, 50, 147. [Google Scholar] [CrossRef]
- Liang, M.; Xin, X.; Fan, W.; Sun, H.; Yao, Y.; Xing, B. Viscous properties, storage stability and their relationships with microstructure of tire scrap rubber modified asphalt. Constr. Build. Mater. 2015, 74, 124–131. [Google Scholar] [CrossRef]
- Hassan, M.M.; Aly, R.O.; Abdel Aal, S.E.; El-Masry, A.M.; Fathy, E.S. Mechanochemical devulcanization and gamma irradiation of devulcanized waste rubber/high density polyethylene thermoplastic elastomer. J. Ind. Eng. Chem. 2013, 19, 1722–1729. [Google Scholar] [CrossRef]
- Qian, C.; Fan, W.; Liang, M.; He, Y.; Ren, S.; Lv, X.; Nan, G.; Luo, H. Rheological properties, storage stability and morphology of CR/SBS composite modified asphalt by high-cured method. Constr. Build. Mater. 2018, 193, 312–322. [Google Scholar] [CrossRef]
- Dong, R.; Li, J.; Wang, S. Laboratory evaluation of pre-devulcanized crumb rubber–modified asphalt as a binder in hot-mix asphalt. J. Mater. Civ. Eng. 2011, 23, 1138–1144. [Google Scholar] [CrossRef]
- Xu, O.; Rangaraju, P.R.; Wang, S.; Xiao, F. Comparison of rheological properties and hot storage characteristics of asphalt binders modified with devulcanized ground tire rubber and other modifiers. Constr. Build. Mater. 2017, 154, 841–848. [Google Scholar] [CrossRef]
- Ghasemirad, A.; Asgharzadeh, S.M.; Tabatabaee, N. A comparative evaluation of crumb rubber and devulcanized rubber modified binders. Pet. Sci. Technol. 2017, 35, 1091–1096. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, J.; Jia, M.; Ban, X.; Wang, L.; Chen, L.; Huang, T.; Liu, H. Effects of polyurethane thermoplastic elastomer on properties of asphalt binder and asphalt mixture. J. Mater. Civ. Eng. 2021, 33, 04020477. [Google Scholar] [CrossRef]
- Punith, V.S.; Veeraragavan, A. Behavior of asphalt concrete mixtures with reclaimed polyethylene as additive. J. Mater. Civ. Eng. 2007, 19, 500–507. [Google Scholar] [CrossRef]
- Fang, C.Q.; Yu, R.E.; Zhang, Y.; Hu, J.B.; Zhang, M.; Mi, X.H. Combined modification of asphalt with polyethylene packaging waste and organophilic montmorillonite. Polym. Test. 2012, 31, 276–281. [Google Scholar] [CrossRef]
- Maharaj, C.; Maharaj, R.; Maynard, J. The effect of polyethylene terephthalate particle size and concentration on the properties of asphalt and bitumen as an additive. Prog. Rubber Plast. Recycl. 2015, 31, 1–23. [Google Scholar] [CrossRef]
- Moghaddam, T.B.; Soltani, M.; Karim, M.R. Evaluation of permanent deformation characteristics of unmodified and polyethylene terephthalate modified asphalt mixtures using dynamic creep test. Mater. Des. 2014, 53, 317–324. [Google Scholar] [CrossRef]
- Moghaddam, T.B.; Soltani, M.; Karim, M.R. Stiffness modulus of polyethylene terephthalate modified asphalt mixture: A statistical analysis of the laboratory testing results. Mater. Des. 2015, 68, 88–96. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, S.; Upadhyay, N. Composition based physicochemical analysis of modified bitumen by HDPE/LDPE. Orient. J. Chem. 2019, 35, 1167–1173. [Google Scholar] [CrossRef]
- Porto, M.; Caputo, P.; Loise, V.; Eskandarsefat, S.; Teltayev, B.; Rossi, C.O. Bitumen and bitumen modification: A review on latest advances. Appl. Sci. 2019, 9, 742. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, Y.; Yu, Q.; Zhou, X.; Guo, D.; Yu, R.; Zhang, M. Preparation, characterization and hot storage stability of asphalt modified by waste polyethylene packaging. J. Mater. Sci. Technol. 2013, 29, 434–438. [Google Scholar] [CrossRef]
- Kim, Y.; Park, T.S. Reinforcement of recycled foamed asphalt using short polypropylene fibers. Adv. Mater. Sci. Eng. 2013, 1, 903236. [Google Scholar] [CrossRef]
- Yan, K.Z.; Xu, H.B.; You, L.Y. Rheological properties of asphalts modified by waste tire rubber and reclaimed low density polyethylene. Constr. Build. Mater. 2015, 83, 143–149. [Google Scholar] [CrossRef]
- Fathy, E.S.; Elnaggar, M.Y.; Raslan, H.A. Thermoplastic elastomer based on waste polyethylene/waste rubber containing activated carbon black: Impact of gamma irradiation. J. Vinyl Addit. Technol. 2018, 25, E166–E173. [Google Scholar] [CrossRef]
- Wagner, M.A.; Hadian, A.; Sebastian, T.; Clemens, F.; Schweizer, T.; Rodriguez-Arbaizar, M.; Carreno-Morelli, E.; Spolenak, R. Fused filament fabrication of stainless steel structures—From binder development to sintered properties. Addit. Manuf. 2021, 49, 102472. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Giustozzi, F. The role of new compatibilizers in hybrid combinations of waste plastics and waste vehicle tyres crumb rubber-modified bitumen. In Plastic Waste for Sustainable Asphalt Roads; Woodhead Publishing: Cambridge, UK, 2022; pp. 165–178. [Google Scholar] [CrossRef]
- Mulage, K.S.; Patkar, R.N.; Deuskar, V.D.; Pundlik, S.M.; Kakade, S.D.; Gupta, M. Studies on a Novel Thermoplastic Polyurethane as a Binder for Extruded Composite Propellants. J. Energetic Mater. 2007, 25, 233–245. [Google Scholar] [CrossRef]
- Reddy, T.S.; Nair, J.K.; Satpute, R.S.; Gore, G.M.; Sikder, A.K. Rheological studies on energetic thermoplastic elastomers. J. Appl. Polym. Sci. 2010, 118, 2365–2368. [Google Scholar] [CrossRef]
- Kobykhno, I.; Didenko, A.L.; Honcharenko, D.; Vasilyeva, E.; Kudryavtsev, V.; Tolochko, O. Development thermoplastic elastomer-based fiber-metal laminate for vibration damping application. Mater. Today Proc. 2020, 30, 393–397. [Google Scholar] [CrossRef]
- Xu, P.; Zhu, Z.; Wang, Y.; Cong, P.; Li, D.; Hui, J.; Ye, M. Phase structure characterization and compatibilization mechanism of epoxy asphalt modified by thermoplastic elastomer (SBS). Constr. Build. Mater. 2022, 320, 126262. [Google Scholar] [CrossRef]
- Wilkinson, P.J.; Weaver, M.C.; Kister, G.; Gill, P.P. Styrene-Ethylene/Butylene-Styrene (SEBS) Block Copolymer Binder for Solid Propellants. Propellants Explos. Pyrotech. 2021, 47, e202100142. [Google Scholar] [CrossRef]
- Wang, S.F.; Yuan, C.H.; Deng, J.X. Crumb tire rubber and polyethylene mutually stabilized in asphalt by screw extrusion. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Haider, I.; Stefano, M.; Luca, D.; Michele, L. Recycled plastics and rubber for green roads: The case study of devulcanized tire rubber and waste plastics compounds to enhance bitumen performance. Resour. Conserv. Recycl. Adv. 2023, 18, 200157. [Google Scholar] [CrossRef]
- EN 12593:2015; Bitumen and bituminous binders—Determination of the Fraass breaking point. SIST EN: Bratislava, Slovakia, 2015.
- EN 12592:2015; Bitumen and bituminous binders—Determination of solubility. SIST EN: Nitra, Slovakia, 2015.
- EN ISO 2592:2017; Petroleum and related products Determination of flash and fire points Cleveland open cup method. International Organization for Standardization: Geneva, Switzerland, 2017.
- EN 12607-1:2015; Bitumen and bituminous binders—Determination of the resistance to hardening under influence of heat and air—Part 1: RTFOT method. SIST EN: Bratislava, Slovakia, 2014.
- EN 13398; Bitumen and bituminous binders—Determination of the elastic recovery of modified bitumen. SIST EN: Bratislava, Slovakia, 2017.
- EN 14770; Bitumen and bituminous binders—Determination of complex shear modulus and phase angle—Dynamic Shear Rheometer (DSR). SIST EN: Bratislava, Slovakia, 2012.
- Vorobyev, L.R.; Bosnik, V.B. Method of Devulcanization of Sulfur-Cured Rubber. U.S. Patent 9,982,107 B1, 29 May 2018. Available online: https://patents.google.com/patent/US9982107B1/no (accessed on 31 May 2018).
- Chavez FMarcobal, J.; Gallego, J. Laboratory evaluation of the mechanical properties of asphalt mixtures with rubber incorporated by the wet, dry, and semi-wet process. Constr. Build. Mater. 2019, 205, 164–174. [Google Scholar] [CrossRef]
- Król, J.B.; Radziszewski, P.; Kowalski, K.J.; Sarnowski, M.; Czajkowski, P. Laboratory and field investigations of polymer and crumb rubber modified bitumen. J. Civ. Eng. Archit. 2014, 8, 1327–1334. [Google Scholar] [CrossRef]
- Reyes-Ortiz, O.; Fuentes, L.; Alvarez, A. Mechanical response of asphalt mixtures modified with natural wax. In Proceedings of the Advanced Characterization of Asphalt and Concrete Materials, Geo-Hubei 2014, Yichang, China, 20–22 July 2014; pp. 58–66. [Google Scholar] [CrossRef]
- Ge, D.; Yan, K.; You, Z.; Xu, H. Modification mechanism of asphalt binder with waste tire rubber and recycled polyethylene. Constr. Build. Mater. 2016, 126, 66–76. [Google Scholar] [CrossRef]
- Ghavibazoo, A.; Abdelrahman, M. Composition analysis of crumb rubber during interaction with asphalt and effect on properties of binder. Int. J. Pavement Eng. 2013, 14, 517–530. [Google Scholar] [CrossRef]
Bitumen Properties | Normative Indicators of the Road Bitumen B 70/100 | Actual Value | Test Method |
---|---|---|---|
Penetration at 25 °C, not lower | 87 ± 5 | 87.2 | EN 1426:2015 [47] |
Softening point °C, not below | 45.8 ± 1.6 | 45.85 | EN 1427:2015 [48] |
Brittleness temperature on Fraas °C, not higher | –21 ± 3 | –21 | EN 12593:2015 [49] |
Solubility %, not less | 99.75 ± 0.1 | 99.75 | EN 12592:2015 [50] |
Flash point °C, not below | 334 ± 4 | 335 | EN 2592:2006 [51] |
Rolling Thin Film Oven Test (RTFOT) | |||
Change of Mass | −0.021 ± 0.01 | −0.0212 | EN 12607-1:2015 [52] |
Increasing in Softening Point | 7.0 ± 3.6 | 7.0 | EN 1427:2015 [48] |
Decreasing in Softening Point | 52.8 ± 1.6 | 53.25 | EN 1427:2015 [48] |
Retained Penetration | 52 ± 3 | 51.9 | EN 1426:2015 [47] |
ELTC Modifier | Onset Melting Temperature, °C | Peak Melting Temperature, °C | Offset Melting Temperature, °C | Peak Width, °C |
---|---|---|---|---|
10%PE | 67 | 126 | 136 | 69 |
20%PE | 85 | 128 | 143 | 58 |
40%PE | 94 | 131 | 146 | 52 |
PPMIX10/90 | Peak overlapping | 160 | 172 | Peak overlapping |
PPMIX20/80 | Peak overlapping | 161 | 174 | Peak overlapping |
PP30/70 | Peak overlapping | 161 | 173 | Peak overlapping |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akkenzheyeva, A.; Haritonovs, V.; Bussurmanova, A.; Merijs-Meri, R.; Imanbayev, Y.; Serikbayeva, A.; Sydykov, S.; Ayapbergenov, Y.; Jankauskas, M.; Trumpels, A.; et al. The Use of Rubber-Polymer Composites in Bitumen Modification for the Disposal of Rubber and Polymer Waste. Polymers 2024, 16, 3177. https://doi.org/10.3390/polym16223177
Akkenzheyeva A, Haritonovs V, Bussurmanova A, Merijs-Meri R, Imanbayev Y, Serikbayeva A, Sydykov S, Ayapbergenov Y, Jankauskas M, Trumpels A, et al. The Use of Rubber-Polymer Composites in Bitumen Modification for the Disposal of Rubber and Polymer Waste. Polymers. 2024; 16(22):3177. https://doi.org/10.3390/polym16223177
Chicago/Turabian StyleAkkenzheyeva, Anar, Viktors Haritonovs, Akkenzhe Bussurmanova, Remo Merijs-Meri, Yerzhan Imanbayev, Akmaral Serikbayeva, Serik Sydykov, Yerbolat Ayapbergenov, Martynas Jankauskas, Anatolijs Trumpels, and et al. 2024. "The Use of Rubber-Polymer Composites in Bitumen Modification for the Disposal of Rubber and Polymer Waste" Polymers 16, no. 22: 3177. https://doi.org/10.3390/polym16223177
APA StyleAkkenzheyeva, A., Haritonovs, V., Bussurmanova, A., Merijs-Meri, R., Imanbayev, Y., Serikbayeva, A., Sydykov, S., Ayapbergenov, Y., Jankauskas, M., Trumpels, A., Aimova, M., & Turkmenbayeva, M. (2024). The Use of Rubber-Polymer Composites in Bitumen Modification for the Disposal of Rubber and Polymer Waste. Polymers, 16(22), 3177. https://doi.org/10.3390/polym16223177