Isosorbide-Based Acrylic Pressure-Sensitive Adhesives Through UV-Cured Crosslinking with a Balance Between Adhesion and Cohesion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Synthesis of Isosorbide-5-Acrylate (IA) and Isosorbide Diacrylate Ester (IDAE)
2.4. Synthesis of the Prepolymer
2.5. Preparation of PSAs
2.6. UV-Curing
3. Results and Discussion
3.1. Polymerization of Prepolymers
3.2. Gel Fraction
3.3. Adhesion Performance of PSAs
3.4. Differential Scanning Calorimetry
3.5. Rheological Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Lin, H.; Sun, Z.; Li, H.; He, C.; Mao, D. An ion-terminated hyperbranched polymer towards multipurpose adhesive with record-high bonding strength and sensitive stress-sensing. J. Mater. Chem. A 2023, 11, 2443–2451. [Google Scholar] [CrossRef]
- Hwang, C.; Shin, S.; Ahn, D.; Paik, H.-J.; Lee, W.; Yu, Y. Realizing cross-linking-free acrylic pressure-sensitive adhesives with intensive chain entanglement through visible-light-mediated photoiniferter-reversible addition–fragmentation chain-transfer polymerization. ACS Appl. Mater. Interfaces 2023, 15, 58905–58916. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, G.I.; Pasquale, A.J.; Long, T.E. Melt synthesis and characterization of aliphatic low-Tg polyesters as pressure sensitive adhesives. J. Adhes. 2010, 86, 395–408. [Google Scholar] [CrossRef]
- Park, H.; Lim, D.; Lee, G.; Baek, M.-J.; Lee, D.W. Tailoring pressure sensitive adhesives with H6XDI-PEG diacrylate for strong adhesive strength and rapid strain recovery. Adv. Funct. Mater. 2023, 33, 2305750. [Google Scholar] [CrossRef]
- Webster, I. Recent developments in pressure-sensitive adhesives for medical applications. Int. J. Adhes. Adhes. 1997, 17, 69–73. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, T.-H.; Shim, K.-S.; Park, J.-W.; Kim, H.-J.; Kim, Y.; Jung, S. Effect of crosslinking density on adhesion performance and flexibility properties of acrylic pressure sensitive adhesives for flexible display applications. Int. J. Adhes. Adhes. 2017, 74, 137–143. [Google Scholar] [CrossRef]
- Song, H.; Cai, Y.; Nan, L.; Liu, J.; Wang, J.; Wang, X.; Liu, C.; Guo, J.; Fang, L. A rhamnose-PEG-modified dendritic polymer for long-term efficient transdermal drug delivery. ACS Appl. Mater. Interfaces 2024, 16, 9799–9815. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, Z.; Chen, M.; Wang, J.; Yu, Y. UV-curable polyurethane acrylate pressure-sensitive adhesives with high optical clarity for full lamination of TFT-LCD. ACS Appl. Polym. Mater. 2023, 5, 2051–2061. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, C.; Wang, X.; Cao, Y.; He, P.; Li, H.; Wang, L. Versatile underwater pressure sensitive adhesive: UV curing synthesis and substrate-independent adhesion. ACS Appl. Mater. Interfaces 2024, 16, 41461–41474. [Google Scholar] [CrossRef]
- Márquez, I.; Paredes, N.; Alarcia, F.; Velasco, J.I. Adhesive performance of acrylic pressure-sensitive adhesives from different preparation processes. Polymers 2021, 13, 2627. [Google Scholar] [CrossRef]
- Sengsuk, T.; Songtipya, P.; Kalkornsurapranee, E.; Johns, J.; Songtipya, L. Active bio-based pressure-sensitive adhesive based natural rubber for food antimicrobial applications: Effect of processing parameters on its adhesion properties. Polymers 2021, 13, 199. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.B.; Durfee, L.D.; Ekeland, R.A.; McVie, J.; Schalau, G.K. Recent advances in silicone pressure-sensitive adhesives. J. Adhes. Sci. Technol. 2007, 21, 605–623. [Google Scholar] [CrossRef]
- Mapari, S.; Mestry, S.; Mhaske, S.T. Developments in pressure-sensitive adhesives: A review. Polym. Bull. 2021, 78, 4075–4108. [Google Scholar] [CrossRef]
- Heinrich, L.A. Future opportunities for bio-based adhesives–advantages beyond renewability. Green Chem. 2019, 21, 1866–1888. [Google Scholar] [CrossRef]
- Bartlett, M.D.; Crosby, A.J. High capacity, easy release adhesives from renewable materials. Adv. Mater. 2014, 26, 3405–3409. [Google Scholar] [CrossRef]
- Zhu, Y.; Romain, C.; Williams, C.K. Sustainable polymers from renewable resources. Nature 2016, 540, 354–362. [Google Scholar] [CrossRef]
- Hermens, J.G.H.; Jensma, A.; Feringa, B.L. Highly efficient biobased synthesis of acrylic acid. Angew. Chem. Int. Ed. 2022, 61, e202112618. [Google Scholar] [CrossRef]
- Veith, C.; Diot-Néant, F.; Miller, S.A.; Allais, F. Synthesis and polymerization of bio-based acrylates: A review. Polym. Chem. 2020, 11, 7452–7470. [Google Scholar] [CrossRef]
- Anastas, P.T. Introduction: Green chemistry. Chem. Rev. 2007, 107, 2167–2168. [Google Scholar]
- Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Tsurkan, M.V.; Voronkina, A.; Khrunyk, Y.; Wysokowski, M.; Petrenko, I.; Ehrlich, H. Progress in chitin analytics. Carbohydr. Polym. 2021, 252, 117204. [Google Scholar] [CrossRef] [PubMed]
- Pu, G.; Dubay, M.R.; Zhang, J.; Severtson, S.J.; Houtman, C.J. Polyacrylates with high biomass contents for pressure-sensitive adhesives prepared via mini-emulsion polymerization. Ind. Eng. Chem. Res. 2012, 51, 12145–12149. [Google Scholar] [CrossRef]
- Sajjad, H.; Tolman, W.B.; Reineke, T.M. Block copolymer pressure-sensitive adhesives derived from fatty acids and triacetic acid lactone. ACS Appl. Polym. Mater. 2020, 2, 2719–2728. [Google Scholar] [CrossRef]
- Nasiri, M.; Reineke, T.M. Sustainable glucose-based block copolymers exhibit elastomeric and adhesive behavior. Polym. Chem. 2016, 7, 5233–5240. [Google Scholar] [CrossRef]
- Nasiri, M.; Saxon, D.J.; Reineke, T.M. Enhanced mechanical and adhesion properties in sustainable triblock copolymers via non-covalent interactions. Macromolecules 2018, 51, 2456–2465. [Google Scholar] [CrossRef]
- Droesbeke, M.A.; Aksakal, R.; Simula, A.; Asua, J.M.; Du Prez, F.E. Biobased acrylic pressure-sensitive adhesives. Prog. Polym. Sci. 2021, 117, 101396. [Google Scholar] [CrossRef]
- Rose, M.; Palkovits, R. Isosorbide as a renewable platform chemical for versatile applications—Quo vadis? ChemSusChem 2012, 5, 167–176. [Google Scholar] [CrossRef]
- Yuan, D.; Xiao, F.; Zhao, N.; Deng, C.; Huang, X.; Zhang, H.; Yang, Q.; Qiao, Y. Mesoporous poly(ionic liquid) solid acid for sequential dehydration of sorbitol to isosorbide. Chem. Eng. J. 2023, 460, 141780. [Google Scholar] [CrossRef]
- Dussenne, C.; Delaunay, T.; Wiatz, V.; Wyart, H.; Suisse, I.; Sauthier, M. Synthesis of isosorbide: An overview of challenging reactions. Green Chem. 2017, 19, 5332–5344. [Google Scholar] [CrossRef]
- Gao, X.; Wang, H.; Luan, S.; Zhou, G. Synthesis and 3D-printing of isosorbide-based poly(aryletherketone) for carbon neutral manufacturing. Chem. Eng. J. 2023, 477, 146968. [Google Scholar] [CrossRef]
- Russo, F.; Galiano, F.; Pedace, F.; Aricò, F.; Figoli, A. Dimethyl isosorbide as a green solvent for sustainable ultrafiltration and microfiltration membrane preparation. ACS Sustain. Chem. Eng. 2020, 8, 659–668. [Google Scholar] [CrossRef]
- Ali, M.K.; Moshikur, R.M.; Wakabayashi, R.; Moniruzzaman, M.; Kamiya, N.; Goto, M. Biocompatible ionic liquid surfactant-based microemulsion as a potential carrier for sparingly soluble drugs. ACS Sustain. Chem. Eng. 2020, 8, 6263–6272. [Google Scholar] [CrossRef]
- Lezama Viveros, L.T.; Rafati, R.; Sharifi Haddad, A. Effectiveness of polysorbate polyester on separation of emulsions made by green surfactants. Ind. Eng. Chem. Res. 2023, 62, 16729–16745. [Google Scholar] [CrossRef]
- Matt, L.; Sedrik, R.; Bonjour, O.; Vasiliauskaité, M.; Jannasch, P.; Vares, L. Covalent adaptable polymethacrylate networks by hydrazide crosslinking via isosorbide levulinate side groups. ACS Sustain. Chem. Eng. 2023, 11, 8294–8307. [Google Scholar] [CrossRef]
- Nonque, F.; Sahut, A.; Jacquel, N.; Saint-Loup, R.; Woisel, P.; Potier, J. Correction: Isosorbide monoacrylate: A sustainable monomer for the production of fully bio-based polyacrylates and thermosets. Polym. Chem. 2020, 11, 7571. [Google Scholar] [CrossRef]
- Saxon, D.J.; Luke, A.M.; Sajjad, H.; Tolman, W.B.; Reineke, T.M. Next-generation polymers: Isosorbide as a renewable alternative. Prog. Polym. Sci. 2020, 101, 101196. [Google Scholar] [CrossRef]
- Gallagher, J.J.; Hillmyer, M.A.; Reineke, T.M. Acrylic triblock copolymers incorporating isosorbide for pressure sensitive adhesives. ACS Sustain. Chem. Eng. 2016, 4, 3379–3387. [Google Scholar] [CrossRef]
- Baek, S.-S.; Jang, S.-H.; Hwang, S.-H. Sustainable isosorbide-based transparent pressure-sensitive adhesives for optically clear adhesive and their adhesion performance. Polym. Int. 2017, 66, 1834–1840. [Google Scholar] [CrossRef]
- Badía, A.; Agirre, A.; Barandiaran, M.J.; Leiza, J.R. Removable biobased waterborne pressure-sensitive adhesives containing mixtures of isosorbide methacrylate monomers. Biomacromolecules 2020, 21, 4522–4531. [Google Scholar] [CrossRef]
- GB/T 2792-2014; Measurement of Peel Adhesion Properties for Adhesive Tapes. Standardization Administration of China: Beijing, China, 2014.
- GB/T 4852-2002; Test Method for Tack of Pressure Sensitive Adhesive Tapes by Rolling Ball. Standardization Administration of China: Beijing, China, 2002.
- GB/T 4851-2014; Measurement of Static Shear Adhesion for Adhesive Types. Standardization Administration of China: Beijing, China, 2014.
- Lorandi, F.; Fantin, M.; Wang, Y.; Isse, A.A.; Gennaro, A.; Matyjaszewski, K. Atom transfer radical polymerization of acrylic and methacrylic acids: Preparation of acidic polymers with various architectures. ACS Macro Lett. 2020, 9, 693–699. [Google Scholar] [CrossRef]
- Wu, C.; Yang, H.; Cui, X.; Chen, Y.; Xi, Z.; Cai, J.; Zhang, J.; Xie, H. Performance and morphology of waterborne polyurethane asphalt in the vicinity of phase inversion. Materials 2024, 17, 3368. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Li, C.; Wang, Q. A critical review on performance and phase separation of thermosetting epoxy asphalt binders and bond coats. Constr. Build. Mater. 2022, 326, 126792. [Google Scholar] [CrossRef]
- Xie, H.; Zhao, R.; Wang, R.; Xi, Z.; Yuan, Z.; Zhang, J.; Wang, Q. Influence of thermal shock on the performance of B-staged epoxy bond coat for orthotropic steel bridge pavements. Constr. Build. Mater. 2021, 294, 123598. [Google Scholar] [CrossRef]
- Cohen, E.; Binshtok, O.; Dotan, A.; Dodiuk, H. Prospective materials for biodegradable and/or biobased pressure-sensitive adhesives: A review. J. Adhes. Sci. Technol. 2013, 27, 1998–2013. [Google Scholar] [CrossRef]
- Creton, C. Pressure-sensitive adhesives: An introductory course. MRS Bull. 2003, 28, 434–439. [Google Scholar] [CrossRef]
- Yu, Q.; Yang, W.; Wang, Q.; Dong, W.; Du, M.; Ma, P. Functionalization of cellulose nanocrystals with γ-MPS and its effect on the adhesive behavior of acrylic pressure sensitive adhesives. Carbohydr. Polym. 2019, 217, 168–177. [Google Scholar] [CrossRef]
- Wu, C.; Yang, H.; Cui, X.; Cai, J.; Yuan, Z.; Zhang, J.; Xie, H. Thermo-mechanical properties and phase-separated morphology of warm-mix epoxy asphalt binders with different epoxy resin concentrations. Molecules 2024, 29, 3251. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Gong, J.; Han, X.; Xi, Z.; Zhang, J.; Wang, Q.; Xie, H. Thermal and bonding properties of epoxy asphalt bond coats. J. Therm. Anal. Calorim. 2022, 147, 2013–2025. [Google Scholar] [CrossRef]
- Yin, H.; Jin, H.; Wang, C.; Sun, Y.; Yuan, Z.; Xie, H.; Wang, Z.; Cheng, R. Thermal, damping, and mechanical properties of thermosetting epoxy-modified asphalts. J. Therm. Anal. Calorim. 2014, 115, 1073–1080. [Google Scholar] [CrossRef]
- Paul, R.; John, B.; Sahoo, S.K. UV-curable bio-based pressure-sensitive adhesives: Tuning the properties by incorporating liquid-phase alkali lignin-acrylates. Biomacromolecules 2022, 23, 816–828. [Google Scholar] [CrossRef]
- Chang, E.P. Viscoelastic windows of pressure-sensitive adhesives. J. Adhes. 1991, 34, 189–200. [Google Scholar] [CrossRef]
Sample | BA (mmol) | IA (mmol) | AA (mmol) | ABVN (mmol) | EA (wt%) | Mn (kg/mol) | Đ |
---|---|---|---|---|---|---|---|
BA-IA0-AA2 | 156 | 0 | 3.1 | 0.195 | 65 | 174 | 2.68 |
BA-IA5-AA2 | 156 | 7.8 | 3.1 | 0.195 | 65 | 193 | 2.66 |
BA-IA10-AA2 | 156 | 15.6 | 3.1 | 0.195 | 65 | 186 | 2.74 |
Sample | Prepolymer (g) | Diluent (g) | PI (mg) | IDAE (mg) |
---|---|---|---|---|
BA-IA0-AA2-0 | 5 | 2.5 | 2.64 | 0 |
BA-IA0-AA2-0.5 | 5 | 2.5 | 2.64 | 12.5 |
BA-IA0-AA2-1 | 5 | 2.5 | 2.64 | 25 |
BA-IA0-AA2-2 | 5 | 2.5 | 2.64 | 50 |
BA-IA5-AA2-0 | 5 | 2.5 | 2.64 | 0 |
BA-IA5-AA2-0.5 | 5 | 2.5 | 2.64 | 12.5 |
BA-IA5-AA2-1 | 5 | 2.5 | 2.64 | 25 |
BA-IA5-AA2-2 | 5 | 2.5 | 2.64 | 50 |
BA-IA10-AA2-0 | 5 | 2.5 | 2.64 | 0 |
BA-IA10-AA2-0.5 | 5 | 2.5 | 2.64 | 12.5 |
BA-IA10-AA2-1 | 5 | 2.5 | 2.64 | 25 |
BA-IA10-AA2-2 | 5 | 2.5 | 2.64 | 50 |
Sample | E a (mJ/cm2) | PMAXb (mW/cm2) | TMAXc (°C) |
---|---|---|---|
BA-IA0-AA2-0 | 1801.2 | 7.3 | 29.4 |
BA-IA0-AA2-0.5 | 1789.3 | 7.2 | 29.3 |
BA-IA0-AA2-1 | 1814.6 | 7.1 | 29.5 |
BA-IA0-AA2-2 | 1844.1 | 7.3 | 29.4 |
BA-IA5-AA2-0 | 1763.5 | 7.0 | 28.7 |
BA-IA5-AA2-0.5 | 1712.5 | 7.2 | 29.4 |
BA-IA5-AA2-1 | 1789.5 | 7.1 | 29.1 |
BA-IA5-AA2-2 | 1710.3 | 7.1 | 29.1 |
BA-IA10-AA2-0 | 1713.7 | 7.0 | 29.2 |
BA-IA10-AA2-0.5 | 1745.4 | 7.2 | 29.1 |
BA-IA10-AA2-1 | 1715.0 | 7.1 | 29.4 |
BA-IA10-AA2-2 | 1770.7 | 7.1 | 30.2 |
Sample | Persistent Time (min) | Tg (°C) |
---|---|---|
* BA-IA0-AA2-0 | 5 | |
* BA-IA0-AA2-0.5 | 76 | |
* BA-IA0-AA2-1 | 376 | −42.9 |
* BA-IA0-AA2-2 | 896 | |
* BA-IA5-AA2-0 | 21 | |
* BA-IA5-AA2-0.5 | 4517 | |
BA-IA5-AA2-1 | 6820 | −35.8 |
BA-IA5-AA2-2 | >10,000 | |
BA-IA10-AA2-0 | 391 | |
BA-IA10-AA2-0.5 | 6890 | |
BA-IA10-AA2-1 | >10,000 | −27.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, J.; Wang, Q.; Xie, H. Isosorbide-Based Acrylic Pressure-Sensitive Adhesives Through UV-Cured Crosslinking with a Balance Between Adhesion and Cohesion. Polymers 2024, 16, 3178. https://doi.org/10.3390/polym16223178
Lv J, Wang Q, Xie H. Isosorbide-Based Acrylic Pressure-Sensitive Adhesives Through UV-Cured Crosslinking with a Balance Between Adhesion and Cohesion. Polymers. 2024; 16(22):3178. https://doi.org/10.3390/polym16223178
Chicago/Turabian StyleLv, Jiajie, Qingjun Wang, and Hongfeng Xie. 2024. "Isosorbide-Based Acrylic Pressure-Sensitive Adhesives Through UV-Cured Crosslinking with a Balance Between Adhesion and Cohesion" Polymers 16, no. 22: 3178. https://doi.org/10.3390/polym16223178
APA StyleLv, J., Wang, Q., & Xie, H. (2024). Isosorbide-Based Acrylic Pressure-Sensitive Adhesives Through UV-Cured Crosslinking with a Balance Between Adhesion and Cohesion. Polymers, 16(22), 3178. https://doi.org/10.3390/polym16223178