Enhanced Rheological and Structural Properties of the Exopolysaccharide from Rhizobium leguminosarum VF39 Through NTG Mutagenesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Rhizobium leguminosarum bv. viciae VF39 Strain Culture and Isolation of VF39 EPS
2.3. N-Methyl-N′nitro-N-Nitrosoguanidine (NTG) Mutagenesis
2.4. Nuclear Magnetic Resonance (NMR) Spectroscopy
2.5. Fourier Transform Infrared (FT-IR) Spectroscopy
2.6. Glucuronic Acid Concentration Assay
2.7. Differential Scanning Calorimetry (DSC)
2.8. Thermal Gravimetric Analysis (TGA)
2.9. Molecular Weight by Gel Permeation Chromatography (GPC)
2.10. Rheological Measurements
2.11. Gelation Test by Metal Cations
2.12. Antioxidant Test
2.13. Cell Cytotoxicity
3. Results and Discussion
3.1. Isolation of VF39 Wild-Type and #54 EPSs
3.2. Characterization of VF39 Wild-Type and #54 EPSs
3.2.1. Fourier Transform Infrared (FT-IR)
3.2.2. Nuclear Magnetic Resonance (NMR) Spectroscopic Analysis
3.2.3. Gel Permeation Chromatography (GPC)
3.2.4. 13C NMR of the VF39 Wild-Type and VF39 #54 EPSs
3.2.5. HSQC NMR of the VF39 Wild-Type and #54 EPSs
3.2.6. Glucuronic Acid Concentration Analysis
3.2.7. Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)
3.3. VF39 Wild-Type and #54 EPS Rheological Measurements
3.3.1. Viscosity Measurements of the VF39 Wild-Type and #54 EPSs
3.3.2. Viscosity Measurements with Concentration, Temperature, pH, and Metal Salts
3.3.3. Frequency Sweep Test and Amplitude Sweep Test
3.4. Metal Chelating Gelation by Metal Cations
3.5. DPPH Radical Scavenging Antioxidant
3.6. Cell Cytotoxicity of VF39 Wild-Type and Mutant EPS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, Q.; Huang, G. Improving method, properties and application of polysaccharide as emulsifier. Food Chem. 2022, 376, 131937. [Google Scholar] [CrossRef]
- Lim, C.; Yusoff, S.; Ng, C.; Lim, P.; Ching, Y. Bioplastic made from seaweed polysaccharides with green production methods. J. Environ. Chem. Eng. 2021, 9, 105895. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, S.; Cui, S.; Jing, X.; Feng, Y.; Coseri, S. Rapid self-healing carboxymethyl chitosan/hyaluronic acid hydrogels with injectable ability for drug delivery. Carbohydr. Polym. 2024, 328, 121707. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.-S.; Therriault, D.; Heuzey, M.-C. Development of aqueous protein/polysaccharide mixture-based inks for 3D printing towards food applications. Food Hydrocoll. 2022, 131, 107742. [Google Scholar] [CrossRef]
- Mallakpour, S.; Azadi, E.; Hussain, C.M. State-of-the-art of 3D printing technology of alginate-based hydrogels—An emerging technique for industrial applications. Adv. Colloid Interface Sci. 2021, 293, 102436. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Jiang, L.; Wang, C.; Li, S.; Sun, D.; Ma, Q.; Yu, Z.; Liu, Y.; Jiang, W. Flexibility, dissolvability, heat-sealability, and applicability improvement of pullulan-based composite edible films by blending with soluble soybean polysaccharide. Ind. Crops Prod. 2024, 215, 118693. [Google Scholar] [CrossRef]
- Espinosa, E.; Arrebola, R.I.; Bascón-Villegas, I.; Sánchez-Gutiérrez, M.; Domínguez-Robles, J.; Rodríguez, A. Industrial application of orange tree nanocellulose as papermaking reinforcement agent. Cellulose 2020, 27, 10781–10797. [Google Scholar] [CrossRef]
- Luo, M.; Zhang, X.; Wu, J.; Zhao, J. Modifications of polysaccharide-based biomaterials under structure-property relationship for biomedical applications. Carbohydr. Polym. 2021, 266, 118097. [Google Scholar] [CrossRef]
- Rana, S.; Upadhyay, L.S.B. Microbial exopolysaccharides: Synthesis pathways, types and their commercial applications. Int. J. Biol. Macromol. 2020, 157, 577–583. [Google Scholar] [CrossRef]
- Donot, F.; Fontana, A.; Baccou, J.; Schorr-Galindo, S. Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydr. Polym. 2012, 87, 951–962. [Google Scholar] [CrossRef]
- García, A.; Fernández-Sandoval, M.T.; Morales-Guzmán, D.; Martínez-Morales, F.; Trejo-Hernández, M.R. Advances in exopolysaccharide production from marine bacteria. J. Chem. Technol. Biotechnol. 2022, 97, 2694–2705. [Google Scholar] [CrossRef]
- Mo, W.; He, H.; Mo, Y.; Lin, Y.; Ye, X.; Huang, L.; Li, S. Assessment of the Safety and Exopolysaccharide Synthesis Capabilities of Bacillus amyloliquefaciens D189 Based on Complete Genome and Phenotype Analysis. Curr. Microbiol. 2024, 81, 342. [Google Scholar] [CrossRef] [PubMed]
- Izawa, N.; Hanamizu, T.; Iizuka, R.; Sone, T.; Mizukoshi, H.; Kimura, K.; Chiba, K. Streptococcus thermophilus produces exopolysaccharides including hyaluronic acid. J. Biosci. Bioeng. 2009, 107, 119–123. [Google Scholar] [CrossRef]
- Tait, M.; Sutherland, I.; Clarke-Sturman, A. Effect of growth conditions on the production, composition and viscosity of Xanthomonas campestris exopolysaccharide. Microbiology 1986, 132, 1483–1492. [Google Scholar] [CrossRef]
- Bayer, A.; Eftekhar, F.; Tu, J.; Nast, C.; Speert, D. Oxygen-dependent up-regulation of mucoid exopolysaccharide (alginate) production in Pseudomonas aeruginosa. Infect. Immun. 1990, 58, 1344–1349. [Google Scholar] [CrossRef] [PubMed]
- Revin, V.V.; Liyaskina, E.V.; Parchaykina, M.V.; Kurgaeva, I.V.; Efremova, K.V.; Novokuptsev, N.V. Production of bacterial exopolysaccharides: Xanthan and bacterial cellulose. Int. J. Mol. Sci. 2023, 24, 14608. [Google Scholar] [CrossRef]
- Redouan, E.; Emmanuel, P.; Michelle, P.; Bernard, C.; Josiane, C.; Cédric, D. Evaluation of antioxidant capacity of ulvan-like polymer obtained by regioselective oxidation of gellan exopolysaccharide. Food Chem. 2011, 127, 976–983. [Google Scholar] [CrossRef]
- Stredansky, M.; Conti, E.; Bertocchi, C.; Matulova, M.; Zanetti, F. Succinoglycan production by Agrobacterium tumefaciens. J. Ferment. Bioeng. 1998, 85, 398–403. [Google Scholar] [CrossRef]
- Silva, L.A.; Lopes Neto, J.H.P.; Cardarelli, H.R. Exopolysaccharides produced by Lactobacillus plantarum: Technological properties, biological activity, and potential application in the food industry. Ann. Microbiol. 2019, 69, 321–328. [Google Scholar] [CrossRef]
- Korcz, E.; Varga, L. Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends Food Sci. Technol. 2021, 110, 375–384. [Google Scholar] [CrossRef]
- Garcıa-Ochoa, F.; Santos, V.; Casas, J.; Gómez, E. Xanthan gum: Production, recovery, and properties. Biotechnol. Adv. 2000, 18, 549–579. [Google Scholar] [CrossRef] [PubMed]
- Petri, D.F. Xanthan gum: A versatile biopolymer for biomedical and technological applications. J. Appl. Polym. Sci. 2015, 132, 42035. [Google Scholar] [CrossRef]
- Katzbauer, B. Properties and applications of xanthan gum. Polym. Degrad. Stab. 1998, 59, 81–84. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, B.; Gihar, S.; Kumar, D. Review on emerging trends and challenges in the modification of xanthan gum for various applications. Carbohydr. Res. 2024, 538, 109070. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Mao, Y.; Liu, H.; Ke, C.; Liu, X.; Li, S. Effect of an inorganic nitrogen source (NH4)2SO4 on the production of welan gum from Sphingomonas sp. mutant obtained through UV-ARTP compound mutagenesis. Int. J. Biol. Macromol. 2022, 210, 630–638. [Google Scholar] [CrossRef]
- Oleksy-Sobczak, M.; Klewicka, E. Optimization of media composition to maximize the yield of exopolysaccharides production by Lactobacillus rhamnosus strains. Probiotics Antimicrob. Proteins 2020, 12, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Rath, T.; Rühmann, B.; Schmid, J.; Sieber, V. Systematic optimization of exopolysaccharide production by Gluconacetobacter sp. and use of (crude) glycerol as carbon source. Carbohydr. Polym. 2022, 276, 118769. [Google Scholar] [CrossRef]
- Wagh, V.S.; Said, M.S.; Bennale, J.S.; Dastager, S.G. Isolation and structural characterization of exopolysaccharide from marine Bacillus sp. and its optimization by Microbioreactor. Carbohydr. Polym. 2022, 285, 119241. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Zhan, Y.; Wang, C.; Liu, X.; Liu, L.; Xu, H. Efficient biosynthesis of polysaccharide welan gum in heat shock protein-overproducing Sphingomonas sp. via temperature-dependent strategy. Bioprocess Biosyst. Eng. 2021, 44, 247–257. [Google Scholar] [CrossRef]
- Kodym, A.; Afza, R. Physical and chemical mutagenesis. In Plant Functional Genomics; Grotewold, E., Ed.; Humana Press: Totowa, NJ, USA, 2003; pp. 189–203. [Google Scholar]
- Harper, M.; Lee, C.J. Genome-wide analysis of mutagenesis bias and context sensitivity of N-methyl-N′-nitro-N-nitrosoguanidine (NTG). Mutat. Res. Fundam. Mol. Mech. Mutagen. 2012, 731, 64–67. [Google Scholar] [CrossRef]
- Li, H.-g.; Luo, W.; Wang, Q.; Yu, X.-b. Direct fermentation of gelatinized cassava starch to acetone, butanol, and ethanol using Clostridium acetobutylicum mutant obtained by atmospheric and room temperature plasma. Appl. Biochem. Biotechnol. 2014, 172, 3330–3341. [Google Scholar] [CrossRef] [PubMed]
- Hua, L.; Shi, H.; Lin, Q.; Wang, H.; Gao, Y.; Zeng, J.; Lou, K.; Huo, X. Selection and Genetic Analysis of High Polysaccharide-Producing Mutants in Inonotus obliquus. Microorganisms 2024, 12, 1335. [Google Scholar] [CrossRef]
- Liang, X.; Hu, W.; Zhong, J.-J. Use of bacterial cellulose (BC) from a mutated strain for BC-starch composite film preparation. Process Biochem. 2023, 131, 1–12. [Google Scholar] [CrossRef]
- Marczak, M.; Mazur, A.; Koper, P.; Żebracki, K.; Skorupska, A. Synthesis of rhizobial exopolysaccharides and their importance for symbiosis with legume plants. Genes 2017, 8, 360. [Google Scholar] [CrossRef]
- Wielbo, J.; Marek-Kozaczuk, M.; Mazur, A.; Kubik-Komar, A.; Skorupska, A. Genetic and metabolic divergence within a Rhizobium leguminosarum bv. trifolii population recovered from clover nodules. Appl. Environ. Microbiol. 2010, 76, 4593–4600. [Google Scholar] [PubMed]
- Kanapina, A.; Marchenkov, V.; Surin, A.; Ivashina, T. Mass spectrometric analysis of acidic exo-oligosaccharides of root nodule bacterium Rhizobium leguminosarum bv. viciae VF39. Microbiology 2020, 89, 520–531. [Google Scholar] [CrossRef]
- Park, S.; Shin, Y.; Jung, S. Structural, rheological properties and antioxidant activities analysis of the exopolysaccharide produced by Rhizobium leguminosarum bv. viciae VF39. Int. J. Biol. Macromol. 2024, 257, 128811. [Google Scholar] [CrossRef]
- Gao, H.; Yang, L.; Tian, J.; Huang, L.; Huang, D.; Zhang, W.; Xie, F.; Niu, Y.; Jin, M.; Jia, C. Characterization and rheological properties analysis of the succinoglycan produced by a high-yield mutant of Rhizobium radiobacter ATCC 19358. Int. J. Biol. Macromol. 2021, 166, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Andhare, P.; Delattre, C.; Pierre, G.; Michaud, P.; Pathak, H. Characterization and rheological behaviour analysis of the succinoglycan produced by Rhizobium radiobacter strain CAS from curd sample. Food Hydrocoll. 2017, 64, 1–8. [Google Scholar] [CrossRef]
- Qiao, D.; Ke, C.; Hu, B.; Luo, J.; Ye, H.; Sun, Y.; Yan, X.; Zeng, X. Antioxidant activities of polysaccharides from Hyriopsis cumingii. Carbohydr. Polym. 2009, 78, 199–204. [Google Scholar] [CrossRef]
- Gan, L.; Li, X.; Wang, H.; Peng, B.; Tian, Y. Structural characterization and functional evaluation of a novel exopolysaccharide from the moderate halophile Gracilibacillus sp. SCU50. Int. J. Biol. Macromol. 2020, 154, 1140–1148. [Google Scholar] [CrossRef]
- Kuo, M.-S.; Mort, A.J. Location and identity of the acyl substituents on the extracellular polysaccharides of Rhizobium trifolii and Rhizobium leguminosarum. Carbohydr. Res. 1986, 145, 247–265. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, S.; Jung, S. Fabrication and characterization of polysaccharide metallohydrogel obtained from succinoglycan and trivalent chromium. Polymers 2021, 13, 202. [Google Scholar] [CrossRef]
- McNeil, M.; Darvill, J.; Darvill, A.G.; Albersheim, P.; van Veen, R.; Hooykaas, P.; Schilperoort, R.; Dell, A. The discernible, structural features of the acidic polysaccharides secreted by different Rhizobium species are the same. Carbohydr. Res. 1986, 146, 307–326. [Google Scholar] [CrossRef]
- Coviello, T.; Burchard, W.; Geissler, E.; Maier, D. Static and dynamic light scattering by a thermoreversible gel from Rhizobium leguminosarum 8002 exopolysaccharide. Macromolecules 1997, 30, 2008–2015. [Google Scholar] [CrossRef]
- Cremers, H.C.C.; Stevens, K.; Lugtenberg, B.J.; Wijffelman, C.A.; Batley, M.; Redmond, J.W.; Breedveld, M.W.; Zevenhuizen, L.P. Unusual structure of the exopolysaccharide of Rhizobium leguminosarum bv. viciae strain 248. Carbohydr. Res. 1991, 218, 185–200. [Google Scholar] [CrossRef]
- Cremers, H.; Batley, M.; Redmond, J.; Wijfjes, A.; Lugtenberg, B.; Wijffelman, C. Distribution of O-acetyl groups in the exopolysaccharide synthesized by Rhizobium leguminosarum strains is not determined by the Sym plasmid. J. Biol. Chem. 1991, 266, 9556–9564. [Google Scholar] [CrossRef]
- Ivashina, T.; Fedorova, E.; Ashina, N.; Kalinchuk, N.; Druzhinina, T.; Shashkov, A.; Shibaev, V.; Ksenzenko, V. Mutation in the pssM gene encoding ketal pyruvate transferase leads to disruption of Rhizobium leguminosarum bv. viciae–Pisum sativum symbiosis. J. Appl. Microbiol. 2010, 109, 731–742. [Google Scholar] [CrossRef]
- Banerjee, A.; Mohammed Breig, S.J.; Gómez, A.; Sánchez-Arévalo, I.; González-Faune, P.; Sarkar, S.; Bandopadhyay, R.; Vuree, S.; Cornejo, J.; Tapia, J. Optimization and characterization of a novel exopolysaccharide from Bacillus haynesii CamB6 for food applications. Biomolecules 2022, 12, 834. [Google Scholar] [CrossRef]
- Caccamo, M.T.; Zammuto, V.; Gugliandolo, C.; Madeleine-Perdrillat, C.; Spanò, A.; Magazù, S. Thermal restraint of a bacterial exopolysaccharide of shallow vent origin. Int. J. Biol. Macromol. 2018, 114, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhang, H.; Yin, Y.; Nishinari, K. Comparison of curdlan and its carboxymethylated derivative by means of Rheology, DSC, and AFM. Carbohydr. Res. 2006, 341, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Morris, E. Physical probes of polysaccharide conformation and interactions. Food Chem. 1980, 6, 15–39. [Google Scholar] [CrossRef]
- Tiwari, S.; Kavitake, D.; Devi, P.B.; Shetty, P.H. Bacterial exopolysaccharides for improvement of technological, functional and rheological properties of yoghurt. Int. J. Biol. Macromol. 2021, 183, 1585–1595. [Google Scholar] [CrossRef]
- Xu, L.; Xu, G.; Liu, T.; Chen, Y.; Gong, H. The comparison of rheological properties of aqueous welan gum and xanthan gum solutions. Carbohydr. Polym. 2013, 92, 516–522. [Google Scholar] [CrossRef]
- Choppe, E.; Puaud, F.; Nicolai, T.; Benyahia, L. Rheology of xanthan solutions as a function of temperature, concentration and ionic strength. Carbohydr. Polym. 2010, 82, 1228–1235. [Google Scholar] [CrossRef]
- Stredansky, M.; Conti, E.; Bertocchi, C.; Navarini, L.; Matulova, M.; Zanetti, F. Fed-batch production and simple isolation of succinoglycan from Agrobacterium tumefaciens. Biotechnol. Tech. 1999, 13, 7–10. [Google Scholar] [CrossRef]
- Wang, X.; Xin, H.; Zhu, Y.; Chen, W.; Tang, E.; Zhang, J.; Tan, Y. Synthesis and characterization of modified xanthan gum using poly (maleic anhydride/1-octadecene). Colloid Polym. Sci. 2016, 294, 1333–1341. [Google Scholar] [CrossRef]
- Zhong, L.; Oostrom, M.; Truex, M.J.; Vermeul, V.R.; Szecsody, J.E. Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation. J. Hazard. Mater. 2013, 244, 160–170. [Google Scholar] [CrossRef]
- Zhou, F.; Wu, Z.; Chen, C.; Han, J.; Ai, L.; Guo, B. Exopolysaccharides produced by Rhizobium radiobacter S10 in whey and their rheological properties. Food Hydrocoll. 2014, 36, 362–368. [Google Scholar] [CrossRef]
- Giammanco, G.E.; Sosnofsky, C.T.; Ostrowski, A.D. Light-responsive iron (III)–polysaccharide coordination hydrogels for controlled delivery. ACS Appl. Mater. Interfaces 2015, 7, 3068–3076. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.; Ranjit, S.; Mondol, R.; Ray, S.; Sa, B. Al+ 3 ion cross-linked and acetalated gellan hydrogel network beads for prolonged release of glipizide. Carbohydr. Polym. 2011, 85, 164–172. [Google Scholar] [CrossRef]
- Rendleman, J. Metal-polysaccharide complexes—Part I. Food Chem. 1978, 3, 47–79. [Google Scholar] [CrossRef]
- Niu, Y.; Li, N.; Alaxi, S.; Huang, G.; Chen, L.; Feng, Z. A new heteropolysaccharide from the seed husks of Plantago asiatica L. with its thermal and antioxidant properties. Food Funct. 2017, 8, 4611–4618. [Google Scholar] [CrossRef]
Wave Number (cm−1) | Structural Designation |
---|---|
3305 | O-H stretching vibration |
2940 | -CH2, -CH3 asymmetric stretching vibration |
1750 | C=O stretching vibration of carboxyl group |
1620 | C=O asymmetric stretching vibration of carboxyl group |
1370 | Symmetric stretching vibration of -COO- group |
1240 | C-O-C stretching vibration of glycosidic linkage |
1150 | Stretching vibration of α-glycosidic bond |
1040 | C-O-C asymmetric stretching vibration of glycosidic linkage |
890 | Stretching vibration of β-glycosidic bond |
Signal Number | ppm | Proton | Assignment |
---|---|---|---|
1a | 5.99 | H-1 | α-4,6-Glc-2Ac |
1b | 5.89 | H-1 | α-4,6-Glc-3Ac |
1c | 5.75 | H-1 | α-4,6-Glc |
2 | 5.38 | H-2 | α-4,6-Glc-2Ac |
3 | 4.92 | H-2 | β-4-Glc-2Ac |
4 | 4.80 | H-1 | β-4,6-Glc-3 |
5 | 4.65 | H-1 | β-pyranose |
6 | 4.59 | H-1 | Unidentified |
7 | 4.48 | H-1 | β-anomeric pyranoside |
8 | Ring protons | Ring protons of the β-linked residues (except anomeric protons of H-1) | |
9 | 2.63 | CH2 | 3-Hydroxybutanoyl-6 on β4,6-Gal-3 |
10 | 2.18 | OAc | Glc-3Ac |
11 | 2.11 | OAc | GlcA-3Ac |
12 | 1.47 | CH3 of pyruvic acetal | Glc-5,6 pyr |
13 | 1.44 | CH3 of pyruvic acetal | Gal-5,6 pyr |
14 | 1.27 | CH3 | Gal-3-Hydroxybutanoyl-6 |
Sample | Molar Ratio of VF39’s Substituent | Number Average Molecular Weight (Mn) | Weight Average Molecular Weight (Mw) | Peak Molecular Weight (Mp) | Polydispersity | ||
---|---|---|---|---|---|---|---|
3-Hydroxyl Butanoyl | Acetate | Pyruvate | |||||
VF39 | 0.32 | 1.34 | 2 | 161,880 | 327,400 | ND | 2.022 |
VF39 #54 | - | 0.72 | 1 | 301,170 | 363,100 | 515,140 | 1.205 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Oh, E.; Park, S.; Jeong, J.-p.; Jeon, S.; Lee, S.; Shin, Y.; Jung, S. Enhanced Rheological and Structural Properties of the Exopolysaccharide from Rhizobium leguminosarum VF39 Through NTG Mutagenesis. Polymers 2024, 16, 3179. https://doi.org/10.3390/polym16223179
Kim K, Oh E, Park S, Jeong J-p, Jeon S, Lee S, Shin Y, Jung S. Enhanced Rheological and Structural Properties of the Exopolysaccharide from Rhizobium leguminosarum VF39 Through NTG Mutagenesis. Polymers. 2024; 16(22):3179. https://doi.org/10.3390/polym16223179
Chicago/Turabian StyleKim, Kyungho, Eunkyung Oh, Sohyun Park, Jae-pil Jeong, Sobin Jeon, Sujin Lee, Younghyun Shin, and Seunho Jung. 2024. "Enhanced Rheological and Structural Properties of the Exopolysaccharide from Rhizobium leguminosarum VF39 Through NTG Mutagenesis" Polymers 16, no. 22: 3179. https://doi.org/10.3390/polym16223179
APA StyleKim, K., Oh, E., Park, S., Jeong, J. -p., Jeon, S., Lee, S., Shin, Y., & Jung, S. (2024). Enhanced Rheological and Structural Properties of the Exopolysaccharide from Rhizobium leguminosarum VF39 Through NTG Mutagenesis. Polymers, 16(22), 3179. https://doi.org/10.3390/polym16223179