TEA Guiding Bimetallic MOF with Oriented Nanosheet Arrays for High-Performance Asymmetric Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Vertically Oriented Arrays of Ni/Co-MOF Electrode Materials
2.3. Characterization and Electrochemical Measurements
3. Results and Discussion
3.1. Structural Characterizations
3.2. Electrochemical Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hamidouche, F.; Ghebache, Z.; Lepretre, J.; Djelali, N. Montmorillonite/Poly(Pyrrole) for Low-Cost supercapacitor electrode hybrid materials. Polymers 2024, 16, 919. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Jiang, P.; Zhang, P.; Duan, N.; Liu, Q.; Qin, C. Cross-Linked Polyacrylic-Based hydrogel polymer electrolytes for flexible supercapacitors. Polymers 2024, 16, 800. [Google Scholar] [CrossRef]
- Zheng, S.; Ma, J.; Fang, K.; Li, S.; Qin, J.; Li, Y.; Wang, J.; Zhang, L.; Zhou, F.; Liu, F.; et al. High-Voltage Potassium ion Micro-Supercapacitors with extraordinary volumetric energy density for wearable pressure sensor system. Adv. Energy Mater. 2021, 11, 2003835. [Google Scholar] [CrossRef]
- Yue, L.G.; Chen, L.; Wang, X.Y.; Lu, D.Z.; Zhou, W.L.; Shen, D.J.; Yang, Q.; Xiao, S.F.; Li, Y.Y. Ni/Co-MOF@aminated MXene hierarchical electrodes for high-stability supercapacitors. Chem. Eng. J. 2023, 451, 138687. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Y.; Man, Z.; Lu, W.; Chen, W.; Xu, J.; Bao, N.; Chen, W.; Wu, G. Microfluidic-Assembled covalent organic Frameworks@Ti3C2Tx Mxene vertical fibers for High-Performance electrochemical supercapacitors. Adv. Mater. 2023, 35, 2307186. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhao, Y.; Cong, T.; Li, C.; Wen, N.; Zuo, X.; Guo, Y.; Zhang, H.; Fan, Z.; Pan, L. Flexible and alternately layered High-Loading film electrode based on 3D Carbon nanocoils and pedot:pss for High-Energy-Density supercapacitor. Adv. Funct. Mater. 2022, 32, 2110777. [Google Scholar] [CrossRef]
- Liu, F.; Lu, P.; Zhang, Y.; Su, F.; Zhang, L.; Zheng, S.; Zhang, X.; Su, F.; Ma, Y.; Wu, Z. Sustainable Lignin-Derived Carbon as Capacity-Kinetics matched cathode and anode towards 4.5 V High-Performance Lithium-Ion capacitors. Energy Environ. Mater. 2022, 6, e12550. [Google Scholar] [CrossRef]
- Hu, T.; Ye, Z.; Wang, Y.; Gao, X.; Sun, Z.; Li, J.; Chen, S.; Lian, C.; Xu, Q.; Li, F. Synergistic effect of H-bond Reconstruction and interface regulation for High-Voltage aqueous energy storage. Adv. Energy Mater. 2023, 13, 2300567. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, S.H.; Qin, J.Q.; Ma, J.X.; Das, P.; Zhou, F.; Wu, Z.S. 2.4 V ultrahigh-voltage aqueous MXene-based asymmetric micro-supercapacitors with high volumetric energy density toward a self-sufficient integrated microsystem. Fundam. Res. 2022, 14, 307–314. [Google Scholar] [CrossRef]
- Jabeen, N.; Hussain, A.; Xia, Q.Y.; Sun, S.; Zhu, J.W.; Xia, H. High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 2017, 29, 1700804. [Google Scholar] [CrossRef]
- Das, G.S.; Tripathi, K.M. Ecologically sustainable N-doped graphene nanosheets as High-Performance electrodes for Zinc–air batteries and Zinc-Ion supercapacitors. ACS Appl. Electron. Mater. 2024, 6, 1034–1044. [Google Scholar] [CrossRef]
- Sonker, A.K.; Xiong, S.; Aggarwal, R.; Olsson, M.; Spule, A.; Hosseini, S.; Sonkar, S.K.; Matic, A.; Westman, G. Exfoliated MoS2 Nanosheet/Cellulose nanocrystal flexible composite films as electrodes for Zinc batteries. ACS Appl. Nano Mater. 2023, 6, 8270–8278. [Google Scholar] [CrossRef]
- Teng, L.; Duan, J.; Liu, H.; Zhang, X.; Li, J.; Li, Y.; Hong, J.; Lyu, W.; Liao, Y. A conjugated microporous polymer–graphene composite porous sandwich-like film for highly efficient flexible supercapacitors. J. Mater. Chem. A 2024, 12, 11243–12423. [Google Scholar] [CrossRef]
- Mesbah, A.; Rabu, P.; Sibille, R.; Lebègue, S.; Mazet, T.; Malaman, B.; François, M. From hydrated Ni3(OH)2(C8H4O4)2(H2O)4 to anhydrous Ni2(OH)2(C8H4O4): Impact of structural transformations on magnetic properties. Inorg. Chem. 2014, 53, 872–881. [Google Scholar] [CrossRef]
- Yang, J.; Ma, Z.; Gao, W.; Wei, M. Layered structural Co-Based MOF with conductive network frames as a new supercapacitor electrode. Chem. Eur. J. 2017, 23, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, Y.; Han, M.; Xia, Q.; Chen, Q.; Chen, M. Constructing ultra-thin Ni-MOF@NiS2 nanosheets arrays derived from metal organic frameworks for advanced all-solid-state asymmetric supercapacitor. Mater. Res. B 2021, 137, 111186. [Google Scholar] [CrossRef]
- Xuan, W.; Ramachandran, R.; Zhao, C.; Wang, F. Influence of synthesis temperature on Cobalt metal-organic framework (Co-MOF) formation and its electrochemical performance towards supercapacitor electrodes. J. Solid State Electrochem. 2018, 22, 3873–3881. [Google Scholar] [CrossRef]
- Yang, S.; Lv, H.M.; Wang, Y.B.; Guo, X.; Zhao, L.Z.; Li, H.F.; Zhi, C.Y. Regulating Exposed Facets of Metal-Organic Frameworks for High-rate Alkaline Aqueous Zinc Batteries. Angew. Chem. Int. Ed. 2022, 61, e202209794. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Chen, L.; Chu, M.; Dong, Y.; Liu, D.; Liu, P.; Qu, D.; Duan, J.; Li, X. MOF(Ni)/CNT composites with layer structure for high capacitive performance. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 128802. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Xu, B. Layered double hydroxide with interlayer quantum DOTS and laminate defects for High-Performance supercapacitor. Adv. Funct. Mater. 2023, 33, 2300149. [Google Scholar] [CrossRef]
- Mei, X.; Yang, C.; Chen, F.; Wang, Y.; Zhang, Y.; Man, Z.; Lu, W.; Xu, J.; Wu, G. Interfacially ordered nicomos nanosheets arrays on hierarchical Ti3C2Tx mxene for High-energy-density Fiber-Shaped supercapacitors with accelerated pseudocapacitive kinetics. Angew. Chem. Int. Ed. 2024, 63, e202409281. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Luo, Y.; Zhou, J.; Wang, L.; Shu, L.; He, W.; Zhang, Q.; Wang, P. One-Step Wet-Spinning of High-Energy density coaxial fibrous supercapacitors based on in SITU Carbon-Modified Nitrogen-Doped Mxene nanosheets. Nano Lett. 2024, 24, 10131–11013. [Google Scholar] [CrossRef]
- He, M.; Qiao, J.; Zhou, B.; Wang, J.; Guo, S.; Melvin, G.H.; Wang, M.; Ogata, H.; Kim, Y.A.; Tanemura, M.; et al. Controllable metal–organic Framework-Derived NiCo-Layered double hydroxide nanosheets on vertical graphene as mott–schottky heterostructure for High-Performance hybrid supercapacitor. Small Struct. 2024, 5, 2400207. [Google Scholar] [CrossRef]
- Xu, P.; Luo, S.; Liang, J.; Pan, D.; Zou, B.; Li, J. High-Performance 2.2 V asymmetric supercapacitors achieved by appropriate charge matching between ultrahigh Mass-Loading Mn3O4 and Sodium-Jarosite derived FeOOH. Adv. Funct. Mater. 2024, 34, 2313927. [Google Scholar] [CrossRef]
- Tong, H.; Li, L.; Wu, C.; Tao, Z.; Fang, J.; Guan, C.; Zhang, X. Sea Urchin-Like NiCo-LDH hollow spheres anchored on 3D graphene aerogel for High-Performance supercapacitors. ChemSusChem 2024, 17, e202400142. [Google Scholar] [CrossRef]
- Mao, X.L.; Liu, H.; Xu, J.H.; Li, M.W.; Yang, W.Y. Surface Reconstruction of Co3O4/rGO heterointerface enabling high-performance asymmetric supercapacitors. J. Energy Storage 2024, 102, 114128. [Google Scholar] [CrossRef]
- Tang, C.H.; Tang, Z.; Gong, H. Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors. J. Electrochem. Soc. 2012, 159, A651–A656. [Google Scholar] [CrossRef]
- Wang, W.; Chen, L.J.; Qi, J.Q.; Sui, Y.W.; He, Y.Z.; Meng, Q.K.; Wei, F.X.; Sun, Z. All-solid-state asymmetric supercapacitor based on N-doped activated Carbon derived from polyvinylidene fluoride and ZnCo2O4 nanosheet arrays. J. Mater. Sci. Mater. Electron. 2018, 29, 2120–2130. [Google Scholar] [CrossRef]
- Sharad, L.J.; Jadhav, A.L.; Sarawade, P.B.; Bhalchandra, K.M.; Anamika, V.K. Mo-doped porous Co3O4 nanoflakes as an electrode with the enhanced capacitive contribution for asymmetric supercapacitor application. J. Energy Storage 2024, 82, 110540. [Google Scholar]
Samples | Ni/Co-MOF-6 | Ni/Co-MOF-8 | Ni/Co-MOF-12 |
---|---|---|---|
Ni (Wt.%) | 24.58 | 26.75 | 27.05 |
Co (Wt.%) | 6.58 | 7.80 | 8.41 |
C (Wt.%) | 35.62 | 34.79 | 32.59 |
O (Wt.%) | 33.22 | 30.66 | 31.95 |
Samples | Ni/Co-MOF-6 | Ni/Co-MOF-8 | Ni/Co-MOF-12 |
---|---|---|---|
BET surface area (m2 g−1) | 134.3 | 137.1 | 122.2 |
BJH average pore size (nm) | 22.3 | 25.1 | 22.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, X.; Liu, H.; Niu, T.; Yan, X.; Li, M. TEA Guiding Bimetallic MOF with Oriented Nanosheet Arrays for High-Performance Asymmetric Supercapacitors. Polymers 2024, 16, 3198. https://doi.org/10.3390/polym16223198
Mao X, Liu H, Niu T, Yan X, Li M. TEA Guiding Bimetallic MOF with Oriented Nanosheet Arrays for High-Performance Asymmetric Supercapacitors. Polymers. 2024; 16(22):3198. https://doi.org/10.3390/polym16223198
Chicago/Turabian StyleMao, Xiling, Hao Liu, Tingting Niu, Xinyu Yan, and Mengwei Li. 2024. "TEA Guiding Bimetallic MOF with Oriented Nanosheet Arrays for High-Performance Asymmetric Supercapacitors" Polymers 16, no. 22: 3198. https://doi.org/10.3390/polym16223198
APA StyleMao, X., Liu, H., Niu, T., Yan, X., & Li, M. (2024). TEA Guiding Bimetallic MOF with Oriented Nanosheet Arrays for High-Performance Asymmetric Supercapacitors. Polymers, 16(22), 3198. https://doi.org/10.3390/polym16223198