Mechanical Motion and Color Change of Humidity-Responsive Cellulose Nanocrystal Films from Sunflower Pith
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Purification of SPC from SP
2.3. Preparation of SP Nanoparticle Composites (SP-NP) and SPC Nanocellulose (SPC-NC)
2.4. Preparation of SP-NP Films and SPC-NC Films
2.5. Characterization Methods
2.6. Data Analysis
3. Results and Discussion
3.1. Characterization of SP and SPC
3.2. Humidity-Responsive SP-NP Film with Mechanical Response
3.3. Humidity-Responsive SPC-NC Film with Color Response
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, H.; Peng, J.; Kong, Y.; Liu, Y.; Su, Z.; Li, B.; Song, X.; Liu, S.; Tian, W. Key Process Parameters for Deep Eutectic Solvents Pretreatment of Lignocellulosic Biomass Materials: A Review. Bioresour. Technol. 2020, 310, 123416. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, L.; Zhang, J.; Ren, Y.; Huo, H.; Zhang, X.; Huang, K.; Rezakazemi, M.; Zhang, Z. Fabrication of Environmentally, High-Strength, Fire-Retardant Biocomposites from Small-Diameter Wood Lignin in Situ Reinforced Cellulose Matrix. Adv. Compos. Hybrid Mater. 2023, 6, 140. [Google Scholar] [CrossRef]
- Tomasini, M.; de Oliveira Faber, M.; Ferreira-Leitão, V.S. Sequential Production of Hydrogen and Methane Using Hemicellulose Hydrolysate from Diluted Acid Pretreatment of Sugarcane Straw. Int. J. Hydrogen Energy 2023, 48, 9971–9987. [Google Scholar] [CrossRef]
- Freitas, P.A.V.; González-Martínez, C.; Chiralt, A. Applying Ultrasound-Assisted Processing to Obtain Cellulose Fibres from Rice Straw to Be Used as Reinforcing Agents. Innov. Food Sci. Emerg. Technol. 2022, 76, 102932. [Google Scholar] [CrossRef]
- Thielemans, K.; De Bondt, Y.; Van den Bosch, S.; Bautil, A.; Roye, C.; Deneyer, A.; Courtin, C.M.; Sels, B.F. Decreasing the Degree of Polymerization of Microcrystalline Cellulose by Mechanical Impact and Acid Hydrolysis. Carbohydr. Polym. 2022, 294, 119764. [Google Scholar] [CrossRef]
- Costa, C.; Viana, A.; Silva, C.; Marques, E.F.; Azoia, N.G. Recycling of Textile Wastes, by Acid Hydrolysis, into New Cellulosic Raw Materials. Waste Manag. 2022, 153, 99–109. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, D.; Chen, Q.; Chen, P.; Song, G.; Chang, C. Reversible Surface Engineering of Cellulose Elementary Fibrils: From Ultralong Nanocelluloses to Advanced Cellulosic Materials. Adv. Mater. 2024, 36, 2312220. [Google Scholar] [CrossRef]
- Ko, Y.; Kwon, G.; Choi, H.; Lee, K.; Jeon, Y.; Lee, S.; Kim, J.; You, J. Cutting Edge Use of Conductive Patterns in Nanocellulose-Based Green Electronics. Adv. Funct. Mater. 2023, 33, 2302785. [Google Scholar] [CrossRef]
- Tang, L.; Wang, B.; Bai, S.; Fan, B.; Zhang, L.; Wang, F. Preparation and Characterization of Cellulose Nanocrystals with High Stability from Okara by Green Solvent Pretreatment Assisted TEMPO Oxidation. Carbohydr. Polym. 2024, 324, 121485. [Google Scholar] [CrossRef]
- He, Y.; Ye, H.; Li, H.; Cui, F.; Xu, F.; You, T. Multifunctional Films with Superior Mechanical Performance, Transparency, Antibacterial Properties Enabled by a Physical and Chemical Dual Crosslinking Network Construction. Chem. Eng. J. 2024, 479, 147546. [Google Scholar] [CrossRef]
- Deng, Y.; Zhu, T.; Cheng, Y.; Zhao, K.; Meng, Z.; Huang, J.; Cai, W.; Lai, Y. Recent Advances in Functional Cellulose-Based Materials: Classification, Properties, and Applications. Adv. Fiber Mater. 2024, 6, 1343–1368. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, Y.; Yan, H.; Gu, Z.; Zhao, T.; Zhang, R.; Pan, B.; Dong, L.; Liu, M.; Jiang, L. Sunflower-Pith-Inspired Anisotropic Auxetic Mechanics from Dual-Gradient Cellular Structures. Matter 2023, 6, 1569–1584. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, W.; Liu, F.; Xia, L.; Wu, X.; Yang, R.; Yu, Y.; Zhang, X. A Comparative Investigation on Structural and Chemical Differences between the Pith and Rind of Sunflower Stalk and Their Influences on Nanofibrillation Efficiency. Polymers 2022, 14, 930. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.D.; Pan, Z.L.; Wang, C.; Dong, Y.P. Composition, Structure, and Mechanical Properties of Several Natural Polymer Foams. Chin. Sci. Bull. 2007, 52, 1075–1079. [Google Scholar] [CrossRef]
- Novi, V.; Labonne, L.; Ballas, S.; Véronèse, T.; Evon, P. Insulation Blocks Made from Sunflower Pith with Improved Durability Properties. Ind. Crops Prod. 2024, 210, 118161. [Google Scholar] [CrossRef]
- Yang, R.; Xia, L.; Tan, C.; Liu, F.; Guo, F.; Zhang, X.; Yu, Y. A Sunflower-Pith-Based Robust and Efficient Evaporator with Enclosed Cellular Structure and Ultralow Vaporization Enthalpy for Round-the-Clock Steam Generation. Chem. Eng. J. 2024, 481, 148671. [Google Scholar] [CrossRef]
- Su, X.; Hao, D.; Sun, M.; Wei, T.; Xu, D.; Ai, X.; Guo, X.; Zhao, T.; Jiang, L. Nature Sunflower Stalk Pith with Zwitterionic Hydrogel Coating for Highly Efficient and Sustainable Solar Evaporation. Adv. Funct. Mater. 2022, 32, 2108135. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Y.; Zhang, Q.; Sun, S.; Zhou, X.; Xu, Y. A Novel Natural Lignocellulosic Biosorbent of Sunflower Stem-Pith for Textile Cationic Dyes Adsorption. J. Clean. Prod. 2022, 331, 129878. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, L.; Ma, X.; Zhou, X.; Xu, Y. Revalorization of Sunflower Stalk Pith as Feedstock for the Coproduction of Pectin and Glucose Using a Two-Step Dilute Acid Pretreatment Process. Biotechnol. Biofuels 2021, 14, 194. [Google Scholar] [CrossRef]
- Paudel, S.; Janaswamy, S. Corncob-Derived Biodegradable Packaging Films: A Sustainable Solution for Raspberry Post-Harvest Preservation. Food Chem. 2024, 454, 139749. [Google Scholar] [CrossRef]
- Li, Z.; Guan, J.; Yan, C.; Chen, N.; Wang, C.; Liu, T.; Cheng, F.; Guo, Q.; Zhang, X.; Ye, X.; et al. Corn Straw Core/Cellulose Nanofibers Composite for Food Packaging: Improved Mechanical, Bacteria Blocking, Ultraviolet and Water Vapor Barrier Properties. Food Hydrocoll. 2023, 143, 108884. [Google Scholar] [CrossRef]
- Ortiz-Olivares, R.D.; Lobato-Peralta, D.R.; Arias, D.M.; Okolie, J.A.; Cuentas-Gallegos, A.K.; Sebastian, P.J.; Mayer, A.R.; Okoye, P.U. Production of Nanoarchitectonics Corncob Activated Carbon as Electrode Material for Enhanced Supercapacitor Performance. J. Energy Storage 2022, 55, 105447. [Google Scholar] [CrossRef]
- Ding, Y.; Dreimol, C.H.; Zboray, R.; Tu, K.; Stucki, S.; Keplinger, T.; Panzarasa, G.; Burgert, I. Passive Climate Regulation with Transpiring Wood for Buildings with Increased Energy Efficiency. Mater. Horiz. 2023, 10, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ling, Z.; Wang, X.; Ping, X.; Xie, Y.; Ma, H.; Guo, J.; Yong, Q. All Bio-Based Chiral Nematic Cellulose Nanocrystals Films under Supramolecular Tuning by Chitosan/Deacetylated Chitin Nanofibers for Reversible Multi-Response and Sensor Application. Chem. Eng. J. 2023, 466, 143148. [Google Scholar] [CrossRef]
- Tachibana, S.; Wang, Y.-F.; Sekine, T.; Takeda, Y.; Hong, J.; Yoshida, A.; Abe, M.; Miura, R.; Watanabe, Y.; Kumaki, D.; et al. A Printed Flexible Humidity Sensor with High Sensitivity and Fast Response Using a Cellulose Nanofiber/Carbon Black Composite. ACS Appl. Mater. Interfaces 2022, 14, 5721–5728. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Xu, Y.; Shen, M.; Duan, C.; Dai, L.; Ni, Y. Green and Sustainable Cellulose-Derived Humidity Sensors: A Review. Carbohydr. Polym. 2021, 270, 118385. [Google Scholar] [CrossRef]
- Chang, S.; Weng, Z.; Zhang, C.; Jiang, S.; Duan, G. Cellulose-Based Intelligent Responsive Materials: A Review. Polymers 2023, 15, 3905. [Google Scholar] [CrossRef]
- Li, Y.; Fu, C.; Huang, L.; Chen, L.; Ni, Y.; Zheng, Q. Cellulose-Based Multi-Responsive Soft Robots for Programmable Smart Devices. Chem. Eng. J. 2024, 498, 155099. [Google Scholar] [CrossRef]
- Han, M.; Shen, W.; Corriou, J.-P. Polydopamine-Modified MXene/Cellulose Nanofibers Composite Film for Self-Powered Humidity Sensing and Humidity Actuating. Nano Energy 2024, 123, 109445. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, Z.; Tao, F.; Ji, H.; Ji, X.; Tian, Z.; Chen, J. Hydrophilic Modification of Cellulose Using Sulfamic Acid for Optical Fiber Humidity Sensor Fabrication. Cellulose 2023, 30, 3113–3125. [Google Scholar] [CrossRef]
- Venkatesan, R.; Dhilipkumar, T.; Al-Sehemi, A.G.; Kumar, Y.A.; Kim, S.-C. Recent Advances in Structural Color Materials Based on Flexible Cellulose Nanocrystals. Cellulose 2024, 31, 4681–4708. [Google Scholar] [CrossRef]
- Anusuyadevi, P.R.; Shanker, R.; Cui, Y.; Riazanova, A.V.; Järn, M.; Jonsson, M.P.; Svagan, A.J. Photoresponsive and Polarization-Sensitive Structural Colors from Cellulose/Liquid Crystal Nanophotonic Structures. Adv. Mater. 2021, 33, 2101519. [Google Scholar] [CrossRef] [PubMed]
- Xiong, R.; Yu, S.; Kang, S.; Adstedt, K.M.; Nepal, D.; Bunning, T.J.; Tsukruk, V.V. Integration of Optical Surface Structures with Chiral Nanocellulose for Enhanced Chiroptical Properties. Adv. Mater. 2020, 32, 1905600. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Yang, B.; Du, J.; Xie, Y.; Yu, L.; Zhang, Y.; Tao, T.; Tang, W.; Gong, J. Uncovering the Recent Progress of CNC-Derived Chirality Nanomaterials: Structure and Functions. Small 2024, 20, 2401664. [Google Scholar] [CrossRef] [PubMed]
- Tran, A.; Hamad, W.Y.; MacLachlan, M.J. Tactoid Annealing Improves Order in Self-Assembled Cellulose Nanocrystal Films with Chiral Nematic Structures. Langmuir 2018, 34, 646–652. [Google Scholar] [CrossRef]
- Zhang, X.; Kang, S.; Adstedt, K.; Kim, M.; Xiong, R.; Yu, J.; Chen, X.; Zhao, X.; Ye, C.; Tsukruk, V.V. Uniformly Aligned Flexible Magnetic Films from Bacterial Nanocelluloses for Fast Actuating Optical Materials. Nat. Commun. 2022, 13, 5804. [Google Scholar] [CrossRef]
- Mohd Ishak, N.A.; Khalil, I.; Abdullah, F.Z.; Muhd Julkapli, N. A Correlation on Ultrasonication with Nanocrystalline Cellulose Characteristics. Carbohydr. Polym. 2020, 246, 116553. [Google Scholar] [CrossRef]
- Xu, Y.; He, L.; Xie, Z.; Wang, Z.; Chen, Y.; Wu, Q. Influence of PEG on Toughness, Humidity Sensitivity and Structural Color of Cellulose Nanocrystal Films. Cellulose 2024, 31, 6885–6896. [Google Scholar] [CrossRef]
- Jin, S.-A.; Facchine, E.G.; Khan, S.A.; Rojas, O.J.; Spontak, R.J. Mesophase Characteristics of Cellulose Nanocrystal Films Prepared from Electrolyte Suspensions. J. Colloid Interface Sci. 2021, 599, 207–218. [Google Scholar] [CrossRef]
- Hu, S.; Yue, F.; Peng, F.; Zhou, X.; Chen, Y.; Song, T.; Qi, H. Lysine-Mediated Surface Modification of Cellulose Nanocrystal Films for Multi-Channel Anti-Counterfeiting. Carbohydr. Polym. 2024, 340, 122315. [Google Scholar] [CrossRef]
- Liu, M.; Jin, F.; Chen, W.; Wu, Q.; Xu, H.; Zhou, Q.; Yang, L. Adjustable Multicolor Doped Cellulose Nanocrystal Film with Excitation and Temperature Dependence for All-Weather Anticounterfeiting in Sunlight and Darkness. ACS Sustain. Chem. Eng. 2024, 12, 9897–9907. [Google Scholar] [CrossRef]
- Tang, Y.; Lu, C.; Xiong, R. Biomimetic Mechanically Robust Chiroptical Hydrogel Enabled by Hierarchical Bouligand Structure Engineering. ACS Nano 2024, 18, 14629–14639. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.-E.; Wang, Y.; Wang, Z.; Wang, T.; Fu, Y.; Zhu, Z.; Wang, Y.; Ma, L.; Lu, Y. All-Biomass-Based Hierarchical Photonic Crystals with Multimode Modulable Structural Colors and Morphing Properties for Optical Encryption. Laser Photonics Rev. 2024, 06, 1863–8899. [Google Scholar] [CrossRef]
- Wen, X.; Yue, Y.; Wang, C.; Zhang, J.; Xie, Y.; Ning, Y.; Li, J.; Lu, X.; Yang, S. Bio-Inspired Cellulose Composites With Multicolor Separation via Electro-Thermal and Magneto-Thermal Techniques for Multifunctional Applications. Adv. Funct. Mater. 2024, 08, 1616–3028. [Google Scholar] [CrossRef]
- Meng, Y.; Zong, G.; Sun, Y.; He, Z.; Dong, C.; Long, Z. Flexible Multiple-Stimulus-Responsive Photonic Films Based on Layer-by-Layer Assembly of Cellulose Nanocrystals and Deep Eutectic Solvents. Chem. Eng. J. 2024, 488, 150713. [Google Scholar] [CrossRef]
- Copenhaver, K.; Li, K.; Wang, L.; Lamm, M.; Zhao, X.; Korey, M.; Neivandt, D.; Dixon, B.; Sultana, S.; Kelly, P.; et al. Pretreatment of Lignocellulosic Feedstocks for Cellulose Nanofibril Production. Cellulose 2022, 29, 4835–4876. [Google Scholar] [CrossRef]
- Nie, S.; Zhang, C.; Zhang, Q.; Zhang, K.; Zhang, Y.; Tao, P.; Wang, S. Enzymatic and Cold Alkaline Pretreatments of Sugarcane Bagasse Pulp to Produce Cellulose Nanofibrils Using a Mechanical Method. Ind. Crops Prod. 2018, 124, 435–441. [Google Scholar] [CrossRef]
- Domingues, A.A.; Pereira, F.V.; Sierakowski, M.R.; Rojas, O.J.; Petri, D.F.S. Interfacial Properties of Cellulose Nanoparticles Obtained from Acid and Enzymatic Hydrolysis of Cellulose. Cellulose 2016, 23, 2421–2437. [Google Scholar] [CrossRef]
- Mahmud, M.M.; Perveen, A.; Jahan, R.A.; Matin, M.A.; Wong, S.Y.; Li, X.; Arafat, M.T. Preparation of Different Polymorphs of Cellulose from Different Acid Hydrolysis Medium. Int. J. Biol. Macromol. 2019, 130, 969–976. [Google Scholar] [CrossRef]
- Salem, K.S.; Kasera, N.K.; Rahman, M.A.; Jameel, H.; Habibi, Y.; Eichhorn, S.J.; French, A.D.; Pal, L.; Lucia, L.A. Comparison and Assessment of Methods for Cellulose Crystallinity Determination. Chem. Soc. Rev. 2023, 52, 6417–6446. [Google Scholar] [CrossRef]
- Marakana, P.G.; Dey, A.; Saini, B. Isolation of Nanocellulose from Lignocellulosic Biomass: Synthesis, Characterization, Modification, and Potential Applications. J. Environ. Chem. Eng. 2021, 9, 106606. [Google Scholar] [CrossRef]
- Xu, Y.; Atrens, A.; Stokes, J.R. A Review of Nanocrystalline Cellulose Suspensions: Rheology, Liquid Crystal Ordering and Colloidal Phase Behaviour. Adv. Colloid Interface Sci. 2020, 275, 102076. [Google Scholar] [CrossRef] [PubMed]
- Kargarzadeh, H.; Ahmad, I.; Abdullah, I.; Dufresne, A.; Zainudin, S.Y.; Sheltami, R.M. Effects of Hydrolysis Conditions on the Morphology, Crystallinity, and Thermal Stability of Cellulose Nanocrystals Extracted from Kenaf Bast Fibers. Cellulose 2012, 19, 855–866. [Google Scholar] [CrossRef]
Samples/ Ingredient | Glucose | Xylan | Arabinose | Acid-Soluble Lignin | Klason Lignin |
---|---|---|---|---|---|
SP (%) | 31.52% | 7.25% | 1.29% | 3.23% | 0.33% |
SPC (%) | 89.54% | 4.70% | 0.01% | 0.67% | 0.70% |
Composition (%) | Sunflower Pith | Sorghum Stalk Core | Corn Stalk Core |
---|---|---|---|
Cellulose | 47.4 | 35.0 | 24.6 |
Hemicellulose | 9.40 | 34.5 | 19.1 |
Lignin | 3.49 | 17.4 | 12.3 |
Hot water extractives | 18.7 | 4.29 | 30.5 |
Total reducing Sugars | 1.0 | 1.56 | 22.3 |
Ash content | 20.4 | 4.23 | 5.19 |
Pectin | 6.0 | 2.0 | 3.5 |
Benzene-alcohol Extract | 4.91 | 4.51 | 5.09 |
Moisture | 11.5 | 8.52 | 8.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Liu, Y.; Tao, Z.; Li, Y.; Jiang, J.; Zheng, K. Mechanical Motion and Color Change of Humidity-Responsive Cellulose Nanocrystal Films from Sunflower Pith. Polymers 2024, 16, 3199. https://doi.org/10.3390/polym16223199
Wang S, Liu Y, Tao Z, Li Y, Jiang J, Zheng K. Mechanical Motion and Color Change of Humidity-Responsive Cellulose Nanocrystal Films from Sunflower Pith. Polymers. 2024; 16(22):3199. https://doi.org/10.3390/polym16223199
Chicago/Turabian StyleWang, Shujie, Yanan Liu, Zhengkun Tao, Yang Li, Jie Jiang, and Ke Zheng. 2024. "Mechanical Motion and Color Change of Humidity-Responsive Cellulose Nanocrystal Films from Sunflower Pith" Polymers 16, no. 22: 3199. https://doi.org/10.3390/polym16223199
APA StyleWang, S., Liu, Y., Tao, Z., Li, Y., Jiang, J., & Zheng, K. (2024). Mechanical Motion and Color Change of Humidity-Responsive Cellulose Nanocrystal Films from Sunflower Pith. Polymers, 16(22), 3199. https://doi.org/10.3390/polym16223199