Structural and Viscoelastic Properties of Bacterial Cellulose Composites: Implications for Prosthetics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composition of the Nutrient Medium and the Process of Biosynthesis, Under Static Conditions, of BC(S) and BC(S-RDH)
2.2. Preparation of Bacterial Cellulose Composite BC(BioR+S-RDH)
2.3. Scanning Electron Microscopy (SEM)
2.4. Atomic Force Microscopy (AFM)
2.5. Dynamic Mechanical Analysis (DMA)
2.6. Uniaxial Stretching
2.7. Calculation of Anisotropy Coefficient
3. Results
3.1. SEM Data
3.2. AFM Data
3.3. Strength Test Results
3.4. DMA Test Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Result of Mechanical Tests of the Hydrogel Composite Films in Air
Appendix B. Strain–Stress Diagrams of Tests of Various Types of Films in Orthogonal Directions
References
- Wu, X.; Wu, Z.; Qian, J.; Yan, Y.; Wei, J.; Li, H.; Su, J. Photo-crosslinked hierarchically honeycomb-patterned/macroporous scaffolds of calcium phosphate cement promote MC3T3-E1 cell functions. Rsc. Adv. 2015, 5, 36007–36014. [Google Scholar] [CrossRef]
- Banerjee, N.; Park, J. Modeling and simulation of biopolymer networks: Classification of the cytoskeleton models according to multiple scales. Korean J. Chem. Eng. 2015, 32, 1207–1217. [Google Scholar] [CrossRef]
- Mohammadi, H. Nanocomposite biomaterial mimicking aortic heart valve leaflet mechanical behaviour. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2011, 225, 718–722. [Google Scholar] [CrossRef]
- Mohammadi, H.; Boughner, D.; Millon, L.; Wan, W. Design and simulation of a poly (vinyl alcohol)—bacterial cellulose nanocomposite mechanical aortic heart valve prosthesis. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2009, 223, 697–711. [Google Scholar] [CrossRef]
- Ullah, M.W.; Ul Islam, M.; Khan, S.; Shah, N.; Park, J.K. Recent advancements in bioreactions of cellular and cell-free systems: A study of bacterial cellulose as a model. Korean J. Chem. Eng. 2017, 34, 1591–1599. [Google Scholar] [CrossRef]
- Ullah, M.W.; Ul-Islam, M.; Khan, S.; Kim, Y.; Park, J.K. Innovative production of bio-cellulose using a cell-free system derived from a single cell line. Carbohydr. Polym. 2015, 132, 286–294. [Google Scholar] [CrossRef]
- Kim, Y.; Ullah, M.W.; Ul-Islam, M.; Khan, S.; Jang, J.H.; Park, J.K. Self-assembly of bio-cellulose nanofibrils through intermediate phase in a cell-free enzyme system. Biochem. Eng. J. 2019, 142, 135–144. [Google Scholar] [CrossRef]
- Ul-Islam, M.; Khan, T.; Park, J.K. Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr. Polym. 2012, 88, 596–603. [Google Scholar] [CrossRef]
- Chernigova, S.; Zubkova, N.; Pogorelova, N.; Chernigov, Y.V. Morphological changes in the tissue structures after thermal burnes on the background of usinf dermarm wound dressing. Prensa Medica Argent. 2019, 105, 521–525. [Google Scholar]
- Pogorelova, N.; Rogachev, E.; Akimbekov, N.; Digel, I. Effect of dehydration method on the micro- and nanomorphological properties of bacterial cellulose produced by Medusomyces gisevii on different substrates. J. Mater. Sci. 2024, 59, 6614–6626. [Google Scholar] [CrossRef]
- Pogorelova, N.; Rogachev, E.; Digel, I.; Chernigova, S.; Nardin, D. Bacterial Cellulose Nanocomposites: Morphology and Mechanical Properties. Materials 2020, 13, 2849. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, A.R.; Archer, A.J.; Chen, X.; Liu, C.; Yang, G.; Liu, Y. Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties. Sci. Technol. Adv. Mater. 2018, 19, 203–211. [Google Scholar] [CrossRef]
- Bonilla, M.R.; Lopez-Sanchez, P.; Gidley, M.; Stokes, J. Micromechanical model of biphasic biomaterials with internal adhesion: Application to nanocellulose hydrogel composites. Acta Biomater. 2016, 29, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Lemboye, K.; Almajed, A. Effect of Varying Curing Conditions on the Strength of Biopolymer Modified Sand. Polymers 2023, 15, 1678. [Google Scholar] [CrossRef]
- Hsiao, C.C. Time-Dependent Tensile Strength of Solids. Nature 1960, 186, 535–537. [Google Scholar] [CrossRef]
- Regonesi, G. Bioreactors: A Complete Review. 2023. Available online: https://www.researchgate.net/publication/373708124_BIOREACTORS_A_Complete_Review?channel=doi&linkId=64f893beeb5d7806296afc60&showFulltext=true (accessed on 14 October 2024).
- Fang, F.; Luo, X.; BeMiller, J.N.; Schaffter, S.; Hayes, A.M.; Woodbury, T.J.; Hamaker, B.R.; Campanella, O.H. Neutral hydrocolloids promote shear-induced elasticity and gel strength of gelatinized waxy potato starch. Food Hydrocoll. 2020, 107, 105923. [Google Scholar] [CrossRef]
- Ajiteru, O.; Lee, O.J.; Kim, J.H.; Lee, Y.J.; Lee, J.S.; Lee, H.; Sultan, M.T.; Park, C.H. Fabrication and characterization of a myrrh hydrocolloid dressing for dermal wound healing. Colloid Interface Sci. Commun. 2022, 48, 100617. [Google Scholar] [CrossRef]
- Nussinovitch, A.; Kopelman, I.J.; Mizrahi, S. Evaluation of force deformation data as indices to hydrocolloid gel strength and perceived texture. Int. J. Food Sci. I Technol. 1990, 25, 692–698. [Google Scholar] [CrossRef]
- Ludwicka, K.; Kolodziejczyk, M.; Gendaszewska-Darmach, E.; Chrzanowski, M.; Jedrzejczak-Krzepkowska, M.; Rytczak, P.; Bielecki, S. Stable composite of bacterial nanocellulose and perforated polypropylene mesh for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 107, 978–987. [Google Scholar] [CrossRef]
- Chen, S.Q.; Meldrum, O.W.; Liao, Q.; Li, Z.; Cao, X.; Guo, L.; Zhang, S.; Zhu, J.; Li, L. The influence of alkaline treatment on the mechanical and structural properties of bacterial cellulose. Carbohydr. Polym. 2021, 271, 118431. [Google Scholar] [CrossRef]
- Digel, I.; Akimbekov, N.; Rogachev, E.; Pogorelova, N. Bacterial cellulose produced by Medusomyces gisevii on glucose and sucrose: Biosynthesis and structural properties. Cellulose 2023, 30, 11439–11453. [Google Scholar] [CrossRef]
- Jarrell, J.; Cal, T.; Bennett, J. The Kombucha consortia of yeasts and bacteria. Mycologist 2000, 14, 166–170. [Google Scholar] [CrossRef]
- Jayabalan, R.; Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Sathishkumar, M. A Review on Kombucha Tea—Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Compr. Rev. Food Sci. Food Saf. 2014, 13, 538–550. [Google Scholar] [CrossRef]
- Chen, S.Q.; Lopez-Sanchez, P.; Wang, D.; Mikkelsen, D.; Gidley, M.J. Mechanical properties of bacterial cellulose synthesised by diverse strains of the genus Komagataeibacter. Food Hydrocoll. 2018, 81, 87–95. [Google Scholar] [CrossRef]
- Sharmin, F.; O’Sullivan, M.; Malinowski, S.; Lieberman, J.R.; Khan, Y. Large scale segmental bone defect healing through the combined delivery of VEGF and BMP-2 from biofunctionalized cortical allografts. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 107, 1002–1010. [Google Scholar] [CrossRef]
- Miller, K.S.; Edelstein, L.; Connizzo, B.K.; Soslowsky, L.J. Effect of Preconditioning and Stress Relaxation on Local Collagen Fiber Re-Alignment: Inhomogeneous Properties of Rat Supraspinatus Tendon. J. Biomech. Eng. 2012, 134. [Google Scholar] [CrossRef]
- Roeder, R.K. Mechanical Characterization of Biomaterials. In Characterization of Biomaterials; Elsevier: Amsterdam, The Netherlands, 2013; pp. 49–104. [Google Scholar] [CrossRef]
- Parshin, D.V.; Lipovka, A.I.; Yunoshev, A.S.; Ovsyannikov, K.S.; Dubovoy, A.V.; Chupakhin, A.P. On the optimal choice of a hyperelastic model of ruptured and unruptured cerebral aneurysm. Sci. Rep. 2019, 9, 15865. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Joshi, I.M.; Mansouri, M.; Ahamed, N.N.N.; Hsu, M.C.; Gaborski, T.R.; Abhyankar, V.V. Engineering fiber anisotropy within natural collagen hydrogels. Am. J. Physiol.-Cell Physiol. 2021, 320, C1112–C1124. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Z.; Ritchie, R.O. Structural Orientation and Anisotropy in Biological Materials: Functional Designs and Mechanics. Adv. Funct. Mater. 2020, 30, 1908121. [Google Scholar] [CrossRef]
- Skrzypek, J.J.; Ganczarski, A.W. Mechanics of Anisotropic Materials; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Alekseev, D.E.; Alekseev, E.D.; Svistov, D.V. Comparative analysis of the efficiency of dura mater defect repair in cerebral surgery. Burdenko’s J. Neurosurg. 2018, 82, 48–54. [Google Scholar] [CrossRef]
- Azzam, D.; Romiyo, P.; Nguyen, T.; Sheppard, J.; Alkhalid, Y.; Lagman, C.; Prashant, G.; Yang, I. Dural Repair in Cranial Surgery Is Associated with Moderate Rates of Complications with Both Autologous and Nonautologous Dural Substitutes. World Neurosurg. 2018, 113, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Takayama, G.; Kondo, T. Quantitative evaluation of fiber network structure–property relationships in bacterial cellulose hydrogels. Carbohydr. Polym. 2023, 321, 121311. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Shi, Z.; Lau, A.; Liu, C.; Yang, G.; Silberschmidt, V.V. Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel. Mater. Sci. Eng. C 2016, 62, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Lipovka, A.; Kharchenko, A.; Dubovoy, A.; Filipenko, M.; Stupak, V.; Mayorov, A.; Fomenko, V.; Geydt, P.; Parshin, D. The Effect of Adding Modified Chitosan on the Strength Properties of Bacterial Cellulose for Clinical Applications. Polymers 2021, 13, 1995. [Google Scholar] [CrossRef]
- Bodin, A.; Concaro, S.; Brittberg, M.; Gatenholm, P. Bacterial cellulose as a potential meniscus implant. J. Tissue Eng. Regen. Med. 2007, 1, 406–408. [Google Scholar] [CrossRef]
- Nimeskern, L.; Martínez Ávila, H.; Sundberg, J.; Gatenholm, P.; Müller, R.; Stok, K.S. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J. Mech. Behav. Biomed. Mater. 2013, 22, 12–21. [Google Scholar] [CrossRef]
- Fusco, D.; Meissner, F.; Podesser, B.K.; Marsano, A.; Grapow, M.; Eckstein, F.; Winkler, B. Small-diameter bacterial cellulose-based vascular grafts for coronary artery bypass grafting in a pig model. Front. Cardiovasc. Med. 2022, 9, 881557. [Google Scholar] [CrossRef]
- Betlej, I.; Zakaria, S.; Krajewski, K.J.; Boruszewski, P. Bacterial Cellulose—Properties and Its Potential Application. Sains Malays. 2021, 50, 493–505. [Google Scholar] [CrossRef]
- Klarmann, G.J.; Gaston, J.; Ho, V.B. A review of strategies for development of tissue engineered meniscal implants. Biomater. Biosyst. 2021, 4, 100026. [Google Scholar] [CrossRef]
- Lau, S.; Gossen, M.; Lendlein, A. Designing Cardiovascular Implants Taking in View the Endothelial Basement Membrane. Int. J. Mol. Sci. 2021, 22, 13120. [Google Scholar] [CrossRef]
- Gromovykh, T.I.; Pigaleva, M.A.; Gallyamov, M.O.; Ivanenko, I.P.; Ozerova, K.E.; Kharitonova, E.P.; Bahman, M.; Feldman, N.B.; Lutsenko, S.V.; Kiselyova, O.I. Structural organization of bacterial cellulose: The origin of anisotropy and layered structures. Carbohydr. Polym. 2020, 237, 116140. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Mao, L.; Qi, F.; Li, X.; Ullah, M.W.; Zhao, M.; Shi, Z.; Yang, G. Synergistic effect of highly aligned bacterial cellulose/gelatin membranes and electrical stimulation on directional cell migration for accelerated wound healing. Chem. Eng. J. 2021, 424, 130563. [Google Scholar] [CrossRef]
- Ul-Islam, M.; Ahmad, F.; Fatima, A.; Shah, N.; Yasir, S.; Ahmad, M.W.; Manan, S.; Ullah, M.W. Ex situ synthesis and characterization of high strength multipurpose bacterial cellulose-aloe vera hydrogels. Front. Bioeng. Biotechnol. 2021, 9, 601988. [Google Scholar] [CrossRef] [PubMed]
- Camasão, D.; Mantovani, D. The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Mater. Today Bio 2021, 10, 100106. [Google Scholar] [CrossRef] [PubMed]
- Weizsacker, H.W.; Pinto, J.G. Isotropy and anisotropy of the arterial wall. J. Biomech. 1988, 21, 477–487. [Google Scholar] [CrossRef]
- Zhou, J.; Fung, Y. The degree of nonlinearity and anisotropy of blood vessel elasticity. Proc. Natl. Acad. Sci. USA 1997, 94, 14255–14260. [Google Scholar] [CrossRef]
- Zwirner, J.; Scholze, M.; Waddell, J.N.; Ondruschka, B.; Hammer, N. Mechanical properties of human dura mater in tension—An analysis at an age range of 2 to 94 years. Sci. Rep. 2019, 9, 16655. [Google Scholar] [CrossRef]
- Wulandana, R.; Robertson, A. An inelastic multi-mechanism constitutive equation for cerebral arterial tissue. Biomech. Model. Mechanobiol. 2005, 4, 235–248. [Google Scholar] [CrossRef]
- Karakullukcu, A.B.; Taban, E.; Ojo, O.O. Biocompatibility of biomaterials and test methods: A review. Mater. Test. 2023, 65, 545–559. [Google Scholar] [CrossRef]
- Jakob, M.; Mahendran, A.R.; Gindl-Altmutter, W.; Bliem, P.; Konnerth, J.; Müller, U.; Veigel, S. The strength and stiffness of oriented wood and cellulose-fibre materials: A review. Prog. Mater. Sci. 2022, 125, 100916. [Google Scholar] [CrossRef]
- Shin, M.; Zhang, M.; vom Scheidt, A.; Pelletier, M.H.; Walsh, W.R.; Martens, P.J.; Kruzic, J.J.; Busse, B.; Gludovatz, B. Impact of test environment on the fracture resistance of cortical bone. J. Mech. Behav. Biomed. Mater. 2022, 129, 105155. [Google Scholar] [CrossRef] [PubMed]
- Elsacker, E.; Vandelook, S.; Damsin, B.; Van Wylick, A.; Peeters, E.; De Laet, L. Mechanical characteristics of bacterial cellulose-reinforced mycelium composite materials. Fungal Biol. Biotechnol. 2021, 8, 18. [Google Scholar] [CrossRef] [PubMed]
- Potivara, K.; Phisalaphong, M. Development and Characterization of Bacterial Cellulose Reinforced with Natural Rubber. Materials 2019, 12, 2323. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.; Kwon, S.; Xu, W.; Wang, X.; Toivakka, M. Effect of micro- and nanofibrillated cellulose on the phase stability of sodium sulfate decahydrate based phase change material. Cellulose 2020, 27, 5003–5016. [Google Scholar] [CrossRef]
Material | Synthesis Method | Notes |
---|---|---|
S | Hydrogel BC synthesized under static conditions | Dry matter content 1.40 |
S-RDH | Rehydrated sample S | |
BioR | BC hydrogel obtained under reactor conditions | Dry matter content 0.85 |
BioR-H2O | Partially dehydrated hydrogel BioR | Dry matter content 1.35 |
BioR+S-RDH | Composite three-layer material BC, obtained under reactor conditions; the middle layer is rehydrated hydrogel BC S-RDH |
Value/ Material | S | S-RDH | BioR | BioR+S-RDH | BioR-H2O |
---|---|---|---|---|---|
Young modulus direction 1 | 1.28 | 5.14 | 9.51 | 2.74 | 5.67 |
Young modulus direction 2 | 1.23 (±0.14) | 14.3 (±1.4) | 4.33 (±0.67) | 9.51 (±1.30) | |
Ultimate stress direction 1 (MPa) | 0.77 (±0.07) | 2.43 (±0.34) | 1.36 (±0.28) | 3.17 (±0.78) | 1.34 (±0.29) |
Ultimate strain direction 1 | 0.34 (±0.04) | 0.57 (±0.06) | 0.4 (±0.05) | 0.44 (±0.07) | 0.21 (±0.03) |
Ultimate stress direction 2 (MPa) | 0.49 (±0.06) | 4.23 (±0.82) | 0.997 (±0.09) | 1.83 (±0.26) | |
Ultimate strain direction 2 | 0.25 (±0.03) | 0.42 (±0.06) | 0.98 (±0.08) | 0.25 (±0.03) | |
R-anisotropy | 1.309 (±0.124) | 1.288 (±0.1661) | 2.03 (±0.218) | 1.632 (±0.324) |
Value/ Material | S | S-RDH | BioR | BioR+S-RDH | BioR-H2O |
---|---|---|---|---|---|
“Flow point”-Hz 1 | 69 | 46 | 53 | 46 | 53 |
“Flow point”-modulus (Pa) 2 | 70 | 64 | 97 | 30 | 97 |
El. mod. 0.1% | 0.09 | 0.5 | 0.03 | 0.06 | 0.2 |
El. mod. 1% | 0.75 | 34 | 0.3 | 0.5 | 17.4 |
El. mod. 3% | 6 | 71 | 0.8 | 12.5 | 4.1 |
El. mod. 5% | 30.3 | 90 | 9.5 | 17.5 | 57 |
El. mod. 10% | 49 | 13.5 | 19 | 29.1 | 86 |
El. mod. 20% | 80 | 18 | 30.5 | 4.7 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pogorelova, N.; Parshin, D.; Lipovka, A.; Besov, A.; Digel, I.; Larionov, P. Structural and Viscoelastic Properties of Bacterial Cellulose Composites: Implications for Prosthetics. Polymers 2024, 16, 3200. https://doi.org/10.3390/polym16223200
Pogorelova N, Parshin D, Lipovka A, Besov A, Digel I, Larionov P. Structural and Viscoelastic Properties of Bacterial Cellulose Composites: Implications for Prosthetics. Polymers. 2024; 16(22):3200. https://doi.org/10.3390/polym16223200
Chicago/Turabian StylePogorelova, Natalia, Daniil Parshin, Anna Lipovka, Alexey Besov, Ilya Digel, and Pyotr Larionov. 2024. "Structural and Viscoelastic Properties of Bacterial Cellulose Composites: Implications for Prosthetics" Polymers 16, no. 22: 3200. https://doi.org/10.3390/polym16223200
APA StylePogorelova, N., Parshin, D., Lipovka, A., Besov, A., Digel, I., & Larionov, P. (2024). Structural and Viscoelastic Properties of Bacterial Cellulose Composites: Implications for Prosthetics. Polymers, 16(22), 3200. https://doi.org/10.3390/polym16223200