Extraction of Lignocellulose from Rice Straw and Its Carboxymethylation When Activated by Microwave Radiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Cellulose from Rice Straw
2.3. Cellulose Carboxymethylation
2.4. Measurements
2.4.1. Determination of α-Cellulose and Lignin Content
2.4.2. Scanning Electron Microscope (SEM)
2.4.3. X-Ray Diffraction Analysis
2.4.4. Fourier-Transform Infrared Spectroscopy
2.4.5. Thermogravimetric Analysis (TGA)
2.4.6. Mass Spectrometry
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ni, J.; Teng, N.; Chen, H.; Wang, J.; Zhu, J.; Na, H. Hydrolysis Behavior of Regenerated Celluloses with Different Degree of Polymerization under Microwave Radiation. Bioresour. Technol. 2015, 191, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xia, Y.; Zhang, B.; Chen, H.; Chen, G.; Tang, S. Disassembly of Lignocellulose into Cellulose, Hemicellulose, and Lignin for Preparation of Porous Carbon Materials with Enhanced Performances. J. Hazard. Mater. 2021, 408, 124956. [Google Scholar] [CrossRef] [PubMed]
- Zendrato, H.M.; Devi, Y.S.; Masruchin, N.; Wistara, N.J. Soda Pulping of Torch Ginger Stem: Promising Source of Nonwood-Based Cellulose. J. Korean Wood Sci. Technol. 2021, 49, 287–298. [Google Scholar] [CrossRef]
- Huda, S.; Reddy, N.; Karst, D.; Xu, W.; Yang, W.; Yang, Y. Nontraditional Biofibers for A New Textile Industry. J. Biobased Mater. Bioenergy 2007, 1, 177–190. [Google Scholar] [CrossRef]
- Aziz, T.; Farid, A.; Haq, F.; Kiran, M.; Ullah, A.; Zhang, K.; Li, C.; Ghazanfar, S.; Sun, H.; Ullah, R.; et al. A Review on the Modification of Cellulose and Its Applications. Polymers 2022, 14, 3206. [Google Scholar] [CrossRef]
- Borrero-López, A.M.; Valencia, C.; Franco, J.M. Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials and Applications of Lignocellulose-Based Polyurethanes: A Review. Polymers 2022, 14, 881. [Google Scholar] [CrossRef]
- Shen, F.; Xiong, X.; Fu, J.; Yang, J.; Qiu, M.; Qi, X.; Tsang, D.C.W. Recent Advances in Mechanochemical Production of Chemicals and Carbon Materials from Sustainable Biomass Resources. Renew. Sustain. Energy Rev. 2020, 130, 109944. [Google Scholar] [CrossRef]
- Sverguzova, S.V.; Shaikhiev, I.G.; Grechina, A.S.; Shaikhieva, K.I. Use of Waste from Processing Biomass of Oat as Sorption Materials for Removing Pollutants from Water Media (Literature Review). Econ. Constr. Environ. Manag. 2018, 2, 51–60. (In Russian) [Google Scholar]
- Wijaya, C.J.; Ismadji, S.; Gunawan, S. A Review of Lignocellulosic-Derived Nanoparticles for Drug Delivery Applications: Lignin Nanoparticles, Xylan Nanoparticles, and Cellulose Nanocrystals. Molecules 2021, 26, 676. [Google Scholar] [CrossRef]
- Borrega, M.; Hinkka, V.; Hörhammer, H.; Kataja, K.; Kenttä, E.; Ketoja, J.A.; Palmgren, R.; Salo, M.; Sundqvist-Andberg, H.; Tanaka, A. Utilizing and Valorizing Oat and Barley Straw as an Alternative Source of Lignocellulosic Fibers. Materials 2022, 15, 7826. [Google Scholar] [CrossRef]
- Jiménez, L.; Rodríguez, A.; Pérez, A.; Moral, A.; Serrano, L. Alternative Raw Materials and Pulping Process Using Clean Technologies. Ind. Crops Prod. 2008, 28, 11–16. [Google Scholar] [CrossRef]
- Yusupova, N.F.; Tayirova, D.B.; Allanazarova, M.B. Use Annual Plants as an Additional Raw Materials for Obtaining Technical Cellulose. Cent. Asian J. Med. Nat. Sci. 2022, 3, 620–623. [Google Scholar]
- Mujtaba, M.; Fernandes Fraceto, L.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; Araujo de Medeiros, G.; do Espírito Santo Pereira, A.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic Biomass from Agricultural Waste to the Circular Economy: A Review with Focus on Biofuels, Biocomposites and Bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Arsenyeva, D.Y.; Kazakov, Y.V.; Okulova, E.O.; Lagunov, A.Y. Delignification Patterns of Non-Wood Raw Material Containing Cellulose in the Presence of Sulfuric Catalyst. Lesn. Zhurnal (For. J.) 2019, 143. [Google Scholar] [CrossRef]
- Pavlov, I.N.; Kukhlenko, A.A.; Sevastyanova, Y.V. Hydrotropic Pulping of Miscanthus to Obtain Pulp. J. Sib. Fed. Univ. Chem. 2019, 12, 483–493. [Google Scholar] [CrossRef]
- Haile, A.; Gebino, G.; Tesfaye, T.; Mengie, W.; Ayele, M.; Abuhay, A.; Yilie, D. Utilization of Non-Wood Biomass for Pulp Manufacturing in Paper Industry: Case of Ethiopia. Biomass Convers. Biorefinery 2023, 13, 7441–7459. [Google Scholar] [CrossRef]
- Abd El-Sayed, E.S.; El-Sakhawy, M.; El-Sakhawy, M.A.-M. Non-Wood Fibers as Raw Material for Pulp and Paper Industry. Nord. Pulp Pap. Res. J. 2020, 35, 215–230. [Google Scholar] [CrossRef]
- Mitrofanova, S.E.; Girfanova, E.N.; Averko-Antonovich, I.Y.; Cherezova, E.N. New Oligomeric Thioether Antioxidants for Polymers. Russ. J. Appl. Chem. 2006, 79, 137–141. [Google Scholar] [CrossRef]
- Mathura, F.; Maharaj, R. Non-Wood Plants as Sources of Cellulose for Paper and Biodegradable Composite Materials: An Updated Review. Curr. Mater. Sci. 2024, 17, 321–335. [Google Scholar] [CrossRef]
- Deberdeev, T.R.; Garaeva, M.R.; Fadeeva, K.S.; Yakovlev, I.D.; Derbedeev, R.Y.; Kostochko, A.V.; Vershinin, M.S.; Valishina, Z.T. Method of Producing Cellulose. 2019. Available online: https://patents.google.com/patent/RU2683181C1/en?oq=2683181 (accessed on 2 October 2024).
- Deberdeev, T.R.; Garaeva, M.R.; Fadeeva, K.S.; Yakovlev, I.D.; Deberdeev, R.Y. Method of Producing Cellulose. 2019. Available online: https://patents.google.com/patent/RU2677063C1/en?oq=2677063 (accessed on 2 October 2024).
- Korchagina, A.A.; Budaeva, V.V.; Kukhlenko, A.A. Esterification of Oat-Hull Cellulose. Russ. Chem. Bull. 2019, 68, 1282–1288. [Google Scholar] [CrossRef]
- Rodrigues, B.V.M.; Polez, R.T.; El Seoud, O.A.; Frollini, E. Cellulose Acylation in Homogeneous and Heterogeneous Media: Optimization of Reactions Conditions. Int. J. Biol. Macromol. 2023, 243, 125256. [Google Scholar] [CrossRef] [PubMed]
- Altunina, L.K.; Tikhonova, L.D.; Yarmukhametova, E.G. Method for Deriving Carboxymethyl Cellulose. Eurasian Chem. J. 2016, 3, 49. [Google Scholar] [CrossRef]
- Keller, J. Sodium carboxymethylcellulose (CMC). N. Y. State Agric. Exp. Stn. Spec. Rep. 1984, 9–19. [Google Scholar]
- Yildirim-Yalcin, M.; Tornuk, F.; Toker, O.S. Recent Advances in the Improvement of Carboxymethyl Cellulose-Based Edible Films. Trends Food Sci. Technol. 2022, 129, 179–193. [Google Scholar] [CrossRef]
- de Oliveira, M.M.G.; de Souza Silva, K.; Mauro, M.A. Evaluation of Interactions Between Carboxymethylcellulose and Soy Protein Isolate and Their Effects on the Preparation and Characterization of Composite Edible Films. Food Biophys. 2021, 16, 214–228. [Google Scholar] [CrossRef]
- Darias, R.; Herrera, I.; Fragoso, A.; Cao, R.; Villalonga, R. Supramolecular Interactions Mediated Thermal Stabilization for α-Amylase Modified with a β-Cyclodextrin-Carboxymethylcellulose Polymer. Biotechnol. Lett. 2002, 24, 1665–1668. [Google Scholar] [CrossRef]
- Veeramachineni, A.; Sathasivam, T.; Muniyandy, S.; Janarthanan, P.; Langford, S.; Yan, L. Optimizing Extraction of Cellulose and Synthesizing Pharmaceutical Grade Carboxymethyl Sago Cellulose from Malaysian Sago Pulp. Appl. Sci. 2016, 6, 170. [Google Scholar] [CrossRef]
- Costa, E.M.; Pereira, C.F.; Ribeiro, A.A.; Casanova, F.; Freixo, R.; Pintado, M.; Ramos, O.L. Characterization and Evaluation of Commercial Carboxymethyl Cellulose Potential as an Active Ingredient for Cosmetics. Appl. Sci. 2022, 12, 6560. [Google Scholar] [CrossRef]
- Martins, D.; Rocha, C.; Dourado, F.; Gama, M. Bacterial Cellulose-Carboxymethyl Cellulose (BC:CMC) Dry Formulation as Stabilizer and Texturizing Agent for Surfactant-Free Cosmetic Formulations. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 617, 126380. [Google Scholar] [CrossRef]
- Rasheed, H.A.; Adeleke, A.; Nzerem, P.; Ajayi, O.; Ikubanni, P.; Yahya, A.M. A Review on the Use of Carboxymethyl Cellulose in Oil and Gas Field Operations. Cellulose 2023, 30, 9899–9924. [Google Scholar] [CrossRef]
- Cherezova, E.; Nakyp, A.; Karaseva, Y.; Zhapparbergenov, R.; Akylbekov, N. Application of Epoxidized Soybean Oil in Highly Filled Water-Swelling Rubbers. Eng. Sci. 2023, 25, 936. [Google Scholar] [CrossRef]
- Cherezova, E.N.; Karaseva, Y.S.; Momzyakova, K.S. Hydrophilic Rubber Based on Butadiene–Nitrile Rubber and Phytogenic Powdered Cellulose. Polym. Sci. Ser. D 2022, 15, 118–121. [Google Scholar] [CrossRef]
- Arancibia, C.; Bayarri, S.; Costell, E. Comparing Carboxymethyl Cellulose and Starch as Thickeners in Oil/Water Emulsions. Implications on Rheological and Structural Properties. Food Biophys. 2013, 8, 122–136. [Google Scholar] [CrossRef]
- Rahmadiawan, D.; Shi, S.-C. Enhanced Stability, Superior Anti-Corrosive, and Tribological Performance of Al2O3 Water-Based Nanofluid Lubricants with Tannic Acid and Carboxymethyl Cellulose over SDBS as Surfactant. Sci. Rep. 2024, 14, 9217. [Google Scholar] [CrossRef] [PubMed]
- Cherezova, E.N.; Galikhanov, M.F.; Karaseva, Y.S.; Nakyp, A.M. Impact of the Composition of Rubbers Filled with Carboxymethyl Cellulose on Their Properties. Russ. J. Appl. Chem. 2023, 96, 462–467. [Google Scholar] [CrossRef]
- Heinze, T.; El Seoud, O.A.; Koschella, A. Cellulose Derivatives; Springer Series on Polymer and Composite Materials; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-73167-4. [Google Scholar]
- Pinto, E.; Aggrey, W.N.; Boakye, P.; Amenuvor, G.; Sokama-Neuyam, Y.A.; Fokuo, M.K.; Karimaie, H.; Sarkodie, K.; Adenutsi, C.D.; Erzuah, S.; et al. Cellulose Processing from Biomass and Its Derivatization into Carboxymethylcellulose: A Review. Sci. African 2022, 15, e01078. [Google Scholar] [CrossRef]
- Method for Producing Potassium Carboxymethylcellulose. Available online: https://patents.google.com/patent/CN101942028A/en?oq=101942028 (accessed on 2 October 2024).
- Rahman, M.S.; Hasan, M.S.; Nitai, A.S.; Nam, S.; Karmakar, A.K.; Ahsan, M.S.; Shiddiky, M.J.A.; Ahmed, M.B. Recent Developments of Carboxymethyl Cellulose. Polymers 2021, 13, 1345. [Google Scholar] [CrossRef]
- Hivechi, A.; Bahrami, S.H.; Arami, M.; Karimi, A. Ultrasonic Mediated Production of Carboxymethyl Cellulose: Optimization of Conditions Using Response Surface Methodology. Carbohydr. Polym. 2015, 134, 278–284. [Google Scholar] [CrossRef]
- Wongvitvichot, W.; Pithakratanayothin, S.; Wongkasemjit, S.; Chaisuwan, T. Fast and Practical Synthesis of Carboxymethyl Cellulose from Office Paper Waste by Ultrasonic-Assisted Technique at Ambient Temperature. Polym. Degrad. Stab. 2021, 184, 109473. [Google Scholar] [CrossRef]
- Nüchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Microwave Assisted Synthesis—A Critical Technology Overview. Green Chem. 2004, 6, 128–141. [Google Scholar] [CrossRef]
- Wu, Y.; Fu, Z.; Yin, D.; Xu, Q.; Liu, F.; Lu, C.; Mao, L. Microwave-Assisted Hydrolysis of Crystalline Cellulose Catalyzed by Biomass Char Sulfonic Acids. Green Chem. 2010, 12, 696. [Google Scholar] [CrossRef]
- Cheprasova, M.Y.; Markin, V.I.; Bazarnova, N.G.; Kotalevskii, I.V. Carboxymethylation of Wood in Different Solvents by the Action of Microwave Radiation. Russ. J. Bioorganic Chem. 2012, 38, 726–729. [Google Scholar] [CrossRef]
- Wang, J.; Xi, J.; Wang, Y. Recent Advances in the Catalytic Production of Glucose from Lignocellulosic Biomass. Green Chem. 2015, 17, 737–751. [Google Scholar] [CrossRef]
- Cherezova, E.; Karaseva, Y.; Nakyp, A.; Nuriev, A.; Islambekuly, B.; Akylbekov, N. Influence of Partially Carboxylated Powdered Lignocellulose from Oat Straw on Technological and Strength Properties of Water-Swelling Rubber. Polymers 2024, 16, 282. [Google Scholar] [CrossRef]
- Feldman, D. Wood—Chemistry, Ultrastructure, Reactions, by D. Fengel and G. Wegener, Walter de Gruyter, Berlin and New York, 1984, 613 Pp. Price: 245 DM. J. Polym. Sci. Polym. Lett. Ed. 1985, 23, 601–602. [Google Scholar] [CrossRef]
- Ritter, G.J. Determination of Alpha-Cellulose. Ind. Eng. Chem. Anal. Ed. 1929, 1, 52–54. [Google Scholar] [CrossRef]
- Nicholson, D.J.; Leavitt, A.T.; Francis, R.C. A Three-Stage Klason Method for More Accurate Determinations of Hardwood Lignin Content. Cellul. Chem. Technol. 2014, 48, 53–59. [Google Scholar]
- Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Koenig, J.L. Fourier Transform Infrared Spectroscopy of Polymers. In Spectroscopy: NMR, Fluorescence, FT-IR.; Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 1984; Volume 54, pp. 87–154. [Google Scholar]
- Kim, J.S.; Lee, Y.Y.; Kim, T.H. A Review on Alkaline Pretreatment Technology for Bioconversion of Lignocellulosic Biomass. Bioresour. Technol. 2016, 199, 42–48. [Google Scholar] [CrossRef]
- Yao, L.; Yang, H.; Meng, X.; Ragauskas, A.J. Toward a Fundamental Understanding of the Role of Lignin in the Biorefinery Process. Front. Energy Res. 2022, 9, 804086. [Google Scholar] [CrossRef]
- Akatan, K.; Kabdrakhmanova, S.; Kuanyshbekov, T.; Ibraeva, Z.; Battalova, A.; Joshy, K.S.; Thomas, S. Highly-Efficient Isolation of Microcrystalline Cellulose and Nanocellulose from Sunflower Seed Waste via Environmentally Benign Method. Cellulose 2022, 29, 3787–3802. [Google Scholar] [CrossRef]
- Trifol, J.; Sillard, C.; Plackett, D.; Szabo, P.; Bras, J.; Daugaard, A.E. Chemically Extracted Nanocellulose from Sisal Fibres by a Simple and Industrially Relevant Process. Cellulose 2017, 24, 107–118. [Google Scholar] [CrossRef]
- Dehant, I.; Danz, R.; Kimmer, W.; Schmolke, R. Infrared spectroscopy of polymers. Mosc. Chem. 1976, 72. [Google Scholar]
- Ioelovich, M. Monograph: Cellulose Nanostructured Natural Polymer Cellulose: Nanostructured Natural Polymer; LAP Lambert Academic Publishing: Sunnyvale, CA, USA, 2014; Available online: https://www.researchgate.net/publication/260965048_Monograph_Cellulose_Nanostructured_Natural_Polymer (accessed on 2 October 2024).
- Nelson, M.L.; O’Connor, R.T. Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Latticed Type. Part I. Spectra of Lattice Types I, II, III and of Amorphous Cellulose. J. Appl. Polym. Sci. 1964, 8, 1311–1324. [Google Scholar] [CrossRef]
- Liang, C.Y.; Marchessault, R.H. Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses. J. Polym. Sci. 1959, 37, 385–395. [Google Scholar] [CrossRef]
- Srivastava, G.; Kumar, V.; Tiwari, R.; Patil, R.; Kalamdhad, A.; Goud, V. Anaerobic Co-Digestion of Defatted Microalgae Residue and Rice Straw as an Emerging Trend for Waste Utilization and Sustainable Biorefinery Development. Biomass Convers. Biorefinery 2022, 12, 1193–1202. [Google Scholar] [CrossRef]
Sample Number | IR-Fourier Spectroscopy | ||
---|---|---|---|
I1 | I2 | I3 | |
D900/D2900 | D1375/D2900 | D1430/D2900 | |
1 * | 2.81 | 2.76 | 3.21 |
2 ** | 2.67 | 1.83 | 2.33 |
Functional Groups, cm−1 | Initial Lignocellulose | Lignocellulose Carboxymethylation Product |
---|---|---|
ν(OH), s. | 3326 | 3352 |
ν(CH2), m. | 2887, 2974 | 2860, 2925, 2963 |
C(O)O | - | 1741 |
δ(HOH), m. | 1647 | 1620 |
δ(CH2OH) + δ(CH), sh. | 1422 | 1427 |
δ(CH) + γ(CH2), m. | 1367 | 1370 |
δ(OH) + δ(CH2), w. | 1155 | 1157 |
ν(COC)-мocтик, s. | 1021 | 1028 |
δ(C1H), sh. | 895 | 893 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakyp, A.; Cherezova, E.; Karaseva, Y.; Shalmagambetov, K.; Aleksandrov, A.; Zhapparbergenov, R.; Akylbekov, N.; Turmanov, R. Extraction of Lignocellulose from Rice Straw and Its Carboxymethylation When Activated by Microwave Radiation. Polymers 2024, 16, 3208. https://doi.org/10.3390/polym16223208
Nakyp A, Cherezova E, Karaseva Y, Shalmagambetov K, Aleksandrov A, Zhapparbergenov R, Akylbekov N, Turmanov R. Extraction of Lignocellulose from Rice Straw and Its Carboxymethylation When Activated by Microwave Radiation. Polymers. 2024; 16(22):3208. https://doi.org/10.3390/polym16223208
Chicago/Turabian StyleNakyp, Abdirakym, Elena Cherezova, Yuliya Karaseva, Kaiyrzhan Shalmagambetov, Aleksandr Aleksandrov, Rakhmetulla Zhapparbergenov, Nurgali Akylbekov, and Rakhymzhan Turmanov. 2024. "Extraction of Lignocellulose from Rice Straw and Its Carboxymethylation When Activated by Microwave Radiation" Polymers 16, no. 22: 3208. https://doi.org/10.3390/polym16223208
APA StyleNakyp, A., Cherezova, E., Karaseva, Y., Shalmagambetov, K., Aleksandrov, A., Zhapparbergenov, R., Akylbekov, N., & Turmanov, R. (2024). Extraction of Lignocellulose from Rice Straw and Its Carboxymethylation When Activated by Microwave Radiation. Polymers, 16(22), 3208. https://doi.org/10.3390/polym16223208