Investigation of Rheological, Mechanical, and Viscoelastic Properties of Silica-Filled SSBR and BR Model Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compound Formulation and Mixing Procedure
2.1.1. Raw Materials
2.1.2. Mixing Process
2.1.3. Vulcanization
2.2. Compound Properties
2.2.1. Mooney Viscosity
2.2.2. Uncured Payne Effect
2.2.3. Shore a Hardness
2.2.4. Stress-Strain Behavior
2.2.5. Dynamic Shear Measurements
3. Results and Discussion
3.1. Mooney Viscosity
3.2. Uncured Payne Effect
3.3. Cure Behavior
3.4. Shore a Hardness
3.5. Stress-Strain Behavior
3.6. Dynamic Shear Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Andrews, E.H. Reinforcement of Rubber by Fillers. Rubber Chem. Technol. 1963, 36, 325–336. [Google Scholar] [CrossRef]
- Yatsuyanagi, F.; Suzuki, N.; Ito, M.; Kaidou, H. Effects of Surface Chemistry of Silica Particles on the Mechanical Properties of Silica Filled Styrene–Butadiene Rubber Systems. Polym. J. 2002, 34, 332–339. [Google Scholar] [CrossRef]
- Choi, S.-S. Improvement of properties of silica-filled natural rubber compounds using polychloroprene. J. Appl. Polym. Sci. 2002, 83, 2609–2616. [Google Scholar] [CrossRef]
- Luginsland, H.-D.; Fröhlich, J.; Wehmeier, A. Influence of Different Silanes on the Reinforcement of Silica-Filled Rubber Compounds. Rubber Chem. Technol. 2002, 75, 563–579. [Google Scholar] [CrossRef]
- Qu, L.; Yu, G.; Xie, X.; Wang, L.; Li, J.; Zhao, Q. Effect of silane coupling agent on filler and rubber interaction of silica reinforced solution styrene butadiene rubber. Polym. Compos. 2013, 34, 1575–1582. [Google Scholar] [CrossRef]
- Choi, S.-S.; Park, B.-H.; Song, H. Influence of filler type and content on properties of styrene-butadiene rubber (SBR) compound reinforced with carbon black or silica. Polym. Adv. Technol. 2004, 15, 122–127. [Google Scholar] [CrossRef]
- Ulfah, I.M.; Fidyaningsih, R.; Rahayu, S.; Fitriani, D.A.; Saputra, D.A.; Winarto, D.A.; Wisojodharmo, L.A. Influence of Carbon Black and Silica Filler on the Rheological and Mechanical Properties of Natural Rubber Compound. Procedia Chem. 2015, 16, 258–264. [Google Scholar] [CrossRef]
- Sangroniz, L.; Fernández, M.; Santamaria, A. Polymers and rheology: A tale of give and take. Polymer 2023, 271, 125811. [Google Scholar] [CrossRef]
- Byers, J. Fillers for Balancing Passenger Tire Tread Properties. Rubber Chem. Technol. 2002, 75, 527–548. [Google Scholar] [CrossRef]
- Bisschop, R.; Grunert, F.; Ilisch, S.; Stratton, T.; Blume, A. Influence of molecular properties of SSBR and BR types on composite performance. Polym. Test. 2021, 99, 107219. [Google Scholar] [CrossRef]
- Rodríguez-Guadarrama, L.; Kounavis, J.; Maldonado, J. Functionalization: A key differential factor in the design of SSBRs for high performance tires. Rubber World 2019, 260, 41. [Google Scholar]
- Liu, X.; Zhao, S.; Zhang, X.; Li, X.; Bai, Y. Preparation, structure, and properties of solution-polymerized styrene-butadiene rubber with functionalized end-groups and its silica-filled composites. Polymer 2014, 55, 1964–1976. [Google Scholar] [CrossRef]
- Bandyopadhyaya, S.; Kitey, R.; Upadhyay, C.S. The Effect of Carbon Black Content on Viscoelastic Properties of Vulcanized Natural Rubber. Phys. Sci. Forum 2022, 4, 9. [Google Scholar] [CrossRef]
- Roland, C.M. Glass transition in Rubber Materials. Rubber Chem. Technol. 2012, 85, 313–326. [Google Scholar] [CrossRef]
- Vizcaino Vergara, M.D.M.; Kari, L.; Tunnicliffe, L.; Busfield, J. Evolution of the Viscoelastic Properties of Filler Reinforced Rubber under Physical Aging at Room Temperature. Polymers 2023, 15, 1806. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Wang, Z.; Ma, L.; Zou, Z.; Zhang, Q.; Guan, Y. Temperature-Dependence of Rubber Hyperelasticity Based on the Eight-Chain Model. Polymers 2020, 12, 932. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, J.; Niedermeier, W.; Luginsland, H.D. The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos. Part A Appl. Sci. Manuf. 2005, 36, 449–460. [Google Scholar] [CrossRef]
- Sarkawi, S.S.; Dierkes, W.K.; Noordermeer, J.W.M. Elucidation of filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber by TEM Network Visualization. Eur. Polym. J. 2014, 54, 118–127. [Google Scholar] [CrossRef]
- Choi, S.-S.; Nah, C.; Lee, S.G.; Joo, C.W. Effect of filler–filler interaction on rheological behaviour of natural rubber compounds filled with both carbon black and silica. Polym. Int. 2003, 52, 23–28. [Google Scholar] [CrossRef]
- Sridharan, H.; Guha, A.; Bhattacharyya, S.; Bhowmick, A.; Mukhopadhyay, R. Effect of Silica Loading and Coupling Agent on Wear and Fatigue Properties of a Tread Compound. Rubber Chem. Technol. 2019, 92, 326–349. [Google Scholar] [CrossRef]
- Le, H.; Ilisch, S.; Jakob, B.; Radusch, H.-J. Online characterization of the effect of mixing parameters on carbon black dispersion in rubber compounds using electrical conductivity. Rubber Chem. Technol. 2004, 77, 147–160. [Google Scholar] [CrossRef]
- Le, H.; Tiwari, M.; Ilisch, S.; Radusch, H. Online method for characterization of the homogeneity of rubber compounds filled with non-conductive carbon black. Rubber Chem. Technol. 2006, 79, 610–620. [Google Scholar] [CrossRef]
- Nagaraja, S.M.; Henning, S.; Ilisch, S.; Beiner, M. Common Origin of Filler Network Related Contributions to Reinforcement and Dissipation in Rubber Composites. Polymers 2021, 13, 2534. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Noordermeer, J.W.M.; Dierkes, W.K.; Blume, A. Key factors influencing marching modulus in silica-silane compounds. In Proceedings of the International Rubber Conference, IRC 2019, London, UK, 3–5 September 2019. [Google Scholar]
- Jin, J.; Noordermeer, J.W.M.; Dierkes, W.K.; Blume, A. The Effect of Silanization Temperature and Time on the Marching Modulus of Silica-Filled Tire Tread Compounds. Polymers 2020, 12, 209. [Google Scholar] [CrossRef]
- Jin, J.; Noordermeer, J.W.M.; Dierkes, W.K.; Blume, A. The Origin of Marching Modulus of Silica-Filled Tire Tread Compounds. Rubber Chem. Technol. 2019, 93, 378–394. [Google Scholar] [CrossRef]
- Guy, L.; Daudey, S.; Cochet, P.; Bomal, Y. New insights in the dynamic properties of precipitated silica filled rubber using a new high surface silica. Kautsch. Gummi Kunststoffe 2009, 62, 383–391. [Google Scholar]
- ISO 289-1 Standard; Rubber, Unvulcanized—Determinations Using a Shearing-Disc Viscometer—Part 1: Determination of Mooney Viscosity. ISO: Geneva, Switzerland, 2005.
- Payne, A.R. The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J. Appl. Polym. Sci. 1962, 6, 57–63. [Google Scholar] [CrossRef]
- Mihara, S.; Datta, R.N.; Noordermeer, J.W.M. Flocculation in Silica Reinforced Rubber Compounds. Rubber Chem. Technol. 2009, 82, 524–540. [Google Scholar] [CrossRef]
- ISO 868 Standard; Plastics and Ebonite—Determination of Indentation Hardness by Means of a Durometer (Shore Hardness). ISO: Geneva, Switzerland, 2003.
- Mohamed, M.; Aggag, G. Uncertainty evaluation of shore hardness testers. Measurement 2003, 33, 251–257. [Google Scholar] [CrossRef]
- Myers, F.; Wenrick, J. A Comparison of Tensile Stress-Strain Data from Dumbbell, Ring, and Oval Specimens. Rubber Chem. Technol. 1974, 47, 1213–1233. [Google Scholar] [CrossRef]
- ISO 37 Standard; Rubber, Vulcanized or Thermoplastic—Determination of Tensile Stress-Strain Properties. ISO: Geneva, Switzerland, 2017.
- Kraus, G. Mechanical losses in carbon-black-filled rubbers. J. Appl. Polym. Sci. Appl. Polym. Symp. 1984, 39, 75–92. [Google Scholar]
- Kraus, G. Reinforcement of Elastomers by Carbon Black. Rubber Chem. Technol. 1978, 51, 297–321. [Google Scholar] [CrossRef]
- Nagaraja, S.M.; Mujtaba, A.; Beiner, M. Quantification of different contributions to dissipation in elastomer nanoparticle composites. Polymer 2017, 111, 48–52. [Google Scholar] [CrossRef]
- White, J.L.; Soos, I. The Development of Elastomer Rheological Processability Quality Control Instruments. Rubber Chem. Technol. 1993, 66, 435–454. [Google Scholar] [CrossRef]
- Krieger, I.M.; Dougherty, T.J. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 1959, 3, 137–152. [Google Scholar] [CrossRef]
- Nakajima, N. Science and Practice of Rubber Mixing; Rapra Technology Ltd.: Shawbury, UK, 2000. [Google Scholar]
- Choi, S.-S.; Kim, I.-S. Filler–polymer interactions in filled polybutadiene compounds. Eur. Polym. J. 2002, 38, 1265–1269. [Google Scholar] [CrossRef]
- Rodgers, B. Rubber Compounding: Chemistry and Applications; Silica and Silanes; CRC Press: Boca Raton, FL, USA, 2015; pp. 251–332. [Google Scholar]
- Yamada, C.; Yasumoto, A.; Matsushita, T.; Blume, A. Influence of functionalized S–SBR on silica–filled rubber compound properties. Funct. Compos. Mater. 2022, 3, 6. [Google Scholar] [CrossRef]
- Klüppel, M.; Schuster, R.H.; Heinrich, G. Structure and Properties of Reinforcing Fractal Filler Networks in Elastomers. Rubber Chem. Technol. 1997, 70, 243–255. [Google Scholar] [CrossRef]
- Heinrich, G.; Klüppel, M.; Vilgis, T.A. Reinforcement of elastomers. Curr. Opin. Solid State Mater. Sci. 2002, 6, 195–203. [Google Scholar] [CrossRef]
- Abbott, S. Solubility Science: Principles and Practice; University of Leeds: Leeds, UK, 2017; pp. 109–110. [Google Scholar]
- Jin, J.; Kaewsakul, W.; Noordermeer, J.W.M.; Dierkes, W.K.; Blume, A. Macro- and Micro-Dispersion of Silica in Tire Tread Compounds: Are They Related? Rubber Chem. Technol. 2021, 94, 355–375. [Google Scholar] [CrossRef]
- Rathi, A. Investigating Safe Mineral-Based and Bio-Based Process Oils for Tire Tread Application. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2019. [Google Scholar]
- Han, Q.-Y.; Li, X.; Li, Y.-C.; Wu, Y.-P. Influences of the Compatibility of NR/SSBR anf Phase-Selective Distribution of Silica on its Static and Dynamic Properties. Rubber Chem. Technol. 2019, 93, 588–604. [Google Scholar]
- Li, X.; Yang, Q.; Li, H.; Zhang, L.; Hong, S.; Ning, N.; Tian, M. Quantifying the 3D multiscale dispersion structure of nanofillers in polymer nanocomposites by combining 3D-STEM and Synchrotron Radiation X-ray CT. Compos. Part B Eng. 2021, 212, 108687. [Google Scholar] [CrossRef]
- Howland, L.H.; Nisonoff, A.; Dannals, L.E.; Chambers, V.S. Crosslink density in polybutadiene. J. Polym. Sci. 1958, 27, 115–128. [Google Scholar] [CrossRef]
- Naebpetch, W.; Junhasavasdikul, B.; Saetung, A.; Tulyapitak, T.; Nithi-Uthai, N. Influence of filler type and loading on cure characteristics and vulcanisate properties of SBR compounds with a novel mixed vulcanisation system. Plast. Rubber Compos. 2017, 46, 137–145. [Google Scholar] [CrossRef]
- Gehman, S.D. Rubber Structure and Properties. In Mechanics of Pneumatic Tires; National Bureau of Standards: Gaithersburg, MD, USA, 1981. [Google Scholar]
- Rivlin, R. The elasticity of rubber. Rubber Chem. Technol. 1992, 65, 51–66. [Google Scholar] [CrossRef]
- Abdelsalam, A.A.; Araby, S.; El-Sabbagh, S.H.; Abdelmoneim, A.; Hassan, M.A. Effect of carbon black loading on mechanical and rheological properties of natural rubber/styrene-butadiene rubber/nitrile butadiene rubber blends. J. Thermoplast. Compos. Mater. 2021, 34, 490–507. [Google Scholar] [CrossRef]
- Sarkawi, S.S.; Che Aziz, A.K.; Nik Ismail, N.I. General Compounding and Properties of Epoxidised Natural Rubber. In Epoxidised Natural Rubber: Properties & Applications; Springer Nature: Singapore, 2023; pp. 69–98. [Google Scholar]
- Rathi, A. Process-Design for Tire Tread Compounds with Good Compatibility to Mineral-Based Safe Process Oils. EngD. Thesis, University of Twente, Enschede, The Netherlands, 2016. [Google Scholar]
- Bisschop, R. Processing of Modern Passenger Car Tire Treads. In Elastomer Technology and Engineering; University of Twente: Enschede, The Netherlands, 2019; p. 67. [Google Scholar]
- Mujtaba, A.; Keller, M.; Ilisch, S.; Radusch, H.J.; Beiner, M.; Thurn-Albrecht, T.; Saalwächter, K. Detection of Surface-Immobilized Components and Their Role in Viscoelastic Reinforcement of Rubber–Silica Nanocomposites. ACS Macro Lett. 2014, 3, 481–485. [Google Scholar] [CrossRef]
- Mujtaba, A.; Keller, M.; Ilisch, S.; Radusch, H.J.; Thurn-Albrecht, T.; Saalwächter, K.; Beiner, M. Mechanical Properties and Cross-Link Density of Styrene–Butadiene Model Composites Containing Fillers with Bimodal Particle Size Distribution. Macromolecules 2012, 45, 6504–6515. [Google Scholar] [CrossRef]
- Meera, A.; Said, S.; Grohens, Y.; Thomas, S. Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J. Phys. Chem. C 2009, 113, 17997–18002. [Google Scholar] [CrossRef]
Polymer | SPRINTAN® 4601 | SPRINTAN® 4602 | SPRINTAN® 3402 | BUNA CB24 |
---|---|---|---|---|
Functionalization | Yes, for carbon black | Yes, for silica | Yes, for silica | No |
ML1 + 4 (100 °C)/MU | 50 | 63 | 70 | 44 |
Density/g/cm3 | 0.934 | 0.935 | 0.925 | 0.91 |
Styrene/% | 21 | 21 | 15 | - |
Vinyl/% | 63 | 63 | 30 | - |
1,4-cis/% | - | - | - | 98 |
Molecular Weight | Low | Low | High | High |
Tg (DSC)/°C | −25 | −25 | −62 | −107 |
Ingredients | Amount (phr) | Role |
---|---|---|
Rubber | 100 | Polymer |
ULTRASIL® 7000 GR | variable | Filler |
Si 266® | adjusted | Silane coupling agent |
Edenor ST1 GS | 2 | Activators |
ZnO RS RAL 844 C | 2 | |
Vulkanox 4020/LG | 2 | Antioxidant |
Protektor G 3108 | 2 | Antiozonant |
N330 | 3 | Antioxidant and colorant |
Vivatec 500 | adjusted | Lubricant |
α-Sulphur | 1.4 | Vulcanization system |
Rhenogran TBBS-80 | 1.5 | |
Rhenogran DPG | 1.5 | |
Richon TBZTD OP | 0.4 |
Silica (vol. %) | Silica (phr) | Silane (phr) | TDAE Oil (phr) |
---|---|---|---|
0.0 | 0 | 0 | 0 |
5.0 | 13 | 0.9 | 4 |
7.5 | 21 | 1.5 | 6 |
10.0 | 29 | 2.1 | 9 |
12.5 | 38 | 2.8 | 12 |
15.0 | 49 | 3.6 | 15 |
17.5 | 61 | 4.4 | 19 |
20.0 | 74 | 5.4 | 23 |
22.5 | 90 | 6.5 | 28 |
25.0 | 108 | 7.8 | 34 |
1st Stage | ||
Fill factor: 72% Initial temperature: 80 °C Initial rotor speed: 70 rpm | Time (mm:ss) | Workflow |
00:00 | Add raw rubber, start measurement | |
00:20 | Ram down | |
01:00 | Ram up, add 1/2 or 2/3 (silica + silane) | |
01:30 | Ram down | |
02:30 | Ram up, add oil, chemicals, 1/2 or 1/3 (silica + silane) | |
03:00 | Ram down | |
04:00 | Ram up, sweep for 15 s | |
04:15 | Ram down, isothermal mixing at 140 °C | |
07:00 | Dump and check weight, dump T, sheet out on mill × 5 | |
2nd Stage | ||
Fill factor: 69% Initial temperature: 80 °C Initial rotor speed: 80 rpm | Time | Workflow |
00:00 | Add batch stage 1, ram down, start measurement | |
00:50 | Ram up, add DPG | |
01:00 | Ram down, adjust speed, isothermal mixing at 140 | |
05:00 | Dump and check weight, dump T, sheet out on mill × 5 | |
3rd Stage | ||
Fill factor: 66% Initial temperature: 50 °C Initial rotor speed: 50 rpm | Time | Workflow |
00:00 | Add batch stage 2, ram down, start measurement | |
00:30 | Ram up, add vulcanization system, ram down | |
03:00 | Dump and check weight, dump T, sheet out on mill × 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aggarwal, A.; Hackel, N.; Grunert, F.; Ilisch, S.; Beiner, M.; Blume, A. Investigation of Rheological, Mechanical, and Viscoelastic Properties of Silica-Filled SSBR and BR Model Compounds. Polymers 2024, 16, 3212. https://doi.org/10.3390/polym16223212
Aggarwal A, Hackel N, Grunert F, Ilisch S, Beiner M, Blume A. Investigation of Rheological, Mechanical, and Viscoelastic Properties of Silica-Filled SSBR and BR Model Compounds. Polymers. 2024; 16(22):3212. https://doi.org/10.3390/polym16223212
Chicago/Turabian StyleAggarwal, Anmol, Nico Hackel, Fabian Grunert, Sybill Ilisch, Mario Beiner, and Anke Blume. 2024. "Investigation of Rheological, Mechanical, and Viscoelastic Properties of Silica-Filled SSBR and BR Model Compounds" Polymers 16, no. 22: 3212. https://doi.org/10.3390/polym16223212
APA StyleAggarwal, A., Hackel, N., Grunert, F., Ilisch, S., Beiner, M., & Blume, A. (2024). Investigation of Rheological, Mechanical, and Viscoelastic Properties of Silica-Filled SSBR and BR Model Compounds. Polymers, 16(22), 3212. https://doi.org/10.3390/polym16223212