The Confinement Behavior and Mechanistic Insights of Organic Phase Change Material Encapsulated in Wood Morphology Genetic Nanostructures for Thermal Energy Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Balsa Wood-Based Phase Change Composite Materials
2.3. Methods
3. Results and Discussion
3.1. Delignified Balsa-Based Encapsulation Matrix and Physicochemical Properties
3.2. Evolution of the Chemical Structure in Balsa Powder-Based CPCMs
3.3. Thermal Performance and Confinement Mechanism of Balsa Powder-Based CPCMs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sulaiman, N.S.; Mohamad Amini, M.H. Review on the Phase Change Materials in Wood for Thermal Regulative Wood-Based Products. Forests 2022, 13, 1622. [Google Scholar] [CrossRef]
- Gupta, M.; Ashy. Solar Thermal Energy Storage Systems Based on Discotic Nematic Liquid Crystals That Can Efficiently Charge and Discharge below 0 °C. Adv. Energy Mater. 2024, 14, 2303845. [Google Scholar] [CrossRef]
- Shah, M.; Prajapati, M.; Yadav, K.; Sircar, A. A comprehensive review of geothermal energy storage: Methods and applications. J. Energy Storage 2024, 98, 113019. [Google Scholar] [CrossRef]
- Du, K.-W.; Wu, C.-I. An Innovative Tubular Thermoelectric Generator (TTEG) for Enhanced Waste Heat Recovery in Industrial and Automotive Applications. Appl. Sci. 2024, 14, 685. [Google Scholar] [CrossRef]
- Can, A.; Žigon, J. n-Heptadecane-Impregnated Wood as a Potential Material for Energy-Saving Buildings. Forests 2022, 13, 2137. [Google Scholar] [CrossRef]
- Chen, J.; Shi, Y.; Ying, B.; Hu, Y.; Gao, Y.; Luo, S.; Liu, X. Kirigami-enabled stretchable laser-induced graphene heaters for wearable thermotherapy. Mater. Horiz. 2024, 11, 2010–2020. [Google Scholar] [CrossRef]
- Asghari, M.; Fereidoni, S.; Fereidooni, L.; Nabisi, M.; Kasaeian, A. Energy efficiency analysis of applying phase change materials and thermal insulation layers in a building. Energy Build. 2024, 312, 114211. [Google Scholar] [CrossRef]
- Liu, K.; Peng, Q.; Liu, Z.; Li, W.; Cui, N.; Zhang, C. Adaptive battery thermal management systems in unsteady thermal application contexts. J. Energy Chem. 2024, 97, 650–668. [Google Scholar] [CrossRef]
- Ali, H.M.; Rehman, T.-u.; Arıcı, M.; Said, Z.; Duraković, B.; Mohammed, H.I.; Kumar, R.; Rathod, M.K.; Buyukdagli, O.; Teggar, M. Advances in thermal energy storage: Fundamentals and applications. Prog. Energy Combust. Sci. 2024, 100, 101109. [Google Scholar] [CrossRef]
- Umair, M.M.; Zhang, Y.; Iqbal, K.; Zhang, S.; Tang, B. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage—A review. Appl. Energy 2019, 235, 846–873. [Google Scholar] [CrossRef]
- Kahwaji, S.; White, M.A. Organic Phase Change Materials for Thermal Energy Storage: Influence of Molecular Structure on Properties. Molecules 2021, 26, 6635. [Google Scholar] [CrossRef] [PubMed]
- Alva, G.; Lin, Y.; Liu, L.; Fang, G. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review. Energy Build. 2017, 144, 276–294. [Google Scholar] [CrossRef]
- Suárez-García, A.; Arce, E.; Alford, L.; Luhrs, C.C. Electrospun composite fibers containing organic phase change materials for thermo-regulation: Trends. Renew. Sustain. Energy Rev. 2023, 187, 113648. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, Y.; Yang, L.; Feng, C.; Bai, L.; Yang, M.; Yang, W. Exploring Next-Generation Functional Organic Phase Change Composites. Adv. Funct. Mater. 2022, 32, 2200792. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, J.; Deng, Y.; Wu, F.; Wang, H. Effect of functional modification of porous medium on phase change behavior and heat storage characteristics of form-stable composite phase change materials: A critical review. J. Energy Storage 2021, 44, 103637. [Google Scholar] [CrossRef]
- Maleki, M.; Imani, A.; Ahmadi, R.; Emrooz, H.B.M.; Beitollahi, A. Low-cost carbon foam as a practical support for organic phase change materials in thermal management. Appl. Energy 2020, 258, 114108. [Google Scholar] [CrossRef]
- Xi, P.; Xia, L.; Fei, P.; Zhang, D.; Cheng, B. Preparation and performance of a novel thermoplastics polyurethane solid–solid phase change materials for energy storage. Sol. Energy Mater. Sol. Cells 2012, 102, 36–43. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, C.; Luo, A.; Liu, Z.; Zhang, X. Molecular dynamics simulation on thermophysics of paraffin/EVA/graphene nanocomposites as phase change materials. Appl. Therm. Eng. 2020, 166, 114639. [Google Scholar] [CrossRef]
- Kalidasan, B.; Pandey, A.K.; Rahman, S.; Yadav, A.; Samykano, M.; Tyagi, V.V. Graphene–Silver Hybrid Nanoparticle based Organic Phase Change Materials for Enhanced Thermal Energy Storage. Sustainability 2022, 14, 13240. [Google Scholar] [CrossRef]
- Solangi, N.H.; Mubarak, N.M.; Karri, R.R.; Mazari, S.A.; Jatoi, A.S.; Koduru, J.R.; Dehghani, M.H. MXene-based phase change materials for solar thermal energy storage. Energy Conv. Manag. 2022, 273, 116432. [Google Scholar] [CrossRef]
- Aftab, W.; Khurram, M.; Jinming, S.; Tabassum, H.; Liang, Z.; Usman, A.; Guo, W.; Huang, X.; Wu, W.; Yao, R.; et al. Highly efficient solar-thermal storage coating based on phosphorene encapsulated phase change materials. Energy Storage Mater. 2020, 32, 199–207. [Google Scholar] [CrossRef]
- Voronin, D.V.; Ivanov, E.; Gushchin, P.; Fakhrullin, R.; Vinokurov, V. Clay Composites for Thermal Energy Storage: A Review. Molecules 2020, 25, 1504. [Google Scholar] [CrossRef] [PubMed]
- Can, A.; Lee, S.H.; Antov, P.; Abd Ghani, M.A. Phase-Change-Material-Impregnated Wood for Potential Energy-Saving Building Materials. Forests 2023, 14, 514. [Google Scholar] [CrossRef]
- Yue, X.; Zhang, R.; Jin, X.; Zhang, X.; Bao, G.; Qin, D. Bamboo-derived phase change material with hierarchical structure for thermal energy storage of building. J. Energy Storage 2023, 62, 106911. [Google Scholar] [CrossRef]
- Li, C.; Sun, Z.; Wang, Y.; Zhu, J.; Wu, J.; Feng, L.; Wen, X.; Cai, W.; Yu, H.; Wang, M.; et al. A novel biogenic porous core/shell-based shape-stabilized phase change material for building energy saving. J. Energy Storage 2024, 95, 112504. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, Y.; Olayiwola, S.; Lau, C.; Fan, M.; Ng, K.; Tan, G. Biomass-derived porous carbons support in phase change materials for building energy efficiency: A review. Mater. Today Energy 2022, 23, 100905. [Google Scholar] [CrossRef]
- Liu, S.; Wu, H.; Du, Y.; Lu, X.; Qu, J. Shape-stable composite phase change materials encapsulated by bio-based balsa wood for thermal energy storage. Sol. Energy Mater. Sol. Cells 2021, 230, 111187. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, N.; Yuan, Y.; Shao, X.; Zhong, W.; Yang, L. Balsa-based porous carbon composite phase change material with photo-thermal conversion performance for thermal energy storage. Sol. Energy 2021, 230, 269–277. [Google Scholar] [CrossRef]
- Shi, X.; Meng, Y.; Bi, R.; Wan, Z.; Zhu, Y.; Rojas, O.J. Enabling unidirectional thermal conduction of wood-supported phase change material for photo-to-thermal energy conversion and heat regulation. Compos. B Eng. 2022, 245, 110231. [Google Scholar] [CrossRef]
- Chen, Y.; Meng, Y.; Zhang, J.; Xie, Y.; Guo, H.; He, M.; Shi, X.; Mei, Y.; Sheng, X.; Xie, D. Leakage Proof, Flame-Retardant, and Electromagnetic Shield Wood Morphology Genetic Composite Phase Change Materials for Solar Thermal Energy Harvesting. Nanomicro Lett. 2024, 16, 196. [Google Scholar] [CrossRef]
- Tong, X.; Yang, P.; Zeng, M.; Wang, Q. Confinement Effect of Graphene Interface on Phase Transition of n-Eicosane: Molecular Dynamics Simulations. Langmuir 2020, 36, 8422–8434. [Google Scholar] [CrossRef] [PubMed]
- Qian, T.; Li, J.; Min, X.; Fan, B. Integration of Pore Confinement and Hydrogen-Bond Influence on the Crystallization Behavior of C18 PCMs in Mesoporous Silica for Form-Stable Phase Change Materials. ACS Sustain. Chem. Eng. 2018, 6, 897–908. [Google Scholar] [CrossRef]
- Kittaka, S.; Ishimaru, S.; Kuranishi, M.; Matsuda, T.; Yamaguchi, T. Enthalpy and interfacial free energy changes of water capillary condensed in mesoporous silica, MCM-41 and SBA-15. Phys. Chem. Chem. Phys. 2006, 8, 3223–3231. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, M.; Lu, Y.; Jin, Z.; Tan, L.; Gao, H.; Fan, S.; Dong, W.; Wang, G. Surface functionalization engineering driven crystallization behavior of polyethylene glycol confined in mesoporous silica for shape-stabilized phase change materials. Nano Energy 2016, 19, 78–87. [Google Scholar] [CrossRef]
- Qi, Y.; Jiang, B.; Lei, W.; Zhang, Y.; Yu, W. Reliability Analysis of Normal, Lognormal, and Weibull Distributions on Mechanical Behavior of Wood Scrimber. Forests 2024, 15, 1674. [Google Scholar] [CrossRef]
- Song, J.; Chen, C.; Zhu, S.; Zhu, M.; Dai, J.; Ray, U.; Li, Y.; Kuang, Y.; Li, Y.; Quispe, N.; et al. Processing bulk natural wood into a high-performance structural material. Nature 2018, 554, 224–228. [Google Scholar] [CrossRef]
- Li, K.; Wang, S.; Chen, H.; Yang, X.; Berglund, L.A.; Zhou, Q. Self-Densification of Highly Mesoporous Wood Structure into a Strong and Transparent Film. Adv. Mater. 2020, 32, 2003653. [Google Scholar] [CrossRef]
- Fodor, F.; Hofmann, T. Chemical Composition and FTIR Analysis of Acetylated Turkey Oak and Pannonia Poplar Wood. Forests 2024, 15, 207. [Google Scholar] [CrossRef]
- Bradai, H.; Koubaa, A.; Zhang, J.; Demarquette, N.R. Effect of Wood Species on Lignin-Retaining High-Transmittance Transparent Wood Biocomposites. Polymers 2024, 16, 2493. [Google Scholar] [CrossRef]
- Alqrinawi, H.; Ahmed, B.; Wu, Q.; Lin, H.; Kameshwar, S.; Shayan, M. Effect of partial delignification and densification on chemical, morphological, and mechanical properties of wood: Structural property evolution. Ind. Crop. Prod. 2024, 213, 118430. [Google Scholar] [CrossRef]
- Prasetia, D.; Purusatama, B.D.; Kim, J.; Jang, J.; Park, S.; Lee, S.; Kim, N.H. X-ray diffraction, Fourier transform infrared spectroscopy, and thermal decomposition analyses of virgin cork elements in Quercus variabilis grown in Korea. Wood Sci. Technol. 2024, 58, 313–332. [Google Scholar] [CrossRef]
- Abdo, M.; Flity, H.; Terrei, L.; Zoulalian, A.; Mehaddi, R.; Girods, P.; Rogaume, Y. An alternative wood pyrolysis model based on TGA and cone calorimeter tests. Thermochim. Acta 2024, 731, 179646. [Google Scholar] [CrossRef]
- Cong, R.; Cai, T.; Ge-Zhang, S.; Yang, H.; Zhang, C. Fabrication of PVA–Silica Sol Wood Composites via Delignification and Freezing Pretreatment. Polymers 2024, 16, 1949. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wei, R.; Zuo, H.; Zuo, Q.; Luo, X.; Chen, Y.; Wu, S.; Chen, W. N-doped EG@MOFs derived porous carbon composite phase change materials for thermal optimization of Li-ion batteries at low temperature. Energy 2024, 286, 129637. [Google Scholar] [CrossRef]
- Lv, L.; Huang, S.; Zhou, H. Effect of introducing chemically activated biochar as support material on thermal properties of different organic phase change materials. Sol. Energy Mater. Sol. Cells 2024, 264, 112617. [Google Scholar] [CrossRef]
- Yang, K.; Liu, M.; Du, N.; Huo, Z.; Chen, Y.; Yang, Z.; Yan, P. Performance analysis of a novel phase-change wall of wood structure coupled with sky-radiation cooling. Energy Conv. Manag. 2024, 307, 118329. [Google Scholar] [CrossRef]
- Reeda, V.S.J.; Sakthivel, S.; Divya, P.; Javed, S.; Jothy, V.B. Conformational stability, quantum computational (DFT), vibrational, electronic and non-covalent interactions (QTAIM, RDG and IGM) of antibacterial compound N-(1-naphthyl)ethylenediamine dihydrochloride. J. Mol. Struct. 2024, 1298, 137043. [Google Scholar] [CrossRef]
- Radouane, N. A comprehensive review of composite phase change materials (cPCMs) for thermal management applications, including manufacturing processes, performance, and applications. Energies 2022, 15, 8271. [Google Scholar] [CrossRef]
Samples | Density (kg/m3) | Specific Surface Area (m2/g) | Mean Pore Diameter (nm) |
---|---|---|---|
RW | 90.5 ± 2.7 | 3.2 ± 0.6 | 60.0 |
DBW | 29.7 ± 1.6 | 25.4 ± 1.1 | 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Jiang, Y.; Chen, Y.; Zhang, J. The Confinement Behavior and Mechanistic Insights of Organic Phase Change Material Encapsulated in Wood Morphology Genetic Nanostructures for Thermal Energy Storage. Polymers 2024, 16, 3213. https://doi.org/10.3390/polym16223213
Meng Y, Jiang Y, Chen Y, Zhang J. The Confinement Behavior and Mechanistic Insights of Organic Phase Change Material Encapsulated in Wood Morphology Genetic Nanostructures for Thermal Energy Storage. Polymers. 2024; 16(22):3213. https://doi.org/10.3390/polym16223213
Chicago/Turabian StyleMeng, Yang, Yanping Jiang, Yuhui Chen, and Jiangyu Zhang. 2024. "The Confinement Behavior and Mechanistic Insights of Organic Phase Change Material Encapsulated in Wood Morphology Genetic Nanostructures for Thermal Energy Storage" Polymers 16, no. 22: 3213. https://doi.org/10.3390/polym16223213
APA StyleMeng, Y., Jiang, Y., Chen, Y., & Zhang, J. (2024). The Confinement Behavior and Mechanistic Insights of Organic Phase Change Material Encapsulated in Wood Morphology Genetic Nanostructures for Thermal Energy Storage. Polymers, 16(22), 3213. https://doi.org/10.3390/polym16223213