Sb(III) Removal by Granular Adsorbent Synthesized with Iron-Containing Water Treatment Residuals and Chitosan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Adsorbent Preparation
2.3. Characterization
2.4. Batch Sorption Experiments
2.5. Adsorbent Regeneration and Reuse
2.6. Analysis of Sb
3. Result and Discussion
3.1. Characterization of the Adsorbents
3.1.1. SEM and EDS
3.1.2. BET
3.1.3. FTIR
3.1.4. XRD
3.2. Batch Sorption Experiments
3.2.1. Effect of Adsorbent Dosage
3.2.2. Effect of pH and Ionic Strength
3.2.3. Effect of Coexisting Anions
3.2.4. Adsorbent Regeneration and Reuse
3.3. Adsorption Kinetics
3.4. Adsorption Isotherms
3.5. Thermodynamic Model
3.6. Sorption Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiong, N.; Wan, P.; Zhu, G.; Xie, F.; Xu, S.; Zhu, C.; Hursthouse, A.S. Sb(III) removal from aqueous solution by a novel nano-modified chitosan (NMCS). Sep. Purif. Technol. 2020, 236, 116266. [Google Scholar] [CrossRef]
- Filella, M.; Belzile, N.; Chen, Y.-W. Antimony in the environment: A review focused on natural waters: II. Relevant solution chemistry. Earth-Sci. Rev. 2002, 59, 265–285. [Google Scholar] [CrossRef]
- Hu, X.; Guo, X.; He, M.; Li, S. pH-dependent release characteristics of antimony and arsenic from typical antimony-bearing ores. J. Environ. Sci. 2016, 44, 171–179. [Google Scholar] [CrossRef]
- Hu, X.; He, M.; Li, S.; Guo, X. The leaching characteristics and changes in the leached layer of antimony-bearing ores from China. J. Geochem. Explor. 2017, 176, 76–84. [Google Scholar] [CrossRef]
- Long, X.; Wang, X.; Guo, X.; He, M. A review of removal technology for antimony in aqueous solution. J. Environ. Sci. 2020, 90, 189–204. [Google Scholar] [CrossRef]
- Li, J.; Zheng, B.; He, Y.; Zhou, Y.; Chen, X.; Ruan, S.; Yang, Y.; Dai, C.; Tang, L. Antimony contamination, consequences and removal techniques: A review. Ecotoxicol. Environ. Saf. 2018, 156, 125–134. [Google Scholar] [CrossRef]
- Guo, X.; Wu, Z.; He, M. Removal of antimony(V) and antimony(III) from drinking water by coagulation–flocculation–sedimentation (CFS). Water Res. 2009, 43, 4327–4335. [Google Scholar] [CrossRef]
- Saito, T.; Kawakita, H.; Uezu, K.; Tsuneda, S.; Hirata, A.; Saito, K.; Tamada, M.; Sugo, T. Structure of polyol–ligand-containing polymer brush on the porous membrane for antimony(III) binding. J. Membr. Sci. 2004, 236, 65–71. [Google Scholar] [CrossRef]
- Ozdemir, N.; Soylak, M.; Elci, L.; Dogan, M. Speciation analysis of inorganic Sb(III) and Sb(V) ions by using mini column filled with Amberlite XAD-8 resin. Anal. Chim. Acta 2004, 505, 37–41. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, F.; Pan, X.; Guo, J.; Wen, D. Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminum electrodes. J. Environ. Sci. 2011, 23, 1066–1071. [Google Scholar] [CrossRef]
- Rahaman, M.S.; Basu, A.; Islam, M.R. The removal of As(III) and As(V) from aqueous solutions by waste materials. Bioresour. Technol. 2008, 99, 2815–2823. [Google Scholar] [CrossRef]
- Sarı, A.; Çıtak, D.; Tuzen, M. Equilibrium, thermodynamic and kinetic studies on adsorption of Sb(III) from aqueous solution using low-cost natural diatomite. Chem. Eng. J. 2010, 162, 521–527. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, Q.; Huang, X.; Li, X.; Wang, Y.; Liu, W.; Lin, Z. The high efficient Sb(III) removal by cauliflower like amorphous nanoscale zero-valent iron (A-nZVI). J. Hazard. Mater. 2022, 436, 129056. [Google Scholar] [CrossRef]
- Wan, L.; Wu, S.; Luo, C.; Zhang, S.; Baig, S.A.; Lou, Z.; Xu, X. Application of sintered textile sludge as novel adsorbents for Sb(V) removal from textile wastewater: Performances, mechanisms and perspectives. J. Clean. Prod. 2023, 425, 138998. [Google Scholar] [CrossRef]
- Deng, S.; Ren, B.; Hou, B.; Deng, X.; Deng, R.; Zhu, G.; Cheng, S. Adsorption of Sb(III) and Pb(II) in wastewater by magnetic γ-Fe2O3-loaded sludge biochar: Performance and mechanisms. Chemosphere 2024, 349, 140914. [Google Scholar] [CrossRef]
- Dousova, B.; Lhotka, M.; Filip, J.; Kolousek, D. Removal of arsenate and antimonate by acid-treated Fe-rich clays. J. Hazard. Mater. 2018, 357, 440–448. [Google Scholar] [CrossRef]
- Zeng, H.; Sun, S.; Xu, K.; Zhao, W.; Hao, R.; Zhang, J.; Li, D. Adsorption of As(V) by magnetic alginate-chitosan porous beads based on iron sludge. J. Clean. Prod. 2022, 359, 132117. [Google Scholar] [CrossRef]
- Saheed, I.O.; Oh, W.D.; Suah, F.B.M. Chitosan modifications for adsorption of pollutants—A review. J. Hazard. Mater. 2021, 408, 124889. [Google Scholar] [CrossRef]
- Mallik, A.K.; Kabir, S.M.F.; Rahman, F.B.A.; Sakib, M.N.; Efty, S.S.; Rahman, M.M. Cu(II) removal from wastewater using chitosan-based adsorbents: A review. J. Environ. Chem. Eng. 2022, 10, 108048. [Google Scholar] [CrossRef]
- Orooji, Y.; Nezafat, Z.; Nasrollahzadeh, M.; Kamali, T.A. Polysaccharide-based (nano)materials for Cr(VI) removal. Int. J. Biol. Macromol. 2021, 188, 950–973. [Google Scholar] [CrossRef]
- Ayub, A.; Raza, Z.A. Arsenic removal approaches: A focus on chitosan biosorption to conserve the water sources. Int. J. Biol. Macromol. 2021, 192, 1196–1216. [Google Scholar] [CrossRef]
- Chen, H.; Gao, Y.; El-Naggar, A.; Niazi, N.K.; Sun, C.; Shaheen, S.M.; Hou, D.; Yang, X.; Tang, Z.; Liu, Z.; et al. Enhanced sorption of trivalent antimony by chitosan-loaded biochar in aqueous solutions: Characterization, performance and mechanisms. J. Hazard. Mater. 2022, 425, 127971. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, R.; Li, R.; Ali, A.; Chen, A.; Zhang, Z. Enhanced aqueous Cr(VI) removal using chitosan-modified magnetic biochars derived from bamboo residues. Chemosphere 2020, 261, 127694. [Google Scholar] [CrossRef]
- Zeng, H.; Sun, S.; Xu, K.; Zhao, W.; Hao, R.; Zhang, J.; Li, D. Iron-loaded magnetic alginate-chitosan double-gel interpenetrated porous beads for phosphate removal from water: Preparation, adsorption behavior and pH stability. React. Funct. Polym. 2022, 177, 105328. [Google Scholar] [CrossRef]
- Zeng, H.; Xu, K.; Wang, F.; Sun, S.; Li, D.; Zhang, J. Adsorption of As(III) from aqueous solutions using MnO2 strengthened WTRs-chitosan beads made by homogenous method with freeze-drying. React. Funct. Polym. 2021, 167, 105016. [Google Scholar] [CrossRef]
- Baldovino-Medrano, V.G.; Niño-Celis, V.; Giraldo, R.I. Systematic Analysis of the Nitrogen Adsorption–Desorption Isotherms Recorded for a Series of Materials Based on Microporous–Mesoporous Amorphous Aluminosilicates Using Classical Methods. J. Chem. Eng. Data 2023, 68, 2512–2528. [Google Scholar] [CrossRef]
- Wu, Z.; Deng, W.; Tang, S.; Ruiz-Hitzky, E.; Luo, J.; Wang, X. Pod-inspired MXene/porous carbon microspheres with ultrahigh adsorption capacity towards crystal violet. Chem. Eng. J. 2021, 426, 130776. [Google Scholar] [CrossRef]
- Ge, X.; Ma, Y.; Song, X.; Wang, G.; Zhang, H.; Zhang, Y.; Zhao, H. β-FeOOH Nanorods/Carbon Foam-Based Hierarchically Porous Monolith for Highly Effective Arsenic Removal. ACS Appl. Mater. Interfaces 2017, 9, 13480–13490. [Google Scholar] [CrossRef]
- Monier, M.; Ayad, D.M.; Wei, Y.; Sarhan, A.A. Preparation and characterization of magnetic chelating resin based on chitosan for adsorption of Cu(II), Co(II), and Ni(II) ions. React. Funct. Polym. 2010, 70, 257–266. [Google Scholar] [CrossRef]
- Neto, J.D.O.M.; Bellato, C.R.; Silva, D.D.C. Iron oxide/carbon nanotubes/chitosan magnetic composite film for chromium species removal. Chemosphere 2019, 218, 391–401. [Google Scholar] [CrossRef]
- Zhang, H.; Khanal, S.K.; Jia, Y.; Song, S.; Lu, H. Fundamental insights into ciprofloxacin adsorption by sulfate-reducing bacteria sludge: Mechanisms and thermodynamics. Chem. Eng. J. 2019, 378, 122103. [Google Scholar] [CrossRef]
- Carneiro, M.A.; Silva, T.A.; Teixeira, P.J.S.; Boaventura, R.A.R.; Botelho, C.M.S.; Pintor, A.M.A. New insights on antimony removal and recovery from water and wastewater using iron-coated cork granulates: Desorption on batch and fixed-bed column systems. Chem. Eng. Sci. 2024, 296, 120207. [Google Scholar] [CrossRef]
- Tella, M.; Pokrovski, G.S. Stability and structure of pentavalent antimony complexes with aqueous organic ligands. Chem. Geol. 2012, 292–293, 57–68. [Google Scholar] [CrossRef]
- Herath, I.; Vithanage, M.; Bundschuh, J. Antimony as a global dilemma: Geochemistry, mobility, fate and transport. Environ. Pollut. 2017, 223, 545–559. [Google Scholar] [CrossRef]
- Leuz, A.-K.; Mönch, H.; Johnson, C.A. Sorption of Sb(III) and Sb(V) to Goethite: Influence on Sb(III) Oxidation and Mobilization. Environ. Sci. Technol. 2006, 40, 7277–7282. [Google Scholar] [CrossRef]
- Pintor, A.M.A.; Vieira, B.R.C.; Boaventura, R.A.R.; Botelho, C.M.S. Removal of antimony from water by iron-coated cork granulates. Sep. Purif. Technol. 2020, 233, 116020. [Google Scholar] [CrossRef]
- Guo, X.; Wu, Z.; He, M.; Meng, X.; Jin, X.; Qiu, N.; Zhang, J. Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure. J. Hazard. Mater. 2014, 276, 339–345. [Google Scholar] [CrossRef]
- Cumbal, L.; SenGupta, A.K. Arsenic Removal Using Polymer-Supported Hydrated Iron(III) Oxide Nanoparticles: Role of Donnan Membrane Effect. Environ. Sci. Technol. 2005, 39, 6508–6515. [Google Scholar] [CrossRef]
- Meng, X.; Bang, S.; Korfiatis, G.P. Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride. Water Res. 2000, 34, 1255–1261. [Google Scholar] [CrossRef]
- Wijnja, H.; Schulthess, C.P. Vibrational Spectroscopy Study of Selenate and Sulfate Adsorption Mechanisms on Fe and Al (Hydr)oxide Surfaces. J. Colloid Interface Sci. 2000, 229, 286–297. [Google Scholar] [CrossRef]
- Brechbühl, Y.; Christl, I.; Elzinga, E.J.; Kretzschmar, R. Competitive sorption of carbonate and arsenic to hematite: Combined ATR-FTIR and batch experiments. J. Colloid Interface Sci. 2012, 377, 313–321. [Google Scholar] [CrossRef]
- Khare, N.; Hesterberg, D.; Martin, J.D. XANES Investigation of Phosphate Sorption in Single and Binary Systems of Iron and Aluminum Oxide Minerals. Environ. Sci. Technol. 2005, 39, 2152–2160. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, N.; Guo, Y.; Niu, D.; Sun, H.-B.; Yang, Y. Insights into adsorptive removal of antimony contaminants: Functional materials, evaluation and prospective. J. Hazard. Mater. 2021, 418, 126345. [Google Scholar] [CrossRef]
- Guo, F.; Wu, F.C.; Yu, F.; Bai, Y.C.; Fu, Z.Y.; Zhu, Y.R.; Guo, W.J. Fate and removal of antimony in response to stringent control activities after a mine tailing spill. Sci. Total Environ. 2019, 693, 133604. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, X.; Zhao, C.; Zhu, X.; Du, S. Adsorption and desorption of antimony acetate on sodium montmorillonite. J. Colloid Interface Sci. 2010, 345, 154–159. [Google Scholar] [CrossRef]
- Shan, C.; Ma, Z.; Tong, M. Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles. J. Hazard. Mater. 2014, 268, 229–236. [Google Scholar] [CrossRef]
- Zeng, H.; Yu, Y.; Wang, F.; Zhang, J.; Li, D. Arsenic(V) removal by granular adsorbents made from water treatment residuals materials and chitosan. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124036. [Google Scholar] [CrossRef]
- Qi, Z.; Lan, H.; Joshi, T.P.; Liu, R.; Liu, H.; Qu, J. Enhanced oxidative and adsorptive capability towards antimony by copper-doping into magnetite magnetic particles. RSC Adv. 2016, 6, 66990–67001. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, T.; Ren, B.; Shi, Z.; Hursthouse, A. Synthesis, Characterization, and Adsorptive Properties of Fe3O4/GO Nanocomposites for Antimony Removal. J. Anal. Methods Chem. 2017, 2017, 3012364. [Google Scholar] [CrossRef]
- Leng, Y.; Guo, W.; Su, S.; Yi, C.; Xing, L. Removal of antimony(III) from aqueous solution by graphene as an adsorbent. Chem. Eng. J. 2012, 211–212, 406–411. [Google Scholar] [CrossRef]
- Yu, T.-C.; Wang, X.-H.; Li, C. Removal of Antimony by FeCl3-Modified Granular-Activated Carbon in Aqueous Solution. J. Environ. Eng. 2014, 140, A4014001. [Google Scholar] [CrossRef]
- Ungureanu, G.; Filote, C.; Santos, S.C.R.; Boaventura, R.A.R.; Volf, I.; Botelho, C.M.S. Antimony oxyanions uptake by green marine macroalgae. J. Environ. Chem. Eng. 2016, 4, 3441–3450. [Google Scholar] [CrossRef]
- Iqbal, M.; Saeed, A.; Edyvean, R.G.J. Bioremoval of antimony(III) from contaminated water using several plant wastes: Optimization of batch and dynamic flow conditions for sorption by green bean husk (Vigna radiata). Chem. Eng. J. 2013, 225, 192–201. [Google Scholar] [CrossRef]
- Nancollas, G.H. The thermodynamics of metal-complex and ion-pair formation. Coord. Chem. Rev. 1970, 5, 379–415. [Google Scholar] [CrossRef]
- Gorman-Lewis, D.; Fein, J.B.; Jensen, M.P. Enthalpies and entropies of proton and cadmium adsorption onto Bacillus subtilis bacterial cells from calorimetric measurements. Geochim. Cosmochim. Acta 2006, 70, 4862–4873. [Google Scholar] [CrossRef]
- Du, H.; Lin, Y.P.; Chen, W.L.; Cai, P.; Rong, X.; Shi, Z.; Huang, Q. Copper adsorption on composites of goethite, cells of Pseudomonas putida and humic acid. Eur. J. Soil Sci. 2017, 68, 514–523. [Google Scholar] [CrossRef]
- Chen, M.-X.; Wu, Z.-B.; Luo, L.; Yang, Y.; Mao, Q.-M. The adsorption behavior and mechanism of antimony in water by jarosite ball milling mixed with nano zero-valent iron. J. Environ. Chem. Eng. 2024, 12, 113438. [Google Scholar] [CrossRef]
- Cheng, K.; Wu, Y.-N.; Zhang, B.; Li, F. New insights into the removal of antimony from water using an iron-based metal-organic framework: Adsorption behaviors and mechanisms. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125054. [Google Scholar] [CrossRef]
- Wu, T.-L.; Sun, Q.; Fang, G.-D.; Cui, P.-X.; Liu, C.; Alves, M.E.; Qin, W.-X.; Zhou, D.-M.; Shi, Z.-Q.; Wang, Y.-J. Unraveling the effects of gallic acid on Sb(III) adsorption and oxidation on goethite. Chem. Eng. J. 2019, 369, 414–421. [Google Scholar] [CrossRef]
- Bian, P.; Gao, B.; Zhu, J.; Yang, H.; Li, Y.; Ding, E.; Liu, Y.; Liu, Y.; Wang, S.; Shen, W. Adsorption of chitosan combined with nicotinamide-modified eupatorium adenophorum biochar to Sb3+: Application of DFT calculation. Int. J. Biol. Macromol. 2023, 240, 124273. [Google Scholar] [CrossRef] [PubMed]
Pseudo-first-order | Pseudo-second-order | ||||
qe (mg/g) | k1 (h−1) | r2 | qe (mg/g) | k2 (g/(mg∙min)) | r2 |
0.109 | 1.795 | 0.939 | 0.117 | 22.667 | 0.983 |
Weber–Morris particle pore diffusion model parameters | |||||
Stage1 | Stage2 | Stage3 | |||
C1 | k1 | C2 | k2 | C3 | k3 |
0.089 | 0.067 | 0.096 | 0.006 | 0.115 | 0.0004 |
T (K) | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|
qm (mg/g) | KL (L/mg) | R2 | KF | 1/n | R2 | |
298.15 | 24.379 | 0.614 | 0.987 | 7.859 | 0.441 | 0.974 |
308.15 | 31.969 | 0.364 | 0.968 | 8.234 | 0.494 | 0.912 |
318.15 | 43.695 | 0.289 | 0.996 | 9.416 | 0.545 | 0.985 |
Adsorbent | Sb(III) Maximum Adsorption Capacity/(mg/g) | Reference |
---|---|---|
CHFS | 24.37 | This study |
MNP@hematite | 36.7 | [46] |
Iron-coated cork granulates | 5.8 | [36] |
Cs functionalized iron nanosheet | 138.8 | [47] |
Cu-doped Fe3O4 | 43.55 | [48] |
Fe3O4/GO | 9.6 | [49] |
graphene | 8.056 | [50] |
AC | 2–3 | [51] |
C. sericea marine macroalgae | 2.1 | [52] |
Green bean husk | 20.1 | [53] |
Temperature (K) | ∆G0 (kJ/mol) | ∆H0 (kJ/mol) | ∆S0 (kJ/(mol∙k)) |
---|---|---|---|
298.15 | −6.597 | 30.129 | 0.122 |
308.15 | −7.248 | ||
318.15 | −9.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, H.; Zeng, Y.; Xu, H.; Sun, S.; Zhang, J.; Li, D. Sb(III) Removal by Granular Adsorbent Synthesized with Iron-Containing Water Treatment Residuals and Chitosan. Polymers 2024, 16, 3214. https://doi.org/10.3390/polym16223214
Zeng H, Zeng Y, Xu H, Sun S, Zhang J, Li D. Sb(III) Removal by Granular Adsorbent Synthesized with Iron-Containing Water Treatment Residuals and Chitosan. Polymers. 2024; 16(22):3214. https://doi.org/10.3390/polym16223214
Chicago/Turabian StyleZeng, Huiping, Yuwei Zeng, He Xu, Siqi Sun, Jie Zhang, and Dong Li. 2024. "Sb(III) Removal by Granular Adsorbent Synthesized with Iron-Containing Water Treatment Residuals and Chitosan" Polymers 16, no. 22: 3214. https://doi.org/10.3390/polym16223214
APA StyleZeng, H., Zeng, Y., Xu, H., Sun, S., Zhang, J., & Li, D. (2024). Sb(III) Removal by Granular Adsorbent Synthesized with Iron-Containing Water Treatment Residuals and Chitosan. Polymers, 16(22), 3214. https://doi.org/10.3390/polym16223214