Elastic Constants of Polymeric Fiber Composite Estimation Using Finite Element Method
Abstract
:1. Introduction
2. Materials and Methods
- (a)
- (b)
- Longitudinal vibration. The differential equations that describe the longitudinal vibration are:
- (c)
- Transverse vibration. If we consider the transverse vibrations of the beam, the differential equation that describes these vibrations is:
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brinson, H.F.; Morris, D.H.; Yeow, Y.I. A New Method for the Accelerated Characterization of Composite Materials. Proceeding of the Sixth International Conference on Experimental Stress Analysis, Munich, Germany, 18–22 September 1978. [Google Scholar]
- Xu, J.; Wang, H.; Yang, X.; Han, L.; Zhou, C. Application of TTSP to non-linear deformation in composite propellant. Emerg. Mater. Res. 2018, 7, 19–24. [Google Scholar] [CrossRef]
- Nakano, T. Applicability condition of time–temperature superposition principle (TTSP) to a multi-phase system. Mech. Time-Depend. Mater. 2012, 17, 439–447. [Google Scholar] [CrossRef]
- Achereiner, F.; Engelsing, K.; Bastian, M. Accelerated Measurement of the Long-Term Creep Behaviour of Plastics. Superconductivity 2017, 247, 389–402. [Google Scholar]
- Schaffer, B.G.; Adams, D.F. Nonlinear Viscoelastic Behavior of a Composite Material Using a Finite Element Micromechanical Analysis; Dept. Report UWME-DR-001-101-1, Dep. of Mech. Eng.; University of Wyoming: Laramie, WY, USA, 1980. [Google Scholar]
- Schapery, R. Nonlinear viscoelastic solids. Int. J. Solids Struct. 2000, 37, 359–366. [Google Scholar] [CrossRef]
- Violette, M.G.; Schapery, R. Time-Dependent Compressive Strength of Unidirectional Viscoelastic Composite Materials. Mech. Time-Depend. Mater. 2002, 6, 133–145. [Google Scholar] [CrossRef]
- Hashin, Z.; Rosen, B.W. The Elastic Moduli of Fiber-Reinforced Materials. J. Appl. Mech. 1964, 31, 223–232. [Google Scholar] [CrossRef]
- Hinterhoelzl, R.; Schapery, R. FEM Implementation of a Three-Dimensional Viscoelastic Constitutive Model for Particulate Composites with Damage Growth. Mech. Time-Depend. Mater. 2004, 8, 65–94. [Google Scholar] [CrossRef]
- Mohan, R.; Adams, D.F. Nonlinear creep-recovery response of a polymer matrix and its composites. Exp. Mech. 1985, 25, 262–271. [Google Scholar] [CrossRef]
- Findley, W.N.; Adams, C.H.; Worley, W.J. The Effect of Temperature on the Creep of Two Laminated Plastics as Interpreted by the Hyperbolic Sine Law and Activation Energy Theory. In Proceedings of the American Society for Testing and Materials, Conshohocken, PA, USA, 1 January 1948; Volume 48, pp. 1217–1239. [Google Scholar]
- Findley, W.N.; Peterson, D.B. Prediction of Long-Time Creep with Ten-Year Creep Data on Four Plastics Laminates. In Proceedings of the American Society for Testing and Materials, Sixty-First (61th) Annual Meeting, Boston, MA, USA, 26–27 June 1958; Volume 58. [Google Scholar]
- Dillard, D.A.; Brinson, H.F. A Nonlinear Viscoelastic Characterization of Graphite Epoxy Composites. In Proceedings of the 1982 Joint Conference on Experimental Mechanics, Oahu, HI, USA, 23–28 May 1982. [Google Scholar]
- Charentenary, F.X.; Zaidi, M.A. Creep Behavior of Carbon-Epoxy (+/−45o)2s Laminates. In Progess in Sciences and Composites; ICCM-IV; Hayashi, K., Umekawa, S., Eds.; The Japan Society for Composite Materials: Tokyo, Japan, 1982. [Google Scholar]
- Walrath, D.E. Viscoelastic response of a unidirectional composite containing two viscoelastic constituents. Exp. Mech. 1991, 31, 111–117. [Google Scholar] [CrossRef]
- Hashin, Z. On Elastic Behavior of Fibre Reinforced Materials of Arbitrary Transverse Phase Geometry. J. Mech. Phys. Solids 1965, 13, 119–134. [Google Scholar] [CrossRef]
- Bowles, D.E.; Griffin, O.H., Jr. Micromecjanics Analysis of Space Simulated Thermal Stresses in Composites. Part I: Theory and Unidirectional Laminates. J. Reinf. Plast. Compos. 1991, 10, 504–521. [Google Scholar]
- Zhao, Y.H.; Weng, G.J. Effective Elastic Moduli of Ribbon-Reinforced Composites. J. Appl. Mech. 1990, 57, 158–167. [Google Scholar] [CrossRef]
- Hill, R. Theory of Mechanical Properties of Fiber-Strengthened Materials: I, II, III. J. Mech. Phys. Solids 1964, 12, 189–218. [Google Scholar]
- Katouzian, M.; Vlase, S. Creep Response of Carbon-Fiber-Reinforced Composite Using Homogenization Method. Polymers 2021, 13, 867. [Google Scholar] [CrossRef]
- Hill, R. Continuum Micro-Mechanics of Elastoplastic Polycrystals. J. Mech. Phys. Solids 1965, 13, 89–101. [Google Scholar] [CrossRef]
- Weng, Y.M.; Wang, G.J. The Influence of Inclusion Shape on the Overall Viscoelastic Behavior of Compoisites. J. Appl. Mech. 1992, 59, 510–518. [Google Scholar] [CrossRef]
- Mori, T.; Tanaka, K. Average Stress in the Matrix and Average Elastic Energy of Materials with Misfitting Inclusions. Acta Metal. 1973, 21, 571–574. [Google Scholar] [CrossRef]
- Pasricha, A.; Van Duster, P.; Tuttle, M.E.; Emery, A.F. The Nonlinear Viscoelastic/Viscoplastic Behavior of IM6/5260 Graphite/Bismaleimide. In Proceedings of the VII International Congress on Experimental Mechanics, Las Vegas, NV, USA, 8–11 June 1992. [Google Scholar]
- Pintelon, R.; Guillaume, P.; Vanlanduit, S.; De Belder, K.; Rolain, Y. Identification of Young’s modulus from broadband modal analysis experiments. Mech. Syst. Signal Process. 2004, 18, 699–726. [Google Scholar] [CrossRef]
- Liu, J.J.; Liaw, B. Vibration and impulse responses of fiber-metal laminated beams. In Proceedings of the 20th IMAC Conference on Structural Dynamics, Los Angeles, CA, USA, 4–7 February 2002; Volume 4753, pp. 1411–1416. [Google Scholar]
- Hwang, Y.F.; Suzuki, H. A finite-element analysis on the free vibration of Japanese drum wood barrels under material property uncertainty. Acoust. Sci. Technol. 2016, 37, 115–122. [Google Scholar] [CrossRef]
- Kouroussis, G.; Ben Fekih, L.; Descamps, T. Assessment of timber element mechanical properties using experimental modal analysis. Constr. Build. Masterials 2017, 134, 254–261. [Google Scholar] [CrossRef]
- Yoshihara, H.; Yoshinobu, M.; Maruta, M. Interlaminar shear modulus of cardboard obtained by torsional and flexural vibration tests. Nord. Pulp Pap. Res. J. 2023, n38, 399–411. [Google Scholar] [CrossRef]
- Digilov, R.M. Flexural vibration test of a cantilever beam with a force sensor: Fast determination of Young’s modulus. Eur. J. Phys. 2008, 29, 589–597. [Google Scholar] [CrossRef]
- Swider, P.; Abidine, Y.; Assemat, P. Could Effective Mechanical Properties of Soft Tissues and Biomaterials at Mesoscale Be Obtained by Modal Analysis? Exp. Mech. 2023, 63, 1055–1065. [Google Scholar] [CrossRef]
- Yoshihara, H. Measurement of the Young’s and Shear Modulus of in-Plane Quasi-Isotropic Medium-Density Fiberboard by Flexural Vibration. Bioresources 2011, 6, 4871–4885. [Google Scholar] [CrossRef]
- Hao, L.N.; Gao, J.C.; Lin, H. A Novel Determination Method of IPMC Young’s Modulus Based on Cantilever Resonance Theory. Appl. Mech. Mater. 2011, 66, 747–752. [Google Scholar] [CrossRef]
- Lupea, I. The Modulus of Elasticity Estimation by using FEA and a Frequency Response Function. Acta Tech. Napoc. Ser. Appl. Math. Mech. Eng. 2014, 57, 493–496. [Google Scholar]
- Li, Y.; Li, Y.Q. Evaluation of elastic properties of fiber reinforced concrete with homogenization theory and finite element simulation. Constr. Build. Mater. 2019, 200, 301–309. [Google Scholar] [CrossRef]
- Nguyen, A.V.; Nguyen, T.C. Homogenization of Viscoelastic Composite Reinforced Woven Flax Fibers. In Proceedings of the 11th Joint Canada-Japan Workshop on Composites/1st Joint Canada-Japan-Vietnam Workshop on Composites, Design, Manifacturing and Applications of Composites, Ho Chi Minh, Vietnam, 8–10 August 2016; pp. 187–192. [Google Scholar]
- Matsuda, T.; Ohno, N. Predicting the elastic-viscoplastic and creep behaviour of polymer matrix composites using the homogenization theory. In Creep and Fatigue in Polymer Matrix Composites; Woodhead Publishing: Thorston, UK, 2011; pp. 113–148. [Google Scholar]
- Tian, W.L.; Qi, L.H.; Jing, Z. Numerical simulation on elastic properties of short-fiber-reinforced metal matrix composites: Effect of fiber orientation. Compos. Struct. 2016, 152, 408–417. [Google Scholar] [CrossRef]
- Zhu, T.L.; Wang, Z. Research and application prospect of short carbon fiber reinforced ceramic composites. J. Eur. Ceram. Soc. 2023, 43, 6699–6717. [Google Scholar] [CrossRef]
- Katouzian, M.; Vlase, S.; Marin, M.; Scutaru, M.L. Modeling Study of the Creep Behavior of Carbon-Fiber-Reinforced Composites: A Review. Polymers 2023, 15, 194. [Google Scholar] [CrossRef]
- Katouzian, M.; Vlase, S.; Scutaru, M.L. Finite Element Method-Based Simulation Creep Behavior of Viscoelastic Carbon-Fiber Composite. Polymers 2021, 13, 1017. [Google Scholar] [CrossRef]
- Scutaru, M.L.; Teodorescu-Draghicescu, H.; Vlase, S.; Marin, M. Advanced HDPE with increased stiffness used for water supply networks. J. Optoelectron. Adv. Mater. 2015, 17, 484–488. [Google Scholar]
- Rades, M. Mechanical Vibration, II, Structural Dynamics Modeling; Printech Publishing House: Bangalore, India, 2010. [Google Scholar]
- Negrean, I.; Crisan, A.V.; Vlase, S. A New Approach in Analytical Dynamics of Mechanical Systems. Symmetry 2020, 12, 95. [Google Scholar] [CrossRef]
- Vlase, S.; Teodorescu-Draghicescu, H.; Motoc, D.L.; Scutaru, M.L.; Serbina, L.; Calin, M.R. Behavior of multiphase fiber-reinforced polymers under short time cyclic loading. Optoelectron. Adv. Mater. Rapid Commun. 2011, 5, 419–423. [Google Scholar]
- Vlase, S.; Marin, M.; Ochsner, A. Considerations of the transverse vibration of a mechanical system with two identical bars. Proc. Inst. Mech. Engineers. Partl L-J. Mater. Des. Appl. 2019, 233, 1318–1323. [Google Scholar] [CrossRef]
- Teodorescu-Draghicescu, H.; Scutaru, M.L.; Rosu, D.; Calin, M.R.; Grigore, P. New Advanced Sandwich Composite with twill weave carbon and EPS. J. Optoelectron. Adv. Mater. 2013, 15, 199–203. [Google Scholar]
- Mollaei, S.; Babaei, M.; Asemi, K. Torsional buckling of functionally graded graphene reinforced composite laminated cylindrical panel. Arch. Appl. Mech. 2023, 93, 427–435. [Google Scholar] [CrossRef]
- Teodorescu-Draghicescu, H.; Vlase, S.; Scutaru, L.; Serbina, L.; Calin, M.R. Hysteresis effect in a three-phase polymer matrix composite subjected to static cyclic loadings. Optoelectron. Adv. Mater. Rapid Commun. 2011, 5, 273–277. [Google Scholar]
- Bratu, P.; Dobrescu, C.; Nitu, M.C. Dynamic Response Control of Linear Viscoelastic Materials as Resonant Composite Rheological Models. Rom. J. Acoust. Vib. 2023, 20, 73–77. [Google Scholar]
- Fish, J.; Belytschko, T. A First Course in Finite Element; John Wiley & Sons, Ltd.: Chichester, UK; Hoboken, NJ, USA, 2007; pp. 151–186, 215–240. [Google Scholar]
- Bratu, P.; Nitu, M.C.; Tonciu, O. Effect of Vibration Transmission in the Case of the Vibratory Roller Compactor. Rheological Models. Rom. J. Acoust. Vib. 2023, 20, 67–72. [Google Scholar]
- Behera, A.; Rajak, D.K.; Pruncu, C.I. Current global scenario of Sputter deposited NiTi smartsystems. Rheol. Models 2020, 9, 14582–14598. [Google Scholar]
Mode No. | [Hz] | Representation | [GPa] |
---|---|---|---|
3 | 82,288.62 | 5.2129 | |
5 | 164,757.2 | 5.2243 | |
8 | 247,584.1 | 5.2432 | |
Average shear modulus (GPa) | 5.226834 |
Mode No. | Eigenfrequency [Hz] | Representation | ; EL [GPa] |
---|---|---|---|
9 | 250,458.3 | 48.2915 | |
16 | 500,238.9 | 48.1609 | |
Average longitudinal Young’s modulus E (GPa) | 48.2262 |
Mode No. | Eigenfrequency [Hz] | Representation | [GPa] | |
---|---|---|---|---|
1 | 22,159.00 | 4.730040744862704 | 35.7752 | |
2 | 55,787.45 | 7.8532046240958376 | 34.5044 | |
4 | 116,467.3 | 10.995607838001671 | 35.6093 | |
Average transversal modulus (GPa) | 35.2963 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itu, C.; Scutaru, M.L.; Vlase, S. Elastic Constants of Polymeric Fiber Composite Estimation Using Finite Element Method. Polymers 2024, 16, 354. https://doi.org/10.3390/polym16030354
Itu C, Scutaru ML, Vlase S. Elastic Constants of Polymeric Fiber Composite Estimation Using Finite Element Method. Polymers. 2024; 16(3):354. https://doi.org/10.3390/polym16030354
Chicago/Turabian StyleItu, Calin, Maria Luminita Scutaru, and Sorin Vlase. 2024. "Elastic Constants of Polymeric Fiber Composite Estimation Using Finite Element Method" Polymers 16, no. 3: 354. https://doi.org/10.3390/polym16030354
APA StyleItu, C., Scutaru, M. L., & Vlase, S. (2024). Elastic Constants of Polymeric Fiber Composite Estimation Using Finite Element Method. Polymers, 16(3), 354. https://doi.org/10.3390/polym16030354