Icephobic Coating Based on Novel SLIPS Made of Infused PTFE Fibers for Aerospace Application
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials and Reagents
2.2. Fabrication Techniques
2.2.1. Solution and Dispersion Preparation
2.2.2. Electrospinning (ES) and Electrospraying (SP)
Coating Fabrication Process
- (i)
- Electrospraying + HT0
- (ii)
- Electrospinning + HT1
- (iii)
- HT2 + Membrane sticking + Silicon oil infusion
2.3. Characterization Techniques
3. Results and Discussion
3.1. Samples Thickness and Surface Morphology
3.2. Chemical Composition
3.3. Wetting Properties
3.4. Ice Adhesion Performance
3.4.1. Static Ice at IFAM and INTA
3.4.2. Impact Ice in IWT at INTA (Glaze and Rime)
3.4.3. Comparison with Reference Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yamazaki, M.; Jemcov, A.; Sakaue, H. A Review on the Current Status of Icing Physics and Mitigation in Aviation. Aerospace 2021, 8, 188. [Google Scholar] [CrossRef]
- Fakorede, O.; Feger, Z.; Ibrahim, H.; Ilinca, A.; Perron, J.; Masson, C. Ice protection systems for wind turbines in cold climate: Characteristics, comparisons and analysis. Renew. Sustain. Energy Rev. 2016, 65, 662–675. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, R.; Yi, X. Research and development of anti-icing/deicing techniques for vessels: Review. Ocean Eng. 2022, 260, 112008. [Google Scholar] [CrossRef]
- Lankford, T.T. Aircraft Icing: A Pilot’s Guide; McGraw-Hill: New York, NY, USA, 2000; ISBN 0071341390. [Google Scholar]
- Nosonovsky, M.; Hejazi, V. Why Superhydrophobic Surfaces Are Not Always Icephobic. ACS Nano 2012, 6, 8488–8491. [Google Scholar] [CrossRef]
- Jung, S.; Dorrestijn, M.; Raps, D.; Das, A.; Megaridis, C.M.; Poulikakos, D. Are Superhydrophobic Surfaces Best for Icephobicity? Langmuir 2011, 27, 3059–3066. [Google Scholar] [CrossRef]
- Kreder, M.J.; Alvarenga, J.; Kim, P.; Aizenberg, J. Design of anti-icing surfaces: Smooth, textured or slippery? Nat. Rev. Mater. 2016, 1, 15003. [Google Scholar] [CrossRef]
- Lein, H.L. Coatings and surfaces with hydrophobic and anti-icing properties. Front. Nanosci. 2019, 14, 257–269. [Google Scholar]
- Hejazi, V.; Sobolev, K.; Nosonovsky, M. From superhydrophobicity to icephobicity: Forces and interaction analysis. Sci. Rep. 2013, 3, 2194. [Google Scholar] [CrossRef]
- Arianpour, F.; Farzaneh, M.; Kulinich, S.A. Hydrophobic and ice-retarding properties of doped silicone rubber coatings. Appl. Surf. Sci. 2013, 265, 546–552. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; He, M.; Li, K.; Cui, D.; Zhang, Q.; Zeng, X.; Zhang, Y.; Wang, J.; Song, Y. Superhydrophobic surfaces cannot reduce ice adhesion. Appl. Phys. Lett. 2012, 101, 111603. [Google Scholar] [CrossRef]
- Kim, P.; Wong, T.-S.; Alvarenga, J.; Kreder, M.J.; Adorno-Martinez, W.E.; Aizenberg, J. Liquid-Infused Nanostructured Surfaces with Extreme Anti-Ice and Anti-Frost Performance. ACS Nano 2012, 6, 6569–6577. [Google Scholar] [CrossRef]
- Guerin, F.; Laforte, C.; Farinas, M.-I.; Perron, J. Analytical model based on experimental data of centrifuge ice adhesion tests with different substrates. Cold Reg. Sci. Technol. 2016, 121, 93–99. [Google Scholar] [CrossRef]
- Rønneberg, S.; He, J.; Zhang, Z. The need for standards in low ice adhesion surface research: A critical review. J. Adhes. Sci. Technol. 2020, 34, 319–347. [Google Scholar] [CrossRef]
- Jamil, M.I.; Zhan, X.; Chen, F.; Cheng, D.; Zhang, Q. Durable and Scalable Candle Soot Icephobic Coating with Nucleation and Fracture Mechanism. ACS Appl. Mater. Interfaces 2019, 11, 31532–31542. [Google Scholar] [CrossRef]
- Davis, A.; Yeong, Y.H.; Steele, A.; Bayer, I.S.; Loth, E. Superhydrophobic Nanocomposite Surface Topography and Ice Adhesion. ACS Appl. Mater. Interfaces 2014, 6, 9272–9279. [Google Scholar] [CrossRef]
- Huang, W.; Huang, J.; Guo, Z.; Liu, W. Icephobic/anti-icing properties of superhydrophobic surfaces. Adv. Colloid Interface Sci. 2022, 304, 102658. [Google Scholar] [CrossRef]
- Varanasi, K.K.; Deng, T.; Smith, J.D.; Hsu, M.; Bhate, N. Frost formation and ice adhesion on superhydrophobic surfaces. Appl. Phys. Lett. 2010, 97, 234102. [Google Scholar] [CrossRef]
- Kulinich, S.A.; Farhadi, S.; Nose, K.; Du, X.W. Superhydrophobic Surfaces: Are They Really Ice-Repellent? Langmuir 2011, 27, 25–29. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546. [Google Scholar] [CrossRef]
- Saffar, M.A.; Eshaghi, A.; Dehnavi, M.R. Fabrication of superhydrophobic, self-cleaning and anti-icing ZnO/PTFE-SiO2 nano-composite thin film. Mater. Chem. Phys. 2021, 259, 124085. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Ge, Q.; Yang, L.-L.; Shi, X.-J.; Li, J.-J.; Yang, D.-Q.; Sacher, E. Durable superhydrophobic PTFE films through the introduction of micro- and nanostructured pores. Appl. Surf. Sci. 2015, 339, 151–157. [Google Scholar] [CrossRef]
- Jafari, R.; Momen, G.; Farzaneh, M. Durability enhancement of icephobic fluoropolymer film. J. Coat. Technol. Res. 2016, 13, 405–412. [Google Scholar] [CrossRef]
- Shi, L.; Hu, J.; Lin, X.; Fang, L.; Wu, F.; Xie, J.; Meng, F. A robust superhydrophobic PPS-PTFE/SiO2 composite coating on AZ31 Mg alloy with excellent wear and corrosion resistance properties. J. Alloys Compd. 2017, 721, 157–163. [Google Scholar] [CrossRef]
- Price, D.M.; Jarratt, M. Thermal conductivity of PTFE and PTFE composites. Thermochim. Acta 2002, 392–393, 231–236. [Google Scholar] [CrossRef]
- Dhanumalayan, E.; Joshi, G.M. Performance properties and applications of polytetrafluoroethylene (PTFE)—A review. Adv. Compos. Hybrid Mater. 2018, 1, 247–268. [Google Scholar] [CrossRef]
- Kianfar, P.; Bongiovanni, R.; Ameduri, B.; Vitale, A. Electrospinning of Fluorinated Polymers: Current State of the Art on Processes and Applications. Polym. Rev. 2023, 63, 127–199. [Google Scholar] [CrossRef]
- Nthunya, L.N.; Gutierrez, L.; Derese, S.; Nxumalo, E.N.; Verliefde, A.R.; Mamba, B.B.; Mhlanga, S.D. A review of nanoparticle-enhanced membrane distillation membranes: Membrane synthesis and applications in water treatment. J. Chem. Technol. Biotechnol. 2019, 94, 2757–2771. [Google Scholar] [CrossRef]
- Eykens, L.; De Sitter, K.; Dotremont, C.; Pinoy, L.; Van der Bruggen, B. Membrane synthesis for membrane distillation: A review. Sep. Purif. Technol. 2017, 182, 36–51. [Google Scholar] [CrossRef]
- Haider, S.; Haider, A. Electrospinning and Electrospraying—Techniques and Applications; Haider, S., Haider, A., Eds.; IntechOpen: London, UK, 2019; ISBN 978-1-78984-700-0. [Google Scholar]
- TAS, M.; Memon, H.; Xu, F.; Ahmed, I.; Hou, X. Electrospun nanofibre membrane based transparent slippery liquid-infused porous surfaces with icephobic properties. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124177. [Google Scholar] [CrossRef]
- Wong, T.-S.; Kang, S.H.; Tang, S.K.Y.; Smythe, E.J.; Hatton, B.D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443–447. [Google Scholar] [CrossRef]
- Urata, C.; Dunderdale, G.J.; England, M.W.; Hozumi, A. Self-lubricating organogels (SLUGs) with exceptional syneresis-induced anti-sticking properties against viscous emulsions and ices. J. Mater. Chem. A 2015, 3, 12626–12630. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, D.; Lu, Z. Slippery liquid-infused porous surface bio-inspired by pitcher plant for marine anti-biofouling application. Colloids Surf. B Biointerfaces 2015, 136, 240–247. [Google Scholar] [CrossRef]
- Work, A.; Lian, Y. A critical review of the measurement of ice adhesion to solid substrates. Prog. Aerosp. Sci. 2018, 98, 1–26. [Google Scholar] [CrossRef]
- Parent, O.; Ilinca, A. Anti-icing and de-icing techniques for wind turbines: Critical review. Cold Reg. Sci. Technol. 2011, 65, 88–96. [Google Scholar] [CrossRef]
- Amendola, A.; Mingione, G. On the problem of icing for modern civil aircraft. Air Sp. Eur. 2001, 3, 214–217. [Google Scholar] [CrossRef]
- Kulinich, S.A.; Farzaneh, M. Ice adhesion on super-hydrophobic surfaces. Appl. Surf. Sci. 2009, 255, 8153–8157. [Google Scholar] [CrossRef]
- Liu, J.; Janjua, Z.; Roe, M.; Xu, F.; Turnbull, B.; Choi, K.-S.; Hou, X. Super-Hydrophobic/Icephobic Coatings Based on Silica Nanoparticles Modified by Self-Assembled Monolayers. Nanomaterials 2016, 6, 232. [Google Scholar] [CrossRef]
- Soltis, J.; Palacios, J.; Eden, T.; Wolfe, D. Evaluation of Ice-Adhesion Strength on Erosion-Resistant Materials. AIAA J. 2015, 53, 1825–1835. [Google Scholar] [CrossRef]
- Rønneberg, S.; Laforte, C.; Volat, C.; He, J.; Zhang, Z. The effect of ice type on ice adhesion. AIP Adv. 2019, 9, 55304. [Google Scholar] [CrossRef]
- DIN EN ISO 2808:2019; Beschichtungsstoffe—Bestimmung der Schichtdicke. Beuth Verlag GmbH: Berlin, Germany, 2019.
- DIN EN ISO 19403-2; Beschichtungsstoffe—Benetzbarkeit—Teil 2: Bestimmung der Freien Oberflächenenergie Fester Oberflächen Durch Messung des Kontaktwinkels. Beuth Verlag GmbH: Berlin, Germany, 2020.
- Rehfeld, N.; Speckmann, B.; Stenzel, V. Parameter Study for the Ice Adhesion Centrifuge Test. Appl. Sci. 2022, 12, 1583. [Google Scholar] [CrossRef]
- Vicente, A.; Rivero, P.J.; García, P.; Mora, J.; Carreño, F.; Palacio, J.F.; Rodríguez, R. Icephobic and Anticorrosion Coatings Deposited by Electrospinning on Aluminum Alloys for Aerospace Applications. Polymers 2021, 13, 4164. [Google Scholar] [CrossRef]
- Laforte, C.; Beisswenger, A. Icephobic Materials Centrifuge Adhesion Test. In Proceedings of the IWAIS XI, Montréal, QC, Canada, 16 June 2005; p. 15. [Google Scholar]
- Zhao, B.; Sun, S.; Luo, Y.; Cheng, Y. Fabrication of Polytetrafluoroethylene Coated Micron Aluminium with Enhanced Oxidation. Materials 2020, 13, 3384. [Google Scholar] [CrossRef]
- Shen, Z.; Simon, G.P.; Cheng, Y.-B. Comparison of solution intercalation and melt intercalation of polymer–clay nanocomposites. Polymer 2002, 43, 4251–4260. [Google Scholar] [CrossRef]
- Vicente, A.; Rivero, P.J.; Urdiroz, U.; García, P.; Mora, J.; Palacio, J.F.; Palomares, F.J.; Rodríguez, R. Novel Design of Superhydrophobic and Anticorrosive PTFE and PAA + β − CD Composite Coating Deposited by Electrospinning, Spin Coating and Electrospraying Techniques. Polymers 2022, 14, 4356. [Google Scholar] [CrossRef]
- Shirtcliffe, N.J.; McHale, G.; Atherton, S.; Newton, M.I. An introduction to superhydrophobicity. Adv. Colloid Interface Sci. 2010, 161, 124–138. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Tieu, A.K.; Wan, S.; Zhu, H.; Pham, S.T.; Johnston, B. Surface characteristics and wettability of superhydrophobic silanized inorganic glass coating surfaces textured with a picosecond laser. Appl. Surf. Sci. 2021, 537, 147808. [Google Scholar] [CrossRef]
- Kim, H.; Noh, K.; Choi, C.; Khamwannah, J.; Villwock, D.; Jin, S. Extreme Superomniphobicity of Multiwalled 8 nm TiO2 Nanotubes. Langmuir 2011, 27, 10191–10196. [Google Scholar] [CrossRef]
- Shirtcliffe, N.J.; McHale, G.; Newton, M.I.; Chabrol, G.; Perry, C.C. Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces. Adv. Mater. 2004, 16, 1929–1932. [Google Scholar] [CrossRef]
- Yu, Z.; Yu, S.; Laijun, L.; Wenjing, L.; Chaojing, L.; Hong, J.; Fujun, W.; Lu, W. Construction of ultrasmooth PTFE membrane for preventing bacterial adhesion and cholestasis. Colloids Surf. B Biointerfaces 2022, 213, 112332. [Google Scholar] [CrossRef]
Step (Sx) | Composition | Procedures | Heat Treatment (HT) | ||
---|---|---|---|---|---|
Temp (°C) | Time (min) | ||||
S1 | PTFE-2 | SP + HT0 | HT0 | 25 | 60 |
S2 | PEO + PTFE | S1 + ES + HT1 | HT1 | 380 | 10 |
S3 | Si-oil | S2 + HT2 + St + Inf | HT2 | 25 | 60 |
Parameters | SP | ES |
---|---|---|
Applied voltage (needle/collector) (KV) | 8.90/−3.00 | 2.72/−3.05 |
Flow rate (mL/h) | 0.5 | 1.0 |
Deposition time/sample (min) | 30 | 60 |
Distance | 15 | 20 |
Static Ice IFAM | Static Ice INTA | Impact Ice (IWT, INTA) | ||
---|---|---|---|---|
Condition 1 | Condition 2 | |||
Wind speed (m/s) | ―― | ―― | 70 | 70 |
Temperature (°C) | –8 ± 0.5° | –8 ± 0.5° | –5 ± 0.5° | –15 ± 0.5° |
Liquid water content (g/m3) | ―― | ―― | 0.5 | 0.5 |
Median volumen diameter (µm) | ―― | ―― | 40 | 20 |
Icing duration | 90 min | 90 min | 4 min | 4 min |
Ice área (cm2) | 9 | 9 | 9 | 9 |
Resulting ice mass (g) | 3 | 3 | 3 | 3 |
Static Ice | Static Ice | Impact Ice (IWT, INTA) | |
---|---|---|---|
IFAM | INTA | Condition 1 | Condition 2 |
glaze ice, compact | glaze ice, compact | glaze ice | rime ice |
Sample | Thickness (µm) | Df (µm) | Ps (nm) |
---|---|---|---|
F(PTFE) | 224 ± 7 | 1.32 ± 0.13 | 146.54 ± 27.63 |
F(PTFE) | F(SLIPS) | |
---|---|---|
/WSA | ||
IWT Ice (kPa) | Static Ice (kPa) | |
---|---|---|
AA6061-INTA | ||
PTFE tape-INTA | ||
PTFE tape-IFAM | ― |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vicente, A.; Rivero, P.J.; Rehfeld, N.; Stake, A.; García, P.; Carreño, F.; Mora, J.; Rodríguez, R. Icephobic Coating Based on Novel SLIPS Made of Infused PTFE Fibers for Aerospace Application. Polymers 2024, 16, 571. https://doi.org/10.3390/polym16050571
Vicente A, Rivero PJ, Rehfeld N, Stake A, García P, Carreño F, Mora J, Rodríguez R. Icephobic Coating Based on Novel SLIPS Made of Infused PTFE Fibers for Aerospace Application. Polymers. 2024; 16(5):571. https://doi.org/10.3390/polym16050571
Chicago/Turabian StyleVicente, Adrián, Pedro J. Rivero, Nadine Rehfeld, Andreas Stake, Paloma García, Francisco Carreño, Julio Mora, and Rafael Rodríguez. 2024. "Icephobic Coating Based on Novel SLIPS Made of Infused PTFE Fibers for Aerospace Application" Polymers 16, no. 5: 571. https://doi.org/10.3390/polym16050571
APA StyleVicente, A., Rivero, P. J., Rehfeld, N., Stake, A., García, P., Carreño, F., Mora, J., & Rodríguez, R. (2024). Icephobic Coating Based on Novel SLIPS Made of Infused PTFE Fibers for Aerospace Application. Polymers, 16(5), 571. https://doi.org/10.3390/polym16050571