Effect of Different Primers on Shear Bond Strength of Base Metal Alloys and Zirconia Frameworks
Abstract
:1. Introduction
2. Materials and Methods
Primer | Functional Components | Scope of Application | Application | Batch No. |
---|---|---|---|---|
SunCera Metal Primer (Merz Dental, Luetjenburg, Germany) | phosphonic acid monomer, thiocticacid monomer, acetone | metal, PEEK | Air-particle abrasion (50–110 µm), clean with oil-free compressed air, apply the primer with a brush, leave for 10 s. | 051706 |
Metal Primer Z (GC, Tokyo, Japan) | 10-MDP, MDTP | metal, zirconia | Air-particle abrasion, clean with oil-free compressed air, apply a thin layer on bonding surface, allow to dry. | 1810161 |
Reliance Metal Primer (Reliance Orthodontic Products Inc., Itasca, IL, USA) | 4-META [27,28] | metal | Air-particle abrasion of surface, rinse and dry thoroughly, application of 1 coat of primer on surface, leave for 30 s. | 182171 |
Alloy Primer (Kuraray-Noritake, Nagoya, Japan) | 10-MDP, VBATDT | metal | Air-particle abrasion, clean, apply a thin coating on the surface, leave for 5 s reaction time. | 580093 |
MKZ Primer (bredent, Senden, Germany) | MPS, 10-MDP | metal, ceramic, zirconia | Air-particle abrasion (metal framework: 110 µm, 3–4 bar/ceramic or zirconia: 110 µm, 2 bars), impurities can be removed with alcohol and a clean brush, no cleaning with steam jet, application of primer and rest for 30 s for evaporation. | 471448 |
Monobond Plus (IvoclarVivadent, Schaan, Lichtenstein) | Alcohol solution of silane methacrylate, 10-MDP [29], sulfide methacrylate | universal primer | Air-particle abrasion, if necessary ultrasonic cleaning of restoration for about 1 min, rinse with water spray and dry with oil-free compressed air, apply a thin coat of primer with a brush, rest for reaction time for 60 s, disperse any remaining excess with a strong stream of air. | W10892 |
ArtPrime Plus Metal Primer (Merz Dental, Luetjenburg, Germany) | Acetone, phosphonic acid monomer, thioctic acid | universal metal primer | Air-particle abrasion (50–110 µm), clean with water and dry with oil-free compressed air, apply the primer with a brush, leave for 10 s. | 011918 |
Clearfil Ceramic Primer Plus (Kuraray-Noritake, Nagoya, Japan) | MPS,10-MDP, ethanol | Universal primer | Air-particle abrasion (30–50 µm, 1–4 bars according to framework material), ultrasonic cleaning for 2 min, dry with oil-free compressed air, apply the primer with a brush, dry the surface with mild oil-free air flow. | BA0031 |
3. Results
3.1. Adhesive Bond on BMA Base
3.2. Adhesive Bond on Zirconia Base
3.3. Differences in Shear Bond Strength between BMA and Zirconia Base
3.4. Descriptive Analysis of Fracture Mode
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alqutaibi, A.Y.; Baik, A.; Almuzaini, S.A.; Farghal, A.E.; Alnazzawi, A.A.; Borzangy, S.; Aboalrejal, A.N.; AbdElaziz, M.H.; Mahmoud, I.I.; Zafar, M.S. Polymeric denture base materials: A review. Polymers 2023, 15, 3258. [Google Scholar] [CrossRef]
- Al Jabbari, Y.S. Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: A review of the literature. J. Adv. Prosthodont. 2014, 6, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Manicone, P.F.; Iommetti, P.R.; Raffaelli, L. An overview of zirconia ceramics: Basic properties and clinical applications. J. Dent. 2007, 35, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Shafiei, F.; Fattah, Z.; Kiomarsi, N.; Dashti, M.H. Influence of primers and additional resin layer on zirconia repair bond strength. J. Prosthodont. 2019, 28, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Dal Piva, A.M.O.; Tribst, J.P.M.; Borges, A.L.S.; Souza, R.; Bottino, M.A. CAD-FEA modeling and analysis of different full crown monolithic restorations. Dent. Mater. 2018, 34, 1342–1350. [Google Scholar] [CrossRef] [PubMed]
- Zarone, F.; Di Mauro, M.I.; Ausiello, P.; Ruggiero, G.; Sorrentino, R. Current status on lithium disilicate and zirconia: A narrative review. BMC Oral Health 2019, 19, 134. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Keul, C.; Eichberger, M.; Figge, D.; Edelhoff, D.; Lümkemann, N. Three generations of zirconia: From veneered to monolithic. Part I. Quintessence Int. 2017, 48, 369–380. [Google Scholar]
- Stawarczyk, B.; Keul, C.; Eichberger, M.; Figge, D.; Edelhoff, D.; Lümkemann, N. Three generations of zirconia: From veneered to monolithic. Part II. Quintessence Int. 2017, 48, 441. [Google Scholar]
- Alsadon, O.A. Adhesion concepts and techniques for laboratory-processed indirect dental restorations. Saudi Dent. J. 2022, 34, 661–668. [Google Scholar] [CrossRef]
- Hahnel, S.; Bürgers, R.; Rosentritt, M.; Handel, G.; Behr, M. Analysis of veneer failure of removable prosthodontics. Gerodontology 2012, 29, e1125–e1128. [Google Scholar] [CrossRef]
- Fernandes, C.P.; Glantz, P.O.; Svensson, S.A.; Bergmark, A. Reflection photoelasticity: A new method for studies of clinical mechanics in prosthetic dentistry. Dent. Mater. 2003, 19, 106–117. [Google Scholar] [CrossRef]
- Zoidis, P.; Panagiota, S.; Polyzois, G. A Fixed Telescopic Prosthesis Designed to Retrieve and Convert to Fixed-Removable Combination Case: A Clinical Report. Acta Stomatol. Croat. 2015, 49, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Alsadon, O.; Patrick, D.; Johnson, A.; Pollington, S.; Wood, D. Fracture resistance of zirconia-composite veneered crowns in comparison with zirconia-porcelain crowns. Dent. Mater. J. 2017, 36, 289–295. [Google Scholar] [CrossRef]
- Rauch, A.; Heinzmann, W.; Rosentritt, M.; Hahnel, S.; Schmidt, M.B.; Fuchs, F.; Koenig, A. Aging and Fracture Resistance of Implant-Supported Molar Crowns with a CAD/CAM Resin Composite Veneer Structure. J. Clin. Med. 2023, 12, 5997. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, K.; Komine, F.; Fushiki, R.; Blatz, M.B.; Kamio, S.; Matsumura, H. Fracture resistance of single-tooth implant-supported zirconia-based indirect composite-layered molar restorations. Clin. Oral. Implant. Res. 2014, 25, 983–991. [Google Scholar] [CrossRef]
- Raszewski, Z.; Brząkalski, D.; Derpeński, Ł.; Jałbrzykowski, M.; Przekop, R.E. Aspects and principles of material connections in Restorative dentistry—A comprehensive review. Materials 2022, 15, 7131. [Google Scholar] [CrossRef] [PubMed]
- Cristoforides, P.; Amaral, R.; May, L.G.; Bottino, M.A.; Valandro, L.F. Composite resin to yttria stabilized tetragonal zirconia polycrystal bonding: Comparison of repair methods. Oper. Dent. 2012, 37, 263–271. [Google Scholar] [CrossRef]
- Sanohkan, S.; Kukiattrakoon, B.; Larpboonphol, N.; Sae-Yib, T.; Jampa, T.; Manoppan, S. The effect of various primers on shear bond strength of zirconia ceramic and resin composite. J. Conserv. Dent. 2013, 16, 499. [Google Scholar]
- Kawashima, S.; Nagai, Y.; Shinkai, K. Effect of silane coupling treatment and airborne-particle abrasion on shear bond strength between photo-cured bulk-fill flowable composite resin and silverpalladium-copper-gold alloy using self-adhesive resin cement. Dent. Mater. J. 2019, 38, 418–423. [Google Scholar] [CrossRef]
- Ikemura, K.; Kojima, K.; Endo, T.; Kadoma, Y. Effect of the combination of dithiooctanoate monomers and acidic adhesive monomers on adhesion to precious metals, precious metal alloys and non-precious metal alloys. Dent. Mater. J. 2011, 30, 469–477. [Google Scholar] [CrossRef]
- Mahgoli, H.; Arshad, M.; Rasouli, K.; Sobati, A.A.; Shamshiri, A.R. Repair Bond Strength of Composite to Zirconia Ceramic Using Two Types of Zirconia Primers. Front. Dent. 2019, 16, 342–350. [Google Scholar] [CrossRef]
- Bagby, M.; Marshall, S.; Marshall, G., Jr. Metal ceramic compatibility: A review of the literature. J. Prosth. Dent. 1990, 63, 21–25. [Google Scholar] [CrossRef]
- Ikemura, K.; Endo, T.; Kadoma, Y. A review of the developments of multi-purpose primers and adhesives comprising novel dithiooctanoate monomers and phosphonic acid monomers. Dent. Mater. J. 2012, 31, 1–25. [Google Scholar] [CrossRef]
- Klaisiri, A.; Maneenacarith, A.; Jirathawornkul, N.; Suthamprajak, P.; Sriamporn, T.; Thamrongananskul, N. The effect of multiple applications of phosphate-containing primer on shear bond strength between zirconia and resin composite. Polymers 2022, 14, 4174. [Google Scholar] [CrossRef]
- Ajay, R.; JafarAbdulla, M.U.; Sivakumar, J.S.; Baburajan, K.; Rakshagan, V.; Eyeswarya, J. Dental Alloy Adhesive Primers and Bond Strength at Alloy–Resin Interface: A Systematic Review and Meta-analyses. J. Contemp. Dent. Pract. 2023, 24, 521–544. [Google Scholar] [CrossRef] [PubMed]
- DIN EN ISO 10477:2020; Dentistry—Polymer-Based Crown and Veneering Materials. ISO: Geneva, Switzerland, 2020.
- Gross, M.W.; Foley, T.F.; Mamandras, A.H. Direct bonding to Adlloy-treated amalgam. Am. J. Orthod. Dentofac. Orthop. 1997, 112, 252–258. [Google Scholar] [CrossRef]
- Büyükyilmaz, T.; Zachrisson, B.U. Improved orthodontic bonding to silver amalgam. Part 2. Lathe-cut, admixed, and spherical amalgams with different intermediate resins. Angle Orthod. 1998, 68, 337–344. [Google Scholar]
- Chen, C.L.; Chi, C.W.; Lee, C.Y.; Tsai, Y.L.; Kasimayan, U.; Mahesh, P.O.M.; Lin, H.P.; Chiang, Y.C. Effects of surface treatments of bioactive tricalcium silicate-based restorative material on the bond strength to resin composite. Dent. Mater. 2023, 40, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Menzies, K.L.; Jones, L. The impact of contact angle on the biocompatibility of biomaterials. Optom. Vis. Sci. 2010, 87, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Al-Akhali, M.; Al-Dobaei, E.; Wille, S.; Mourshed, B.; Kern, M. Influence of elapsed time between airborne-particle abrasion and bonding to zirconia bond strength. Dent. Mater. 2021, 37, 516–522. [Google Scholar] [CrossRef]
- Tiller, H.J.; Göbel, R.; Magnus, B.; Musil, R.; Garschke, A.; Lockowandt, P.; Odén, A. Sand blasting procedures and its effect on the surface properties of dental alloys (II). Quintessenz 1985, 36, 2151–2158. [Google Scholar] [PubMed]
- Lümkemann, N.; Eichberger, M.; Stawarczyk, B. Different surface modifications combined with universal adhesives: The impact on the bonding properties of zirconia to composite resin cement. Clin. Oral Investig. 2019, 23, 3941–3950. [Google Scholar] [CrossRef] [PubMed]
- Ishii, R.; Tsujimoto, A.; Takamizawa, T.; Tsubota, K.; Suzuki, T.; Shimamura, Y.; Miyazaki, M. Influence of surface treatment of contaminated zirconia on surface free energy and resin cement bonding. Dent. Mater. J. 2015, 34, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Yamamoto, M.; Fujishima, A.; Miyazaki, T.; Hisamitsu, H.; Kojima, K.; Kadoma, Y. Raman and IR studies on adsorption behavior of adhesive monomers in a metal primer for Au, Ag, Cu, and Cr surfaces. J. Biomed. Mater. Res. 2002, 62, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Ohno, H.; Araki, Y.; Sagara, M. The adhesion mechanism of dental adhesive resin to the alloy--relationship between Co-Cr alloy surface structure analyzed by ESCA and bonding strength of adhesive resin. Dent. Mater. J. 1986, 5, 46–65. [Google Scholar] [CrossRef] [PubMed]
- Kern, M. Bonding to oxide ceramics—Laboratory testing versus clinical outcome. Dent. Mater. 2015, 31, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Nagaoka, N.; Yoshihara, K.; Feitosa, V.P.; Tamada, Y.; Irie, M.; Yoshida, Y.; Van Meerbeek, B.; Hayakawa, S. Chemical interaction mechanism of 10-MDP with zirconia. Sci. Rep. 2017, 7, 45563. [Google Scholar] [CrossRef] [PubMed]
- Blatz, M.B.; Sadan, A.; Kern, M. Resin-ceramic bonding: A review of the literature. J. Prosthet. Dent. 2003, 89, 268–274. [Google Scholar] [CrossRef]
- Behr, M.; Rosentritt, M.; Gröger, G.; Handel, G. Adhesive bond of veneering composites on various metal surfaces using silicoating, titanium-coating or functional monomers. J. Dent. 2003, 31, 33–42. [Google Scholar] [CrossRef]
- Behr, M.; Proff, P.; Kolbeck, C.; Langrieger, S.; Kunze, J.; Handel, G.; Rosentritt, M. The bond strength of the resin-to-zirconia interface using different bonding concepts. J. Mech. Behav. Biomed. Mater. 2011, 4, 2–8. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, Z.; Qian, M.; Zhang, H.; Xie, H.; Chen, C. Effect of 10-Methacryloxydecyl Dihydrogen Phosphate Concentration on Chemical Coupling of Methacrylate Resin to Yttria-stabilized Zirconia. J. Adhes. Dent. 2017, 19, 349–355. [Google Scholar]
- Yoshida, K.; Kamada, K.; Atsuta, M. Adhesive primers for bonding cobalt-chromium alloy to resin. J. Oral Rehabil. 1999, 26, 475–478. [Google Scholar] [CrossRef]
- Ohkubo, C.; Watanabe, I.; Hosoi, T.; Okabe, T. Shear bond strengths of polymethyl methacrylate to cast titanium and cobalt-chromium frameworks using five metal primers. J. Prosthet. Dent. 2000, 83, 50–57. [Google Scholar] [CrossRef]
- Yoshida, K.; Taira, Y.; Matsumura, H.; Atsuta, M. Effect of adhesive metal primers on bonding a prosthetic composite resin to metals. J. Prosthet. Dent. 1993, 69, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Kamada, K.; Tanagawa, M.; Atsuta, M. Shear bond strengths of three resin cements used with three adhesive primers for metal. J. Prosthet. Dent. 1996, 75, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, H.; Tanaka, T.; Taira, Y.; Atsuta, M. Bonding of a cobalt-chromium alloy with acidic primers and tri-n-butylborane-initiated luting agents. J. Prosthet. Dent. 1996, 76, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Papadogiannis, D.; Dimitriadi, M.; Zafiropoulou, M.; Gaintantzopoulou, M.D.; Eliades, G. Reactivity and Bond Strength of Universal Dental Adhesives with Co-Cr Alloy and Zirconia. Dent. J. 2019, 7, 78. [Google Scholar] [CrossRef]
Primer | Functional Components | Application/Polymerization | Batch No. |
---|---|---|---|
ArtPreOpaque Plus (Merz Dental, Luetjenburg, Germany) | Methacrylic-ester | Use after application of a metal primer. Apply thinly using a brush with short, stiff bristles, light curing time depending on the polymerization unit used: 60–300 s | 2019006411 |
ArtOpaque Plus O1 (Merz Dental, Luetjenburg, Germany) | BDDMA, TPO | Apply twice thinly using a brush with short, stiff bristles until the framework is completely covered with color, light curing time depending on the polymerization unit used: 60–300 s | 2019009066 |
Ceramage Body light curing crown and bridge composite (A2B) (Shofu, Kyoto, Japan) | UDMA, UDA, zirconium silicate, pigments, others | Final light curing 180 s | 112045 |
Median | IQR | Mean (SD) | 95%CI | p-Value | ||
---|---|---|---|---|---|---|
SunCera Metal primer | 24 h | 28.75 | 5.3 | 29.12 (3.91) | 26.32–31.92 | 0.143 |
TC | 26.55 | 4.0 | 26.89 (3.10) | 24.67–29.11 | ||
Metal Primer Z | 24 h | 25.45 | 5.6 | 26.53 (3.28) | 24.18–28.88 | 0.971 |
TC | 26.20 | 1.6 | 26.12 (1.30) | 25.19–27.05 | ||
Reliance | 24 h | 28.60 | 5.7 | 28.83 (3.22) | 26.53–31.13 | 0.165 |
TC | 26.90 | 6.2 | 26.16 (3.22) | 23.85–28.47 | ||
Alloy Primer | 24 h | 27.80 | 4.9 | 27.87 (3.37) | 25.46–30.28 | 0.019 |
TC | 24.15 | 2.7 | 24.72 (1.83) | 23.41–26.03 | ||
MKZ Primer | 24 h | 30.10 | 2.9 | 29.72 (2.00) | 28.29–31.15 | <0.001 |
TC | 25.00 | 1.9 | 25.19 (1.73) | 23.95–26.43 | ||
Monobond Plus | 24 h | 26.75 | 4.4 | 26.58 (2.52) | 24.78–28.39 | 0.436 |
TC | 25.80 | 3.1 | 25.89 (2.00) | 24.46–27.32 | ||
Art Prime Plus | 24 h | 29.05 | 2.5 | 28.78 (1.82) | 27.48–30.08 | 0.005 |
TC | 25.40 | 3.3 | 25.62 (2.31) | 23.97–27.27 | ||
Clearfil Ceramic Plus | 24 h | 29.65 | 7.2 | 29.33 (4.03) | 26.45–32.21 | 0.315 |
TC | 28.15 | 4.8 | 27.69 (2.37) | 26.00–29.38 |
Median | IQR | Mean (SD) | 95%CI | p-Value | ||
---|---|---|---|---|---|---|
SunCera Primer | 24 h | 29.10 | 3.4 | 28.21 (2.00) | 26.78–29.64 | 0.075 |
TC | 26.90 | 3.6 | 26.03 (2.96) | 23.91–28.15 | ||
Metal Primer Z | 24 h | 28.20 | 3.2 | 28.12 (2.03) | 26.67–29.57 | 0.011 |
TC | 23.25 | 5.8 | 23.77 (3.86) | 21.01–26.53 | ||
Reliance Primer | 24 h | 22.00 | 2.2 | 22.63 (2.28) | 21.00–24.26 | 0.001 |
TC | 27.25 | 6.2 | 27.22 (3.06) | 25.03–29.41 | ||
Alloy Primer | 24 h | 28.30 | 4.5 | 28.80 (2.66) | 26.90–30.70 | 0.001 |
TC | 24.35 | 2.4 | 24.66 (1.72) | 23.43–25.90 | ||
MKZ Primer | 24 h | 29.85 | 3.5 | 29.96 (2.37) | 28.27–31.66 | 0.123 |
TC | 27.45 | 3.9 | 28.27 (2.29) | 26.63–29.91 | ||
Monobond Plus | 24 h | 29.85 | 3.0 | 29.90 (2.18) | 28.34–31.46 | 0.684 |
TC | 29.75 | 5.4 | 28.88 (3.09) | 26.67–31.09 | ||
ArtPrime Plus | 24 h | 30.95 | 4.4 | 28.52 (4.78) | 25.10–31.94 | 0.579 |
TC | 26.20 | 8.2 | 27.00 (4.09) | 24.08–29.92 | ||
Clearfil Ceramic Plus | 24 h | 28.55 | 8.1 | 28.39 (4.55) | 25.14–31.64 | 0.481 |
TC | 27.60 | 4.8 | 27.26 (2.64) | 25.37–29.15 |
SunCera Primer | Metal Primer Z | Reliance Primer | Alloy Primer | MKZ Primer | Mono-Bond Plus | ArtPrime Plus | Clearfil Ceramic Plus | |
---|---|---|---|---|---|---|---|---|
SunCera Primer | x | 0.201 | 0.510 | 0.231 | 0.156 | 0.071 | 0.637 | 0.459 |
Metal Primer Z | 0.201 | x | 0.052 | 0.935 | 0.007 | 0.002 | 0.080 | 0.043 |
Reliance Primer | 0.510 | 0.052 | x | 0.063 | 0.447 | 0.252 | 0.851 | 0.935 |
Alloy Primer | 0.231 | 0.935 | 0.063 | x | 0.009 | 0.003 | 0.095 | 0.052 |
MKZ Primer | 0.156 | 0.007 | 0.447 | 0.009 | x | 0.700 | 0.343 | 0.497 |
Monobond Plus | 0.071 | 0.002 | 0.252 | 0.003 | 0.700 | x | 0.183 | 0.288 |
ArtPrime Plus | 0.637 | 0.080 | 0.851 | 0.095 | 0.343 | 0.183 | x | 0.788 |
Clearfil Ceramic Primer Plus | 0.459 | 0.043 | 0.935 | 0.052 | 0.497 | 0.288 | 0.788 | x |
Primer | BMA vs. Zirconia | |||
---|---|---|---|---|
24 h | Thermocycling | |||
Mean Diff (SD) [MPa] | p-Value | Mean Diff (SD) [MPa] | p-Value | |
SunCera Primer | 0.91 (3.83) | 0.971 | 0.86 (4.11) | 0.912 |
Metal Primer Z | −1.59 (1.84) | 0.218 | 2.35 (4.03) | 0.280 |
Reliance Primer | 6.20 (4.91) | <0.001 | −1.06 (4.59) | 0.436 |
Alloy Primer | −0.93 (3.54) | 0.684 | 0.06 (0.99) | 0.970 |
MKZ Primer | −0.24 (3.80) | 0.853 | −3.08 (2.75) | 0.001 |
Monobond Plus | −3.32 (2.20) | 0.003 | −2.99 (3.83) | 0.023 |
ArtPrime Plus | 0.26 (4.91) | 0.315 | −1.38 (5.26) | 0.529 |
Clearfil Ceramic Primer Plus | 0.94 (4.45) | 0.796 | 0.43 (2.44) | 0.853 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dederichs, M.; Badr, Z.; Viebranz, S.; Schroeter, S.; Hennig, C.-L.; Schmelzer, A.-S.; Guentsch, A. Effect of Different Primers on Shear Bond Strength of Base Metal Alloys and Zirconia Frameworks. Polymers 2024, 16, 572. https://doi.org/10.3390/polym16050572
Dederichs M, Badr Z, Viebranz S, Schroeter S, Hennig C-L, Schmelzer A-S, Guentsch A. Effect of Different Primers on Shear Bond Strength of Base Metal Alloys and Zirconia Frameworks. Polymers. 2024; 16(5):572. https://doi.org/10.3390/polym16050572
Chicago/Turabian StyleDederichs, Marco, Zaid Badr, Stephanie Viebranz, Steffen Schroeter, Christoph-Ludwig Hennig, Anne-Sophie Schmelzer, and Arndt Guentsch. 2024. "Effect of Different Primers on Shear Bond Strength of Base Metal Alloys and Zirconia Frameworks" Polymers 16, no. 5: 572. https://doi.org/10.3390/polym16050572
APA StyleDederichs, M., Badr, Z., Viebranz, S., Schroeter, S., Hennig, C. -L., Schmelzer, A. -S., & Guentsch, A. (2024). Effect of Different Primers on Shear Bond Strength of Base Metal Alloys and Zirconia Frameworks. Polymers, 16(5), 572. https://doi.org/10.3390/polym16050572