Extraction of Lightweight Platanus orientalis L. Fruit’s Stem Fiber and Determination of Its Mechanical and Physico-Chemical Properties and Potential of Its Use in Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fiber Extraction
2.2. Mechanical, Physical and Chemical Analysis of PoLfs Fiber
2.3. SEM Analysis of PoLfs Fibre
2.4. FTIR Analysis of PoLfs Fiber
2.5. XPS Analysis of PoLfs Fiber
2.6. XRD Analysis of PoLfs Fiber
2.7. TGA Analysis of PoLfs Fiber
3. Results and Discussion
3.1. Mechanical, Physical and Chemical Analysis of PoLfs Fiber
Fiber | Tensile Strength (MPa) | Tensile Modulus (GPa) | Elongation (%) |
---|---|---|---|
Platanus orientalis L. fruit’s stem | 157.76 ± 23 | 1.39 ± 0.42 | 22.01 ± 3.7 |
Oil Palm | 80–248 | 0.5–3.2 | 17–25 |
Feather | 100–203 | 3–10 | 6.9 |
Coir | 135–240 | 4–6 | 15–40 |
Bagasse | 222–290 | 17–27.1 | 1.1 |
Banana | 1.7–7.9 | - | 1.5–9.0 |
Date palm | 90–176 | 3–7.7 | 3.8–4.8 |
Chrysanthemum morifolium | 65.12 | 1.55 ± 0.7 | 4.51 ± 0.95 |
Napier grass | 88.40 | 13.1 | 0.99 |
Veldt-grape stem fiber | 61.42 | 1.1 | 5.6 |
Hierochloe Odarata | 105.73 | 2.56 | 2.37 |
Glycyrrhiza glabra | 132.40 | 4.47 | 4.48 |
Jute | 393–773 | 1.5–1.8 | |
Flax | 345–2000 | 1–4 | |
Hemp | 368–800 | 1.6 | |
Kenaf | 240–930 | 1.6 | |
Sisal | 350–700 | 2–7 | |
Ramie | 400–1000 | 1.2–3.8 |
3.2. SEM Analysis of PoLfs Fibre
3.3. FTIR Analysis of PoLfs Fiber
3.4. XPS Analysis of PoLfs Fiber
3.5. XRD Analysis of PoLfs Fiber
3.6. TGA Analysis of PoLfs Fiber
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kösa, S.; Atik, M. Bitkisel peyzaj tasarımında renk ve form; çınar (Platanus orientalis) ve sığla (Liquidambar orientalis) kullanımında peyzaj mimarlığı öğrencilerinin tercihleri. Artvin Coruh Univ. J. For. Fac. 2013, 14, 13–24. [Google Scholar]
- Atabek Savas, L. A novel natural fiber from plane tree (Platanus orientalis L.) fruits to reinforce polypropylene composites. J. Compos. Mater. 2022, 56, 4531–4545. [Google Scholar] [CrossRef]
- Available online: https://patricksiu.org/plane-tree-platanus-oriental-sweetgum-liquidambar-orientalis (accessed on 25 January 2024).
- Khudaiberdyev, R. History of the development of the genus Platanus in Central Asia. Uzb. Biol. Zhurnal. 1989, 3, 38–42. [Google Scholar]
- Güler, Z.; Dursun, A.; Özkan, D. Volatile compounds in the leaf of plane tree (Platanus orientalis) with solid phase microextraction (SPME) technique. Int. J. Sec. Metab. 2017, 4, 167–176. [Google Scholar] [CrossRef]
- Torkan, S.; Mohajeri, N.; Khamesipour, F. A comparison study of anti food allergy of plane tree leaves extract with the chemical drug therapy in affected dogs. Marmara Pharm. J. 2016, 20, 86–91. [Google Scholar] [CrossRef]
- Janković, B.; Dodevski, V.; Stojmenović, M.; Krstić, S.; Popović, J. Characterization analysis of raw and pyrolyzed plane tree seed (Platanus orientalis L.) samples for its application in carbon capture and storage (CCS) technology. J. Therm. Anal. Calorim. 2018, 133, 465–480. [Google Scholar] [CrossRef]
- Dodevski, V.; Janković, B.; Radović, I.; Stojmenović, M.; Čebela, M.; Nikolić, Ž.; Pagnacco, M.C.; Panić, I.; Stanković, M. Characterization analysis of activated carbon derived from the carbonization process of plane tree (Platanus orientalis) seeds. Energy Environ. 2020, 31, 583–612. [Google Scholar] [CrossRef]
- Joumaa, N.; Nizam, A.; Qarabet, F. Preparation and Characterization of Plat anus fruit fibers as Natural Sorbent of Oil. Damascus Univ. J. Basic Sci. 2021, 37, 33–56. [Google Scholar]
- Yang, L.; Wang, Z.; Li, X.; Yang, L.; Lu, C.; Zhao, S. Hydrophobic modification of platanus fruit fibers as natural hollow fibrous sorbents for oil spill cleanup. Water Air Soil Pollut. 2016, 227, 346. [Google Scholar] [CrossRef]
- Yang, K.; Ren, J.; Cui, Y.; Wang, Y.; Shah, T.; Zhang, Q.; Zhang, B. Fabrication of porous tubular carbon fibers from the fruits of Platanus orientalis and their high oil adsorption properties. J. Environ. Chem. Eng. 2021, 9, 105706. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, Y.; Yan, L.; Zhang, L.; Shi, Z. Sycamore fruit seed-based hard carbon anode material with high cycle stability for sodium-ion battery. J. Mater. Sci. Mater. Electron. 2021, 32, 5645–5654. [Google Scholar] [CrossRef]
- Parlayıcı, Ş.; Pehlivan, E. Fast decolorization of cationic dyes by nano-scale zero valent iron immobilized in sycamore tree seed pod fibers: Kinetics and modelling study. Int. J. Phytoremediat. 2019, 21, 1130–1144. [Google Scholar] [CrossRef]
- Yuan, B.; Zhang, C.; Liang, Y.; Yang, L.; Yang, H.; Bai, L.; Wei, D.; Wang, W.; Wang, Q.; Chen, H. A low-cost 3D spherical evaporator with unique surface topology and inner structure for solar water evaporation-assisted dye wastewater treatment. Adv. Sustain. Syst. 2021, 5, 2000245. [Google Scholar] [CrossRef]
- Itu, C.; Scutaru, M.L.; Vlase, S. Elastic Constants of Polymeric Fiber Composite Estimation Using Finite Element Method. Polymers 2024, 16, 354. [Google Scholar] [CrossRef]
- Rowell, R.M. Natural fibres: Types and properties. In Properties and Performance of Natural-Fibre Composites; Pickering, K.L., Ed.; Woodhead Publishing: Sawston, UK, 2008; pp. 3–66. [Google Scholar] [CrossRef]
- Bulut, Y.; Erdoğan, Ü.H. Selüloz Esasli Doğal Liflerin Kompozit Üretiminde Takviye Materyali Olarak Kullanimi. Tekst. Mühendis 2011, 18, 26–35. [Google Scholar]
- Kaya, A.I.; Engin, K.E. Tarimsal kökenli doğal lifler ve kullanilma potansiyelleri. In Sürdürülebilirlik için Gida, Çevre, Tarimsal Ormancilik ve Tarimda Yeni Araştirmalar; Bellitürk, K., Baran, M.F., Ahmet, Ç., Eds.; IKSAD Publishing House: Ankara, Turkey, 2021; pp. 127–173. [Google Scholar]
- Ayu, R.S.; Khalina, A.; Harmaen, A.S.; Zaman, K.; Isma, T.; Liu, Q.; Ilyas, R.A.; Lee, C.H. Characterization study of empty fruit bunch (EFB) fibers reinforcement in poly (butylene) succinate (PBS)/starch/glycerol composite sheet. Polymers 2020, 12, 1571. [Google Scholar] [CrossRef] [PubMed]
- Sabaruddin, F.A.; Paridah, M.; Sapuan, S.M.; Ilyas, R.A.; Lee, S.H.; Abdan, K.; Mazlan, N.; Roseley, A.S.M.; Khalil, H.A. The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid polymer bionanocomposites. Polymers 2020, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- Syafiq, R.; Sapuan, S.M.; Zuhri, M.Y.M.; Ilyas, R.A.; Nazrin, A.; Sherwani, S.F.K.; Khalina, A. Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: A review. Polymers 2020, 12, 2403. [Google Scholar] [CrossRef] [PubMed]
- Alsubari, S.; Zuhri, M.Y.M.; Sapuan, S.M.; Ishak, M.R.; Ilyas, R.A.; Asyraf, M.R.M. Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties. Polymers 2021, 13, 423. [Google Scholar] [CrossRef] [PubMed]
- Omran, A.A.B.; Mohammed, A.A.B.A.; Sapuan, S.M.; Ilyas, R.A.; Asyraf, M.R.M.; Koloor, S.S.R.; Petrů, M. Micro-and nanocellulose in polymer composite materials: A review. Polymers 2021, 13, 231. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Pu, Y.; Thomas, V.M.; Yoo, C.G.; Ozcan, S.; Deng, Y.; Nelson, K.; Ragauskas, A.J. Recent advancements of plant-based natural fiber–reinforced composites and their applications. Compos. B Eng. 2020, 200, 108254. [Google Scholar] [CrossRef]
- Jagadeesh, P.; Puttegowda, M.; Mavinkere Rangappa, S.; Siengchin, S. A review on extraction, chemical treatment, characterization of natural fibers and its composites for potential applications. Polym. Compos. 2021, 42, 6239–6264. [Google Scholar] [CrossRef]
- Mulenga, T.K.; Ude, A.U.; Vivekanandhan, C. Techniques for modelling and optimizing the mechanical properties of natural fiber composites: A review. Fibers 2021, 9, 6. [Google Scholar] [CrossRef]
- Suriani, M.J.; Rapi, H.Z.; Ilyas, R.A.; Petrů, M.; Sapuan, S.M. Delamination and manufacturing defects in natural fiber-reinforced hybrid composite: A review. Polymers 2021, 13, 1323. [Google Scholar] [CrossRef]
- Nair, S.N.; Dasari, A. Development and characterization of natural-fiber-based composite panels. Polymers 2022, 14, 2079. [Google Scholar] [CrossRef]
- El Hawary, O.; Boccarusso, L.; Ansell, M.P.; Durante, M.; Pinto, F. An overview of natural fiber composites for marine applications. J. Mar. Sci. Eng. 2023, 11, 1076. [Google Scholar] [CrossRef]
- Patel, R.V.; Yadav, A.; Winczek, J. Physical, Mechanical, and Thermal Properties of Natural Fiber-Reinforced Epoxy Composites for Construction and Automotive Applications. Appl. Sci. 2023, 13, 5126. [Google Scholar] [CrossRef]
- Thapliyal, D.; Verma, S.; Sen, P.; Kumar, R.; Thakur, A.; Tiwari, A.K.; Singh, D.; Verros, G.D.; Arya, R.K. Natural fibers composites: Origin, importance, consumption pattern, and challenges. J. Compos. Sci. 2023, 7, 506. [Google Scholar] [CrossRef]
- Azammi, A.M.N.; Ilyas, R.A.; Sapuan, S.M.; Ibrahim, R.; Atikah, M.S.N.; Asrofi, M.; Atiqah, A. Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface. In Interfaces in Particle and Fibre Reinforced Composites; Goh, K.-L., Thomas, S., De Silva, R.T., Aswathi, M.K., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 29–93. [Google Scholar]
- Khalil, H.A.; Bhat, A.H.; Yusra, A.I. Green composites from sustainable cellulose nanofibrils: A review. Carbohydr. Polym. 2012, 87, 963–979. [Google Scholar] [CrossRef]
- Martínez-Barrera, G.; Garduño-Jaimes, I.Z.; Vigueras-Santiago, E.; Cruz-Olivares, J.; González-Rivas, N.; Gencel, O. Green composites from sustainable cellulose nanofibrils. In Green Composites; Thomas, S., Balakrishnan, P., Eds.; Springer: Singapore, 2021; pp. 135–150. [Google Scholar] [CrossRef]
- Vigneshwaran, S.; Sundarakannan, R.; John, K.; Johnson, R.D.J.; Prasath, K.A.; Ajith, S.; Arumugaprabu, V.; Uthayakumar, M. Recent advancement in the natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2020, 277, 124109. [Google Scholar] [CrossRef]
- Marcuello, C.; Chabbert, B.; Berzin, F.; Bercu, N.B.; Molinari, M.; Aguié-Béghin, V. Influence of Surface Chemistry of Fiber and Lignocellulosic Materials on Adhesion Properties with Polybutylene Succinate at Nanoscale. Materials 2023, 16, 2440. [Google Scholar] [CrossRef]
- Ovalı, S. Characterization of lignocellulosic glycyrrhiza glabra fibers as a potential reinforcement for polymer composites. J. Thermoplast. Compos. Mater. 2023, 36, 08927057231151928. [Google Scholar] [CrossRef]
- Moussaoui, N.; Benhamadouche, L.; Seki, Y.; Amroune, S.; Dufresne, A.; Jawaid, M.; Fouad, H. The impact of physicochemical treatments on the characteristics of Ampelodesmos mauritanicus plant fibers. Cellulose 2023, 30, 7479–7495. [Google Scholar] [CrossRef]
- Seki, Y.; Özdemir, H.N.; Türkoğlu, G.C.; Akçali, B.; Neşer, G. Study on natural cellulosic fiber from posidonia oceanica waste: Characterization and analysis. Tekst. Mühendis 2023, 30, 95–101. [Google Scholar] [CrossRef]
- Pazouki, N.; Sankian, M.; Leung, P.T.; Nejadsattari, T.; Khavari-Nejad, R.-A.; Varasteh, A.-R. Identification of cyclophilin as a novel allergen from Platanus orientalis pollens by mass spectrometry. J Biosci Bioeng. 2009, 107, 215–217. [Google Scholar] [CrossRef]
- Xu, P.; Qian, P.; Yang, J.; Li, J.; Xia, Y.; Qian, W.; Duan, Z. Superhydrophobic and compressible carbon aerogels derived from Platanus orientalis for oil absorption and emulsion separation. J. Taiwan Inst. Chem. Eng. 2019, 103, 209–216. [Google Scholar] [CrossRef]
- Mylsamy, K.; Rajendran, I. Investigation on physio-chemical and mechanical properties of raw and alkali-treated Agave americana fiber. J. Reinf. Plast. Compos. 2010, 29, 2925–2935. [Google Scholar] [CrossRef]
- ASTM D3822-07; Standard Test Method for Tensile Properties of Single Textile Fibers. ASTM International: West Conshohocken, PA, USA, 2007.
- Dalmis, R.; Kilic, G.B.; Seki, Y.; Koktas, S.; Keskin, O.Y. Characterization of a novel natural cellulosic fiber extracted from the stem of Chrysanthemum morifolium. Cellulose 2020, 27, 8621–8634. [Google Scholar] [CrossRef]
- ASTM D8171-18; Standard Test Methods for Density Determination of Flax Fiber. ASTM International: West Conshohocken, PA, USA, 2018.
- Pepe, M.; Lombardi, R.; Ferrara, G.; Agnetti, S.; Martinelli, E. Experimental Characterisation of Lime-Based Textile-Reinforced Mortar Systems Made of Either Jute or Flax Fabrics. Materials 2023, 16, 709. [Google Scholar] [CrossRef] [PubMed]
- Salem, K.S.; Kasera, N.K.; Rahman, A.; Jameel, H.; Habibi, Y.; Eichhorn, S.J.; French, A.D.; Pal, L.; Lucia, L.A. Comparison and assessment of methods for cellulose crystallinity determination. Chem. Soc. Rev. 2023, 52, 6417–6446. [Google Scholar] [CrossRef]
- Segal, L.G.J.M.A.; Creely, J.J.; Martin, A.E., Jr.; Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Diyana, Z.N.; Jumaidin, R.; Selamat, M.Z.; Alamjuri, R.H.; Md Yusof, F.A. Extraction and Characterization of Natural Cellulosic Fi-ber from Pandanus amaryllifolius Leaves. Polymers 2021, 13, 4171. [Google Scholar] [CrossRef]
- Selvaraj, M.; Chapagain, P.; Mylsamy, B. Characterization Studies on New Natural Cellulosic Fiber Extracted from the Stem of Ageratina Adenophora Plant. J. Nat. Fibers 2023, 20, 2156019. [Google Scholar] [CrossRef]
- Selvaraj, M.; N, P.; T, R.P.; Mylsamy, B.; S, S. Extraction and Characterization of a New Natural Cellulosic Fiber from Bark of Ficus Carica Plant as Potential Reinforcement for Polymer Composites. J. Nat. Fibers 2023, 20, 2194699. [Google Scholar] [CrossRef]
- Bhuvaneshwaran, M.; Subramani, S.P.; Palaniappan, S.K.; Pal, S.K.; Balu, S. Natural Cellulosic Fiber from Coccinia Indica Stem for Polymer Composites: Extraction and Characterization. J. Nat. Fibers 2021, 18, 644–652. [Google Scholar] [CrossRef]
- Khan, A.; Vijay, R.; Singaravelu, D.L.; Sanjay, M.R.; Siengchin, S.; Verpoort, F.; Alamry, K.A.; Asiri, A.M. Characterization of Natural Fibers from Cortaderia Selloana Grass (Pampas) as Reinforcement Material for the Production of the Composites. J. Nat. Fibers 2021, 18, 1893–1901. [Google Scholar] [CrossRef]
- Yoganandam, K.; Ganeshan, P.; NagarajaGanesh, B.; Raja, K. Characterization studies on Calotropis procera fibers and their performance as reinforcements in epoxy matrix. J. Nat. Fibers 2020, 17, 1706–1718. [Google Scholar] [CrossRef]
- Maran, M.; Kumar, R.; Senthamaraikannan, P.; Saravanakumar, S.S.; Nagarajan, S.; Sanjay, M.R.; Siengchin, S. Suitability Evaluation of Sida mysorensis Plant Fiber as Reinforcement in Polymer Composite. J. Nat. Fibers 2022, 19, 1659–1669. [Google Scholar] [CrossRef]
- John, M.J.; Anandjiwala, R.D. Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym. Compos. 2008, 29, 187–207. [Google Scholar] [CrossRef]
- Gholampour, A.; Ozbakkaloglu, T. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. J. Mater. Sci. 2020, 55, 829–892. [Google Scholar] [CrossRef]
- Malkapuram, R.; Kumar, V.; Negi, Y.S. Recent Development in Natural Fiber Reinforced Polypropylene Composites. J. Reinf. Plast. Compos. 2009, 28, 1169–1189. [Google Scholar] [CrossRef]
- Thakur, V.K.; Thakur, M.K.; Gupta, R.K. Review: Raw Natural Fiber–Based Polymer Composites. Int. J. Polym. Anal. Charact. 2014, 19, 256–271. [Google Scholar] [CrossRef]
- Arthanarieswaran, V.P.; Kumaravel, A.; Saravanakumar, S.S. Characterization of New Natural Cellulosic Fiber from Acacia leucophloea Bark. Int. J. Polym. Anal. 2015, 20, 367–376. [Google Scholar] [CrossRef]
- Bar, G.; Chaudhary, K. Characterization of textile grade novel Bauhinia vahlii fiber. J. Nat. Fibers 2023, 20, 2143464. [Google Scholar] [CrossRef]
- Ovalı, S.; Sancak, E. Investigation of Mechanical Properties of Jute Fiber Reinforced Low Density Polyethylene Composites. J. Nat. Fibers 2022, 19, 3109–3126. [Google Scholar] [CrossRef]
- Celebi, M.; Altun, M.; Ovali, S. The effect of UV additives on thermo-oxidative and color stability of pistachio shell reinforced polypropylene composites. Polym. Polym. Compos. 2022, 30, 09673911221081700. [Google Scholar] [CrossRef]
- Altun, M.; Celebi, M.; Ovali, S. Preparation of the pistachio shell reinforced PLA biocomposites: Effect of filler treatment and PLA maleation. J. Thermoplast. Compos. Mater. 2022, 35, 1342–1357. [Google Scholar] [CrossRef]
- Ovalı, S.; Sancak, E. Investigating the effect of the aging process on LDPE composites with UV protective additives. J. Thermoplast. Compos. Mater. 2022, 35, 1921–1939. [Google Scholar] [CrossRef]
- Yao, F.; Wu, Q.; Lei, Y.; Guo, W.; Xu, Y. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stab. 2008, 93, 90–98. [Google Scholar] [CrossRef]
- Lemita, N.; Deghboudj, S.; Rokbi, M.; Rekbi, F.M.L.; Halimi, R. Characterization and analysis of novel natural cellulosic fiber extracted from Strelitzia reginae plant. J. Compos. Mater. 2022, 56, 99–114. [Google Scholar] [CrossRef]
- Sheltami, R.M.; Abdullah, I.; Ahmad, I.; Dufresne, A.; Kargarzadeh, H. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr. Polym. 2012, 88, 772–779. [Google Scholar] [CrossRef]
- Sanyang, M.L.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Sahari, J. Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review. Renew. Sustain. Energy Rev. 2016, 54, 533–549. [Google Scholar] [CrossRef]
- Dawit, J.B.; Regassa, Y.; Lemu, H.G. Property characterization of acacia tortilis for natural fiber reinforced polymer composite. Results Mater. 2020, 5, 100054. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Ibrahim, R.; Abral, H.; Ishak, M.; Zainudin, E.; Asrofi, M.; Atikah, M.S.N.; Huzaifah, M.R.M.; Radzi, A.M.; et al. Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: A comprehensive approach from macro to nano scale. J. Mater. Res. Technol. 2019, 8, 2753–2766. [Google Scholar] [CrossRef]
- Shaker, K.; Khan, R.M.W.U.; Jabbar, M.; Umair, M.; Tariq, A.; Kashif, M.; Nawab, Y. Extraction and characterization of novel fibers from Vernonia elaeagnifolia as a potential textile fiber. Ind. Crops Prod. 2020, 152, 112518. [Google Scholar] [CrossRef]
- Boumediri, H.; Bezazi, A.; Del Pino, G.G.; Haddad, A.; Scarpa, F.; Dufresne, A. Extraction and characterization of vascular bundle and fiber strand from date palm rachis as potential bio-reinforcement in composite. Carbohydr. Polym. 2019, 222, 114997. [Google Scholar] [CrossRef]
- Hazrati, K.Z.; Sapuan, S.M.; Zuhri, M.Y.M.; Jumaidin, R. Extraction and Characterization of Potential Biodegradable Materials Based on Dioscorea hispida Tubers. Polymers 2021, 13, 584. [Google Scholar] [CrossRef] [PubMed]
- Kılınç, A.; Köktaş, S.; Seki, Y.; Atagür, M.; Dalmış, R.; Erdoğan, Ü.H.; Göktaş, A.A.; Seydibeyoğlu, M. Extraction and investigation of lightweight and porous natural fiber from Conium maculatum as a potential reinforcement for composite materials in transportation. Compos. Part B Eng. 2018, 140, 1–8. [Google Scholar] [CrossRef]
- Ilaya Perumal, C.; Sarala, R. Characterization of a new natural cellulosic fiber extracted from Derris scandens stem. Int. J. Biol. Macromol. 2020, 165, 2303–2313. [Google Scholar] [CrossRef]
- French, A.D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2014, 21, 885–896. [Google Scholar] [CrossRef]
- Manimaran, P.; Senthamaraikannan, P.; Sanjay, M.R.; Marichelvam, M.K.; Jawaid, M. Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydr. Polym. 2018, 181, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Indran, S.; Edwin Raj, R.; Sreenivasan, V.S. Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydr. Polym. 2014, 110, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Characterization of Natural Cellulosic Fiber Isolated from Malaysian Cymbopogan Citratus Leaves—ProQuest n.d. Available online: https://www.proquest.com/openview/0d17e436112036d61524df795df06848/1?pq-origsite=gscholar&cbl=5038271 (accessed on 30 January 2024).
- Narayanasamy, P.; Balasundar, P.; Senthil, S.; Sanjay, M.R.; Siengchin, S.; Khan, A.; Asiri, A.M. Characterization of a novel natural cellulosic fiber from Calotropis gigantea fruit bunch for ecofriendly polymer composites. Int. J. Biol. Macromol. 2020, 150, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Vijay, R.; Singaravelu, D.L.; Vinod, A.; Sanjay, M.; Siengchin, S.; Jawaid, M.; Khan, A.; Parameswaranpillai, J. Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. Int. J. Biol. Macromol. 2019, 125, 99–108. [Google Scholar] [CrossRef]
- Moshi, A.A.M.; Ravindran, D.; Bharathi, S.R.S.; Indran, S.; Saravanakumar, S.S.; Liu, Y. Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree. Int. J. Biol. Macromol. 2020, 142, 212–221. [Google Scholar] [CrossRef]
- Abera, G.; Woldeyes, B.; Demash, H.D.; Miyake, G. The effect of plasticizers on thermoplastic starch films developed from the indigenous Ethiopian tuber crop Anchote (Coccinia abyssinica) starch. Int. J. Biol. Macromol. 2020, 155, 581–587. [Google Scholar] [CrossRef]
- Maache, M.; Bezazi, A.; Amroune, S.; Scarpa, F.; Dufresne, A. Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydr. Polym. 2017, 171, 163–172. [Google Scholar] [CrossRef]
Natural Fibers | Density (g/cm3) | Fineness (Micron) | Moisture Content (%) | Cellulose (%) | Hemicellulose (%) | Lignin (%) |
---|---|---|---|---|---|---|
PoLfs | 1.36 | 181.01 ± 9.81 | 10.86 | 42.03 | 13.5 | 28.35 |
Bamboo | 0.910 | 9.16 | 26–43 | 30 | 1–31 | |
Coir | 1.15 | 8 | 32–43 | 0.15–0.25 | 40–45 | |
Wheat straw | - | - | 38–45 | 15–31 | 12–20 | |
Rice straw | - | - | 41–57 | 33 | 8–19 | |
Rice husk | - | - | 35–45 | 19–25 | 20 | |
Ageratina Adenophora | 1.32 | 7.4 | 65.7 | 11.2 | 12.5 | |
Coccinia indica | 1.37 | 7.27 | 64.56 | 14.09 | 12.55 | |
Cocos nucifera Peduncle | 1.3–1.4 | 11.1 | 50.1 | 24.9 | 11.9 | |
Cortaderia selloana grass | 1.26 | 7.6 | 53.7 | 14.43 | 10.32 | |
Sida mysorensis | 1.29 | 10.48 | 53.36 | 15.23 | 9.46 | |
Jute | 1.3 | 25–200 | 64.4 | 12 | 11.8 | |
Flax | 1.5 | 40–600 | 64.1 | 16 | 2.0 | |
Hemp | 1.47 | 25–500 | 68 | 15 | 10 | |
Kenaf | 1.45 | 12–36 | 31–72 | 20.3–21.5 | 8–19 | |
Sisal | 1.5 | 25–200 | 60–78 | 10–14.2 | 8–14 | |
Ramie | 1.5 | 25–50 | 68.6–85 | 13–16.7 | 0.5–0.7 |
Cls (%) | O1s (%) | N1s (%) | C/O (%) | O/C (%) | |
---|---|---|---|---|---|
Platanus orientalis L. fruit’s stem | 71.94 | 14.7 | 1.8 | 4.89 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaya, A.I. Extraction of Lightweight Platanus orientalis L. Fruit’s Stem Fiber and Determination of Its Mechanical and Physico-Chemical Properties and Potential of Its Use in Composites. Polymers 2024, 16, 657. https://doi.org/10.3390/polym16050657
Kaya AI. Extraction of Lightweight Platanus orientalis L. Fruit’s Stem Fiber and Determination of Its Mechanical and Physico-Chemical Properties and Potential of Its Use in Composites. Polymers. 2024; 16(5):657. https://doi.org/10.3390/polym16050657
Chicago/Turabian StyleKaya, Ali Ihsan. 2024. "Extraction of Lightweight Platanus orientalis L. Fruit’s Stem Fiber and Determination of Its Mechanical and Physico-Chemical Properties and Potential of Its Use in Composites" Polymers 16, no. 5: 657. https://doi.org/10.3390/polym16050657
APA StyleKaya, A. I. (2024). Extraction of Lightweight Platanus orientalis L. Fruit’s Stem Fiber and Determination of Its Mechanical and Physico-Chemical Properties and Potential of Its Use in Composites. Polymers, 16(5), 657. https://doi.org/10.3390/polym16050657