Trends in the Incorporation of Antiseptics into Natural Polymer-Based Nanofibrous Mats
Abstract
:1. Introduction
2. Inorganic Antimicrobial Agents
2.1. Metal-Based Antimicrobial Agents
2.1.1. Silver Nanoparticles
Polymers | Additives | Incorporation | Antimicrobial Activity | Application | References |
---|---|---|---|---|---|
Polygalacturonic acid, hyaluronic acid, PVA | Ag NPs | Blend | E. coli, S. aureus, B. subtilis | Wound dressing | El-Aassar et al. (2020) [17] |
Chitosan, PEO | Ag NPs | Blend | E. coli, P. aeruginosa, S. aureus, S. mutans | Wound healing | Fereydouni et al. (2023) [37] |
Ethyl cellulose, PVP | Ag NPs, ciproflaxin | Blend | E. coli, S. aureus | Wound dressing | Yang et al. (2020) [41] |
Cellulose acetate | Ag NPs anchored on TiO2 NPs | Blend | E. coli, S. aureus | Antibacterial applications | Jatoi et al. (2019) [38] |
Polyurethane, zein | Ag NPs | Precursor reduced in the spinning solution | E. coli, S. aureus | Wound dressing | Maharjan et al. (2017) [13] |
Gum Arabic, PVA, PCL (coating) | Ag NPs | Precursor reduced in the spinning solution | S. aureus, E. coli, P. aeruginosa, C. albicans | Wound dressing for infectious wounds | Eghbalifam et al. (2020) [19] |
Cellulose acetate | Ag NPs | Post-process, in situ reduction | E. coli, S. aureus | Antibacterial applications | Kalwar et al. (2018) [10] |
Cellulose acetate | Ag NPs | Post-process, in situ reduction | E. coli, S. aureus | Antibacterial applications | Jatoi et al. (2019) [33] |
Cellulose acetate | Ag NPs | Post-process, in situ reduction | E. coli, S. aureus | Tissue engineering | Moon et al. (2021) [34] |
Jellyfish biomass, PCL | Ag NPs | Post-process, in situ reduction | E. coli, S. aureus, B. subtilis | Wound healing | Nudelman et al. (2019) [14] |
Tasar fibroin | Ag NPs | Post-process, in situ reduction | E. coli, S. aureus, P. aeruginosa, S. epidermidis | Drug delivery vehicle, tissue engineering | Srivastava et al. (2019) [40] |
Cellulose acetate, polyurethane | Ag NPs, rosemary EO | Post-process, in situ reduction | E. coli, S. aureus | Wound dressing | Rather et al. (2023) [25] |
Cellulose acetate | Ag NPs, hydroxyapatite | Post-process, in situ reduction | E. coli, S. aureus | Wound healing, bone tissue regeneration | Sofi et al. (2021) [35] |
Cellulose acetate | Ag NPs, dimethyloxallyl glycine | Post-process, in situ reduction | E. coli, B. subtilis | Diabetic wound healing | Li et al. (2022) [39] |
Gelatin, PCL | Ag-MOF, curcumin | Post-process, in situ reduction | E. coli, S. aureus | Wound dressing | Chen et al. (2022) [36] |
2.1.2. Zinc Oxide Nanoparticles
Polymers | Additives | Incorporation | Antimicrobial Activity | Application | References |
---|---|---|---|---|---|
Silk fibroin, HA | ZnO NPs | Blend | E. coli, S. aureus | Burn wound healing | Hadisi et al. (2020) [46] |
Chitosan, PVA | ZnO NPs | Blend | E. coli, S. aureus | Wound dressing, tissue engineering | Rezaei et al. (2023) [47] |
HA, PVA, PEO | ZnO NPs, cinnamon EO | Blend | S. aureus | Wound dressing | El-Aassar et al. (2021) [18] |
Chitosan, PVA | ZnO NPs, chitosan | Blend | E. coli, S. aureus, P. aeruginosa, B. subtilis | Diabetic wound healing | Ahmed et al. (2018) [12] |
PLA, PVA, keratin | ZnO NPs, chitosan | Blend | E. coli, S. aureus | Tissue engineering applications | Ranjbar Mohammadi et al. (2021) [45] |
PCL, gelatin | ZnO NPs, amoxicilin | Blend | S. aureus | Wound dressing | Jafari et al. (2020) [49] |
Sodium alginate, PVA | ZnO NPs, ciprofloxacin | Blend | E. coli, S. aureus | Wound dressing | Sadeghi et al. (2023) [48] |
Soy protein isolate, Eudragit | ZnO-halloysite nanotubes, allantoin | Blend | E. coli, S. aureus | Skin tissue-engineered constructs | Jaberifard et al. (2023) [52] |
Gelatin | ZnO NPs | Side-by-side (spraying/spinning) | E. coli, S. aureus | Wound dressing | Chen et al. (2019) [50] |
Silk fibroin | ZnO NPs (polydopamine coated), bromelain | Post-process immobilization | E. coli, S. aureus | Burn wound healing | Hasannasab et al. (2021) [20] |
Gum arabic, PVA, PCL | ZnO NPs | Post-process immobilization | E. coli, S. aureus, P. aeruginosa, C. albicans | Wound dressing, antimicrobial and antibiofilm coating | Harandi et al. (2021) [51] |
2.1.3. Other Nanoparticles
Polymers | Additives | Incorporation | Antimicrobial Actitivy | Application | References |
---|---|---|---|---|---|
Pectin, PEO | Cu MOF, folic acid | Blend | E. coli, S. aureus | Drug delivery system | Zirak Hassan Kiadeh et al. (2019) [56] |
Cellulose | CuO NPs | Post-process in situ synthesis | E. coli, S. aureus | Wound dressing | Haider et al. (2021) [22] |
Chitosan | CuS NPs, fucoidan | Post-process immobilization | E. coli, S. aureus | Treating bone and wound infections, tissue regeneration | LuLu et al. (2022) [21] |
Gum arabic, PVA; PCL coated | Fe2O3 NPs | Post-process adsorption | E. coli, S. aureus, P. aeruginosa, C. albicans | Wound healing applications | Harandi et al. (2022) [57] |
Chitosan | TiO2 NPs | Post-process | S. aureus | Wastewater remediation | Blantocas et al. (2018) [11] |
Chitosan, PVA, PCL | CeAlO3 NPs, cephalexin | Blend | E. coli, S. aureus | Wound dressing | Shahverdi et al. (2022) [61] |
2.2. Non-Metallic Inorganic Antimicrobial Agents
Polymers | Additives | Incorporation | Antimicrobial Activity | Application | References |
---|---|---|---|---|---|
Silk fibroin | Graphene oxide | Blend | E. coli, S. aureus | Wound dressing | Wang et al. (2018) [74] |
Silk fibroin | Reduced graphene oxide | Blend | E. coli, S. aureus | Tissue engineering | Zhang et al. (2021) [15] |
Silk fibroin | Reduced graphene oxide/TiO2 | Blend | S. aureus | Tissue engineering | Zhang et al. (2021) [66] |
Sodium alginate, PEO | Halloysite NT, levofloxacin | Blend | E. coli, S. aureus | Drug carrier, wound dressing | Fatahi et al. (2021) [69] |
Cellulose acetate | HAp + Cu ions | Blend | E. coli, S. aureus | Regeneration of skin tissues | Elsayed et al. (2020) [71] |
Carboxymethyl cellulose, PVP | HAp, doped by Zn and Mn | Blend | E. coli, S. aureus, C. albicans | Bone tissue engineering | Kandasamy et al. (2020) [16] |
Gelatin, PCL | HAp, doxycyclin | Blend | S. aureus, P. gingivalis | Drug delivery | Ramírez-Agudelo et al. (2018) [72] |
Gelatin, chitosan | HAp, tetracycline hydrochloride | Blend | E. coli, S. aureus | Antimicrobial wound dressing | Wang et al. (2021) [73] |
3. Organic Antimicrobial Agents
3.1. Natural Antimicrobial Agents
3.2. Antimicrobial Biopolymers
3.2.1. Chitosan
3.2.2. Polylysine
3.2.3. Antimicrobial Peptides
3.3. Synthetic Antimicrobial Agents
3.3.1. Antibiotics
3.3.2. Synthesized Antimicrobial Agents
4. Additional Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heunis, T.D.J.; Dicks, L.M.T. Nanofibers Offer Alternative Ways to the Treatment of Skin Infections. J. Biomed. Biotechnol. 2010, 2010, 510682. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Duan, X.P.; Li, Y.M.; Yang, D.P.; Long, Y.Z. Electrospun nanofibers for wound healing. Mater. Sci. Eng. C 2017, 76, 1413–1423. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, M.A.; Amini, F.; Tan, C.K. Electrospun nanofibers in wound healing. Mater. Today Proc. 2020, 29, 1–6. [Google Scholar] [CrossRef]
- Bombin, A.D.J.; Dunne, N.J.; McCarthy, H.O. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 114, 110994. [Google Scholar] [CrossRef]
- Hamdan, N.; Yamin, A.; Hamid, S.A.; Khodir, W.K.W.A.; Guarino, V. Functionalized Antimicrobial Nanofibers: Design Criteria and Recent Advances. J. Funct. Biomater. 2021, 12, 59. [Google Scholar] [CrossRef] [PubMed]
- Bombin, A.D.J.; Dunne, N.; McCarthy, H. A microRNA ‘cocktail’ by electrospun PVA/alginate/ciprofloxacin nanofibres: A genetic nanomedicine for impaired wound healing. In Proceedings of the 31st Conference of the European Society for Biomaterials, Porto, Portugal, 5–9 September 2021. [Google Scholar]
- Hajipour, M.J.; Fromm, K.M.; Ashkarran, A.A.; de Aberasturi, D.J.; de Larramendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012, 30, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Knight, G.M.; E Glover, R.; McQuaid, C.F.; Olaru, I.D.; Gallandat, K.; Leclerc, Q.J.; Fuller, N.M.; Willcocks, S.J.; Hasan, R.; van Kleef, E.; et al. Antimicrobial resistance and COVID-19: Intersections and implications. eLife 2021, 10, e64139. [Google Scholar] [CrossRef]
- Kalwar, K.; Hu, L.; Li, D.; Shan, D. AgNPs incorporated on deacetylated electrospun cellulose nanofibers and their effect on the antimicrobial activity. Polym. Adv. Technol. 2017, 29, 394–400. [Google Scholar] [CrossRef]
- Blantocas, G.Q.; Alaboodi, A.S.; Mekky, A.-B.H. Synthesis of Chitosan—TiO2 Antimicrobial Composites via a 2-Step Process of Electrospinning and Plasma Sputtering. Arab. J. Sci. Eng. 2017, 43, 389–398. [Google Scholar] [CrossRef]
- Ahmed, R.; Tariq, M.; Ali, I.; Asghar, R.; Khanam, P.N.; Augustine, R.; Hasan, A. Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int. J. Biol. Macromol. 2018, 120, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, B.; Joshi, M.K.; Tiwari, A.P.; Park, C.H.; Kim, C.S. In-situ synthesis of AgNPs in the natural/synthetic hybrid nanofibrous scaffolds: Fabrication, characterization and antimicrobial activities. J. Mech. Behav. Biomed. Mater. 2017, 65, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Nudelman, R.; Alhmoud, H.; Delalat, B.; Fleicher, S.; Fine, E.; Guliakhmedova, T.; Elnathan, R.; Nyska, A.; Voelcker, N.H.; Gozin, M.; et al. Jellyfish-Based Smart Wound Dressing Devices Containing In Situ Synthesized Antibacterial Nanoparticles. Adv. Funct. Mater. 2019, 29, 1902783. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Fan, S.; Lan, P.; Cao, C.; Zhang, Y. Silk fibroin/reduced graphene oxide composite mats with enhanced mechanical properties and conductivity for tissue engineering. Colloids Surf. B Biointerfaces 2021, 197, 111444. [Google Scholar] [CrossRef]
- Kandasamy, S.; Narayanan, V.; Sumathi, S. Zinc and manganese substituted hydroxyapatite/CMC/PVP electrospun composite for bone repair applications. Int. J. Biol. Macromol. 2020, 145, 1018–1030. [Google Scholar] [CrossRef]
- El-Aassar, M.R.; Ibrahim, O.M.; Fouda, M.M.G.; El-Beheri, N.G.; Agwa, M.M. Wound healing of nanofiber comprising Polygalacturonic/Hyaluronic acid embedded silver nanoparticles: In-vitro and in-vivo studies. Carbohydr. Polym. 2020, 238, 116175. [Google Scholar] [CrossRef]
- El-Aassar, M.R.; El-Beheri, N.G.; Agwa, M.M.; Eltaher, H.M.; Alseqely, M.; Sadik, W.S.; El-Khordagui, L. Antibiotic-free combinational hyaluronic acid blend nanofibers for wound healing enhancement. Int. J. Biol. Macromol. 2021, 167, 1552–1563. [Google Scholar] [CrossRef]
- Eghbalifam, N.; Shojaosadati, S.A.; Hashemi-Najafabadi, S.; Khorasani, A.C. Synthesis and characterization of antimicrobial wound dressing material based on silver nanoparticles loaded gum Arabic nanofibers. Int. J. Biol. Macromol. 2020, 155, 119–130. [Google Scholar] [CrossRef]
- Hasannasab, M.; Nourmohammadi, J.; Dehghan, M.M.; Ghaee, A. Immobilization of bromelain and ZnO nanoparticles on silk fibroin nanofibers as an antibacterial and anti-inflammatory burn dressing. Int. J. Pharm. 2021, 610, 121227. [Google Scholar] [CrossRef]
- Lu, H.-T.; Huang, G.-Y.; Chang, W.-J.; Lu, T.-W.; Huang, T.-W.; Ho, M.-H.; Mi, F.-L. Modification of chitosan nanofibers with CuS and fucoidan for antibacterial and bone tissue engineering applications. Carbohydr. Polym. 2022, 281, 119035. [Google Scholar] [CrossRef] [PubMed]
- Haider, K.; Ullah, A.; Sarwar, M.N.; Saito, Y.; Sun, L.; Park, S.; Kim, I.S. Lignin-mediated in-situ synthesis of CuO nanoparticles on cellulose nanofibers: A potential wound dressing material. Int. J. Biol. Macromol. 2021, 173, 315–326. [Google Scholar] [CrossRef]
- Shi, Q.; Vitchuli, N.; Nowak, J.; Caldwell, J.M.; Breidt, F.; Bourham, M.; Zhang, X.; McCord, M. Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. Eur. Polym. J. 2011, 47, 1402–1409. [Google Scholar] [CrossRef]
- Rodríguez-Tobías, H.; Morales, G.; Grande, D. Comprehensive review on electrospinning techniques as versatile approaches toward antimicrobial biopolymeric composite fibers. Mater. Sci. Eng. C 2019, 101, 306–322. [Google Scholar] [CrossRef]
- Rather, A.H.; Khan, R.S.; Wani, T.U.; Rafiq, M.; Jadhav, A.H.; Srinivasappa, P.M.; Abdal-Hay, A.; Sultan, P.; Rather, S.-U.; Macossay, J.; et al. Polyurethane and cellulose acetate micro-nanofibers containing rosemary essential oil, and decorated with silver nanoparticles for wound healing application. Int. J. Biol. Macromol. 2023, 226, 690–705. [Google Scholar] [CrossRef]
- Alexander, J.W. History of the Medical Use of Silver. Surg. Infect. 2009, 10, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Sim, W.; Barnard, R.T.; Blaskovich, M.A.T.; Ziora, Z.M. Antimicrobial silver in medicinal and consumer applications: A patent review of the past decade (2007–2017). Antibiotics 2018, 7, 93. [Google Scholar] [CrossRef] [PubMed]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef] [PubMed]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, ume 15, 2555–2562. [Google Scholar] [CrossRef]
- Azizi-Lalabadi, M.; Garavand, F.; Jafari, S.M. Incorporation of silver nanoparticles into active antimicrobial nanocomposites: Release behavior, analyzing techniques, applications and safety issues. Adv. Colloid Interface Sci. 2021, 293, 102440. [Google Scholar] [CrossRef] [PubMed]
- Jane Cypriyana, P.J.; Saigeetha, S.; Lavanya Agnes Angalene, J.; Samrot, A.V.; Suresh Kumar, S.; Ponniah, P.; Chakravarthi, S. Overview on toxicity of nanoparticles, it’s mechanism, models used in toxicity studies and disposal methods—A review. Biocatal. Agric. Biotechnol. 2021, 36, 102117. [Google Scholar] [CrossRef]
- Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 2020, 21, 2375. [Google Scholar] [CrossRef]
- Jatoi, A.W.; Kim, I.S.; Ni, Q.Q. A comparative study on synthesis of AgNPs on cellulose nanofibers by thermal treatment and DMF for antibacterial activities. Mater. Sci. Eng. C 2019, 98, 1179–1195. [Google Scholar] [CrossRef]
- Moon, J.Y.; Lee, J.; Hwang, T.I.; Park, C.H.; Kim, C.S. A multifunctional, one-step gas foaming strategy for antimicrobial silver nanoparticle-decorated 3D cellulose nanofiber scaffolds. Carbohydr. Polym. 2021, 273, 118603. [Google Scholar] [CrossRef] [PubMed]
- Sofi, H.S.; Akram, T.; Shabir, N.; Vasita, R.; Jadhav, A.H.; Sheikh, F.A. Regenerated cellulose nanofibers from cellulose acetate: Incorporating hydroxyapatite (HAp) and silver (Ag) nanoparticles (NPs), as a scaffold for tissue engineering applications. Mater. Sci. Eng. C 2020, 118, 111547. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Z.; Zhang, H.; Zhang, Z.; Wang, D.; Xia, D.; Yang, C.; Dong, M. Three-dimensional layered nanofiber sponge with in situ grown silver- metal organic framework for enhancing wound healing. Chem. Eng. J. 2022, 443, 136234. [Google Scholar] [CrossRef]
- Fereydouni, N.; Zangouei, M.; Darroudi, M.; Hosseinpour, M.; Gholoobi, A. Antibacterial activity of chitosan-polyethylene oxide nanofibers containing silver nanoparticles against aerobic and anaerobic bacteria. J. Mol. Struct. 2023, 1274, 134304. [Google Scholar] [CrossRef]
- Jatoi, A.W.; Kim, I.S.; Ni, Q.-Q. Cellulose acetate nanofibers embedded with AgNPs anchored TiO2 nanoparticles for long term excellent antibacterial applications. Carbohydr. Polym. 2019, 207, 640–649. [Google Scholar] [CrossRef]
- Li, C.; Liu, Z.; Liu, S.; Tiwari, S.K.; Thummavichai, K.; Ola, O.; Ma, Z.; Zhang, S.; Wang, N.; Zhu, Y. Antibacterial properties and drug release study of cellulose acetate nanofibers containing ear-like Ag-NPs and Dimethyloxallyl Glycine/beta-cyclodextrin. Appl. Surf. Sci. 2022, 590, 153132. [Google Scholar] [CrossRef]
- Srivastava, C.M.; Purwar, R.; Gupta, A.P. Enhanced potential of biomimetic, silver nanoparticles functionalized Antheraea mylitta (tasar) silk fibroin nanofibrous mats for skin tissue engineering. Int. J. Biol. Macromol. 2019, 130, 437–453. [Google Scholar] [CrossRef]
- Yang, J.; Wang, K.; Yu, D.-G.; Yang, Y.; Bligh, S.W.A.; Williams, G.R. Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater. Sci. Eng. C 2020, 111, 110805. [Google Scholar] [CrossRef]
- Cotton, G.C.; Lagesse, N.R.; Parke, L.S.; Meledandri, C.J. Antibacterial Nanoparticles. In Comprehensive Nanoscience and Nanotechnology; Academic Press: Cambridge, MA, USA, 2019; pp. 65–82. ISBN 9780128122952. [Google Scholar]
- Jiang, J.; Pi, J.; Cai, J. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg. Chem. Appl. 2018, 2018, 1062562. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, K.S.; Rahman, A.U.; Tajuddin, N.; Husen, A. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Res. Lett. 2018, 13, 141. [Google Scholar] [CrossRef]
- Ranjbar-Mohammadi, M.; Shakoori, P.; Arab-Bafrani, Z. Design and characterization of keratin/PVA-PLA nanofibers containing hybrids of nanofibrillated chitosan/ZnO nanoparticles. Int. J. Biol. Macromol. 2021, 187, 554–565. [Google Scholar] [CrossRef]
- Hadisi, Z.; Farokhi, M.; Bakhsheshi-Rad, H.R.; Jahanshahi, M.; Hasanpour, S.; Pagan, E.; Dolatshahi-Pirouz, A.; Zhang, Y.S.; Kundu, S.C.; Akbari, M. Hyaluronic Acid (HA)-Based Silk Fibroin/Zinc Oxide Core–Shell Electrospun Dressing for Burn Wound Management. Macromol. Biosci. 2020, 20, e1900328. [Google Scholar] [CrossRef]
- Rezaei, A.; Katoueizadeh, E.; Zebarjad, S.M. Investigating of the influence of zinc oxide nanoparticles morphology on the properties of electrospun polyvinyl alcohol/chitosan (PVA/CS) nanofibers. J. Drug Deliv. Sci. Technol. 2023, 86, 104712. [Google Scholar] [CrossRef]
- Sadeghi, M.; Rahimnejad, M.; Adeli, H.; Feizi, F. Matrix–Drug Interactions for the Development of pH-Sensitive Alginate-Based Nanofibers as an Advanced Wound Dressing. J. Polym. Environ. 2023, 31, 1242–1256. [Google Scholar] [CrossRef]
- Jafari, A.; Amirsadeghi, A.; Hassanajili, S.; Azarpira, N. Bioactive antibacterial bilayer PCL/gelatin nanofibrous scaffold promotes full-thickness wound healing. Int. J. Pharm. 2020, 583, 119413. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, W.; Guo, Y.; Zhu, Y.; Song, Y. Electrospun Gelatin Fibers Surface Loaded ZnO Particles as a Potential Biodegradable Antibacterial Wound Dressing. Nanomaterials 2019, 9, 525. [Google Scholar] [CrossRef]
- Harandi, F.N.; Khorasani, A.C.; Shojaosadati, S.A.; Hashemi-Najafabadi, S. Living Lactobacillus–ZnO nanoparticles hybrids as antimicrobial and antibiofilm coatings for wound dressing application. Mater. Sci. Eng. C 2021, 130, 112457. [Google Scholar] [CrossRef]
- Jaberifard, F.; Ramezani, S.; Ghorbani, M.; Arsalani, N.; Moghadam, F.M. Investigation of wound healing efficiency of multifunctional eudragit/soy protein isolate electrospun nanofiber incorporated with ZnO loaded halloysite nanotubes and allantoin. Int. J. Pharm. 2023, 630, 122434. [Google Scholar] [CrossRef]
- Makvandi, P.; Wang, C.Y.; Zare, E.N.; Borzacchiello, A.; Niu, L.N.; Tay, F.R. Metal-Based Nanomaterials in Biomedical Applications: Antimicrobial Activity and Cytotoxicity Aspects. Adv. Funct. Mater. 2020, 30, 1910021. [Google Scholar] [CrossRef]
- Raffi, M.; Mehrwan, S.; Bhatti, T.M.; Akhter, J.I.; Hameed, A.; Yawar, W.; ul Hasan, M.M. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann. Microbiol. 2010, 60, 75–80. [Google Scholar] [CrossRef]
- Usman, M.S.; El Zowalaty, M.E.; Shameli, K.; Zainuddin, N.; Salama, M.; Ibrahim, N.A. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int. J. Nanomed. 2013, 8, 4467–4479. [Google Scholar] [CrossRef]
- Kiadeh, S.Z.H.; Ghaee, A.; Farokhi, M.; Nourmohammadi, J.; Bahi, A.; Ko, F.K. Electrospun pectin/modified copper-based metal–organic framework (MOF) nanofibers as a drug delivery system. Int. J. Biol. Macromol. 2021, 173, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Harandi, F.N.; Khorasani, A.C.; Shojaosadati, S.A.; Hashemi-Najafabadi, S. Surface modification of electrospun wound dressing material by Fe2O3 nanoparticles incorporating Lactobacillus strains for enhanced antimicrobial and antibiofilm activity. Surf. Interfaces 2022, 28, 101592. [Google Scholar] [CrossRef]
- Baranowska-Wójcik, E.; Szwajgier, D.; Oleszczuk, P.; Winiarska-Mieczan, A. Effects of Titanium Dioxide Nanoparticles Exposure on Human Health—A Review. Biol. Trace Elem. Res. 2020, 193, 118–129. [Google Scholar] [CrossRef]
- Waghmode, M.S.; Gunjal, A.B.; Mulla, J.A.; Patil, N.N.; Nawani, N.N. Studies on the titanium dioxide nanoparticles: Biosynthesis, applications and remediation. SN Appl. Sci. 2019, 1, 310. [Google Scholar] [CrossRef]
- Amjadi, S.; Almasi, H.; Ghorbani, M.; Ramazani, S. Preparation and characterization of TiO2NPs and betanin loaded zein/sodium alginate nanofibers. Food Packag. Shelf Life 2020, 24, 100504. [Google Scholar] [CrossRef]
- Shahverdi, F.; Barati, A.; Salehi, E.; Arjomandzadegan, M. Biaxial electrospun nanofibers based on chitosan-poly (vinyl alcohol) and poly (ε-caprolactone) modified with CeAlO3 nanoparticles as potential wound dressing materials. Int. J. Biol. Macromol. 2022, 221, 736–750. [Google Scholar] [CrossRef]
- Al-Dhahebi, A.M.; Gopinath, S.C.B.; Saheed, M.S.M. Graphene impregnated electrospun nanofiber sensing materials: A comprehensive overview on bridging laboratory set-up to industry. Nano Converg. 2020, 7, 27. [Google Scholar] [CrossRef]
- Shang, L.; Qi, Y.; Lu, H.; Pei, H.; Li, Y.; Qu, L.; Wu, Z.; Zhang, W. Graphene and Graphene Oxide for Tissue Engineering and Regeneration. In Theranostic Bionanomaterials; Cui, W., Zhao, X., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 165–185. ISBN 978-0-12-815341-3. [Google Scholar]
- Kumar, P.; Huo, P.; Zhang, R.; Liu, B. Antibacterial Properties of Graphene-Based Nanomaterials. Nanomaterials 2019, 9, 737. [Google Scholar] [CrossRef]
- Mohammed, H.; Kumar, A.; Bekyarova, E.; Al-Hadeethi, Y.; Zhang, X.; Chen, M.; Ansari, M.S.; Cochis, A.; Rimondini, L. Antimicrobial mechanisms and effectiveness of graphene and graphene-functionalized biomaterials. A scope review. Front. Bioeng. Biotechnol. 2020, 8, 465–486. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Liu, A.; Pan, C.; Ding, H.; Ye, W. Reduced graphene oxide/titanium dioxide hybrid nanofiller-reinforced electrospun silk fibroin scaffolds for tissue engineering. Mater. Lett. 2021, 291, 129563. [Google Scholar] [CrossRef]
- Wang, S.-D.; Ma, Q.; Wang, K.; Chen, H.-W. Improving Antibacterial Activity and Biocompatibility of Bioinspired Electrospinning Silk Fibroin Nanofibers Modified by Graphene Oxide. ACS Omega 2018, 3, 406–413. [Google Scholar] [CrossRef]
- Dong, J.; Cheng, Z.; Tan, S.; Zhu, Q. Clay nanoparticles as pharmaceutical carriers in drug delivery systems. Expert Opin. Drug Deliv. 2021, 18, 695–714. [Google Scholar] [CrossRef]
- Fatahi, Y.; Sanjabi, M.; Rakhshani, A.; Motasadizadeh, H.; Darbasizadeh, B.; Bahadorikhalili, S.; Farhadnejad, H. Levofloxacin-halloysite nanohybrid-loaded fibers based on poly (ethylene oxide) and sodium alginate: Fabrication, characterization, and antibacterial property. J. Drug Deliv. Sci. Technol. 2021, 64, 102598. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, C.; Wang, P.; Zhang, Y.; Zhang, H. Electrospun chitosan/polycaprolactone nanofibers containing chlorogenic acid-loaded halloysite nanotube for active food packaging. Carbohydr. Polym. 2020, 247, 116711. [Google Scholar] [CrossRef]
- Elsayed, M.T.; Hassan, A.A.; Abdelaal, S.A.; Taher, M.M.; Ahmed, M.K.; Shoueir, K.R. Morphological, antibacterial, and cell attachment of cellulose acetate nanofibers containing modified hydroxyapatite for wound healing utilizations. J. Mater. Res. Technol. 2020, 9, 13927–13936. [Google Scholar] [CrossRef]
- Ramírez-Agudelo, R.; Scheuermann, K.; Gala-García, A.; Monteiro, A.P.F.; Pinzón-García, A.D.; Cortés, M.E.; Sinisterra, R.D. Hybrid nanofibers based on poly-caprolactone/gelatin/hydroxyapatite nanoparticles-loaded Doxycycline: Effective anti-tumoral and antibacterial activity. Mater. Sci. Eng. C 2018, 83, 25–34. [Google Scholar] [CrossRef]
- Wang, J.; Cai, N.; Chan, V.; Zeng, H.; Shi, H.; Xue, Y.; Yu, F. Antimicrobial hydroxyapatite reinforced-polyelectrolyte complex nanofibers with long-term controlled release activity for potential wound dressing application. Colloids Surf. A Physicochem. Eng. Asp. 2021, 624, 126722. [Google Scholar] [CrossRef]
- Wang, J.; Planz, V.; Vukosavljevic, B.; Windbergs, M. Multifunctional electrospun nanofibers for wound application—Novel insights into the control of drug release and antimicrobial activity. Eur. J. Pharm. Biopharm. 2018, 129, 175–183. [Google Scholar] [CrossRef]
- Lucera, A.; Costa, C.; Conte, A.; Del Nobile, M.A. Food applications of natural antimicrobial compounds. Front. Microbiol. 2012, 3, 287. [Google Scholar] [CrossRef]
- Hayashi, M.A.; Bizerra, F.C.; Da Silva, P.I. Antimicrobial compounds from natural sources. Front. Microbiol. 2013, 4, 195. [Google Scholar] [CrossRef]
- Arshad, M.S.; Batool, S.A. Natural Antimicrobials, their Sources and Food Safety. Food Addit. 2017, 87, 87–102. [Google Scholar] [CrossRef]
- Yudovin-Farber, I.; Golenser, J.; Beyth, N.; Weiss, E.I.; Domb, A.J. Quaternary Ammonium Polyethyleneimine: Antibacterial Activity. J. Nanomater. 2010, 2010, 1–11. [Google Scholar] [CrossRef]
- Russell, A.D. Mechanisms of antimicrobial action of antiseptics and disinfectants: An increasingly important area of investigation. J. Antimicrob. Chemother. 2002, 49, 597–599. [Google Scholar] [CrossRef]
- Zupančič, Š. Core-shell nanofibers as drug delivery systems. Acta Pharm. 2019, 69, 131–153. [Google Scholar] [CrossRef]
- Castellano, M.; Dodero, A.; Scarfi, S.; Mirata, S.; Pozzolini, M.; Tassara, E.; Sionkowska, A.; Adamiak, K.; Alloisio, M.; Vicini, S. Chitosan–Collagen Electrospun Nanofibers Loaded with Curcumin as Wound-Healing Patches. Polymers 2023, 15, 2931. [Google Scholar] [CrossRef]
- Sharifi, S.; Khosroshahi, A.Z.; Dizaj, S.M.; Rezaei, Y. Preparation, Physicochemical Assessment and the Antimicrobial Action of Hydroxyapatite–Gelatin/Curcumin Nanofibrous Composites as a Dental Biomaterial. Biomimetics 2022, 7, 4. [Google Scholar] [CrossRef]
- Hashemi, S.-S.; Mohammadi, A.A.; Rajabi, S.-S.; Sanati, P.; Rafati, A.; Kian, M.; Zarei, Z. Preparation and evaluation of a polycaprolactone/chitosan/propolis fibrous nanocomposite scaffold as a tissue engineering skin substitute. BioImpacts 2023, 13, 275–287. [Google Scholar] [CrossRef]
- Fahimirad, S.; Satei, P.; Ganji, A.; Abtahi, H. Wound healing capability of the double-layer Polycaprolactone/Polyvinyl alcohol-Chitosan lactate electrospun nanofiber incorporating Echinacea purpurea extract. J. Drug Deliv. Sci. Technol. 2023, 87, 104734. [Google Scholar] [CrossRef]
- Kassem, L.M.; El-Deen, A.G.; Zaki, A.H.; El-Dek, S.I. Electrospun manuka honey@PVP nanofibers enclosing chitosan-titanate for highly effective wound healing. Cellulose 2023, 30, 6487–6505. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; Costa, S.M.; Ferreira, D.P.; Calhelha, R.C.; Barros, L.; Stojković, D.; Soković, M.; Ferreira, I.C.; Fangueiro, R. Chitosan/nanocellulose electrospun fibers with enhanced antibacterial and antifungal activity for wound dressing applications. React. Funct. Polym. 2021, 159, 104808. [Google Scholar] [CrossRef]
- Kuntzler, S.G.; Costa, J.A.V.; de Morais, M.G. Development of electrospun nanofibers containing chitosan/PEO blend and phenolic compounds with antibacterial activity. Int. J. Biol. Macromol. 2018, 117, 800–806. [Google Scholar] [CrossRef]
- Snetkov, P.; Morozkina, S.; Olekhnovich, R.; Vu, T.H.N.; Tyanutova, M.; Uspenskaya, M. Curcumin/Usnic Acid-Loaded Electrospun Nanofibers Based on Hyaluronic Acid. Materials 2020, 13, 3476. [Google Scholar] [CrossRef]
- Ionescu, O.M.; Mignon, A.; Iacob, A.T.; Simionescu, N.; Confederat, L.G.; Tuchilus, C.; Profire, L. New Hyaluronic Acid/Polyethylene Oxide-Based Electrospun Nanofibers: Design, Characterization and In Vitro Biological Evaluation. Polymers 2021, 13, 1291. [Google Scholar] [CrossRef]
- Ionescu, O.M.; Iacob, A.-T.; Mignon, A.; Van Vlierberghe, S.; Baican, M.; Danu, M.; Ibănescu, C.; Simionescu, N.; Profire, L. Design, preparation and in vitro characterization of biomimetic and bioactive chitosan/polyethylene oxide based nanofibers as wound dressings. Int. J. Biol. Macromol. 2021, 193, 996–1008. [Google Scholar] [CrossRef]
- Râpă, M.; Gaidau, C.; Mititelu-Tartau, L.; Berechet, M.-D.; Berbecaru, A.C.; Rosca, I.; Chiriac, A.P.; Matei, E.; Predescu, A.-M.; Predescu, C. Bioactive Collagen Hydrolysate-Chitosan/Essential Oil Electrospun Nanofibers Designed for Medical Wound Dressings. Pharmaceutics 2021, 13, 1939. [Google Scholar] [CrossRef]
- Zare, M.R.; Khorram, M.; Barzegar, S.; Asadian, F.; Zareshahrabadi, Z.; Saharkhiz, M.J.; Ahadian, S.; Zomorodian, K. Antimicrobial core–shell electrospun nanofibers containing Ajwain essential oil for accelerating infected wound healing. Int. J. Pharm. 2021, 603, 120698. [Google Scholar] [CrossRef]
- Ulag, S.; Ilhan, E.; Demirhan, R.; Sahin, A.; Yilmaz, B.K.; Aksu, B.; Sengor, M.; Ficai, D.; Titu, A.M.; Ficai, A.; et al. Propolis-Based Nanofiber Patches to Repair Corneal Microbial Keratitis. Molecules 2021, 26, 2577. [Google Scholar] [CrossRef]
- Anand, S.; Rajinikanth, P.S.; Arya, D.K.; Pandey, P.; Gupta, R.K.; Sankhwar, R.; Chidambaram, K. Multifunctional Biomimetic Nanofibrous Scaffold Loaded with Asiaticoside for Rapid Diabetic Wound Healing. Pharmaceutics 2022, 14, 273. [Google Scholar] [CrossRef] [PubMed]
- Muthulakshmi, L.; Prabakaran, S.; Ramalingam, V.; Rajulu, A.V.; Rajan, M.; Ramakrishna, S.; Luo, H. Sodium alginate nanofibers loaded Terminalia catappa scaffold regulates intrinsic apoptosis signaling in skin melanoma cancer. Process. Biochem. 2022, 118, 92–102. [Google Scholar] [CrossRef]
- dos Santos, A.E.A.; dos Santos, F.V.; Freitas, K.M.; Pimenta, L.P.S.; Andrade, L.d.O.; Marinho, T.A.; de Avelar, G.F.; da Silva, A.B.; Ferreira, R.V. Cellulose acetate nanofibers loaded with crude annatto extract: Preparation, characterization, and in vivo evaluation for potential wound healing applications. Mater. Sci. Eng. C 2021, 118, 111322. [Google Scholar] [CrossRef] [PubMed]
- Silva, N.H.; Garrido-Pascual, P.; Moreirinha, C.; Almeida, A.; Palomares, T.; Alonso-Varona, A.; Vilela, C.; Freire, C.S. Multifunctional nanofibrous patches composed of nanocellulose and lysozyme nanofibers for cutaneous wound healing. Int. J. Biol. Macromol. 2020, 165, 1198–1210. [Google Scholar] [CrossRef] [PubMed]
- Almasian, A.; Najafi, F.; Eftekhari, M.; Ardekani, M.R.S.; Sharifzadeh, M.; Khanavi, M. Polyurethane/carboxymethylcellulose nanofibers containing Malva sylvestris extract for healing diabetic wounds: Preparation, characterization, in vitro and in vivo studies. Mater. Sci. Eng. C 2020, 114, 111039. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Xie, Z.; Hu, J.; Liu, Y. Hyaluronic acid nanofiber mats loaded with antimicrobial peptide towards wound dressing applications. Mater. Sci. Eng. C 2021, 128, 112319. [Google Scholar] [CrossRef]
- Urbanek, O.; Wysocka, A.; Nakielski, P.; Pierini, F.; Jagielska, E.; Sabała, I. Staphylococcus aureus Specific Electrospun Wound Dressings: Influence of Immobilization Technique on Antibacterial Efficiency of Novel Enzybiotic. Pharmaceutics 2021, 13, 711. [Google Scholar] [CrossRef]
- Hashemi, S.-S.; Saadatjo, Z.; Mahmoudi, R.; Delaviz, H.; Bardania, H.; Rajabi, S.-S.; Rafati, A.; Zarshenas, M.M.; Barmak, M.J. Preparation and evaluation of polycaprolactone/chitosan/Jaft biocompatible nanofibers as a burn wound dressing. Burns 2022, 48, 1690–1705. [Google Scholar] [CrossRef]
- Mishra, P.; Gupta, P.; Srivastava, A.K.; Poluri, K.M.; Prasad, R. Eucalyptol/ β-cyclodextrin inclusion complex loaded gellan/PVA nanofibers as antifungal drug delivery system. Int. J. Pharm. 2021, 609, 121163. [Google Scholar] [CrossRef]
- Kamaruzzaman, N.F.; Tan, L.P.; Hamdan, R.H.; Choong, S.S.; Wong, W.K.; Gibson, A.J.; Chivu, A.; Pina, M.D.F. Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics? Int. J. Mol. Sci. 2019, 20, 2747. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Bonilla, A.; Echeverria, C.; Sonseca, Á.; Arrieta, M.P.; Fernández-García, M. Bio-Based Polymers with Antimicrobial Properties towards Sustainable Development. Materials 2019, 12, 641. [Google Scholar] [CrossRef] [PubMed]
- Sayed, S.; Jardine, M.A. Antimicrobial Biopolymers. In UZUN, Lokman a Ashutosh TIWARI. Advanced Functional Materials; Scrivener Publishing: Beverly, MA, USA, 2015; pp. 493–533. ISBN 978-1-118-99827-4. [Google Scholar]
- Tao, F.; Cheng, Y.; Shi, X.; Zheng, H.; Du, Y.; Xiang, W.; Deng, H. Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydr. Polym. 2020, 230, 115658. [Google Scholar] [CrossRef] [PubMed]
- Jøraholmen, M.W.; Bhargava, A.; Julin, K.; Johannessen, M.; Škalko-Basnet, N. The Antimicrobial Properties of Chitosan Can Be Tailored by Formulation. Mar. Drugs 2020, 18, 96. [Google Scholar] [CrossRef] [PubMed]
- Azuma, K.; Ifuku, S.; Osaki, T.; Okamoto, Y.; Minami, S. Preparation and Biomedical Applications of Chitin and Chitosan Nanofibers. J. Biomed. Nanotechnol. 2014, 10, 2891–2920. [Google Scholar] [CrossRef] [PubMed]
- Valachová, K.; El Meligy, M.A.; Šoltés, L. Hyaluronic acid and chitosan-based electrospun wound dressings: Problems and solutions. Int. J. Biol. Macromol. 2022, 206, 74–91. [Google Scholar] [CrossRef] [PubMed]
- Ohkawa, K.; Cha, D.; Kim, H.; Nishida, A.; Yamamoto, H. Electrospinning of Chitosan. Macromol. Rapid Commun. 2004, 25, 1600–1605. [Google Scholar] [CrossRef]
- Cremar, L.; Gutierrez, J.; Martinez, J.; Materon, L.A.; Gilkerson, R.; Xu, F.; Lozano, K. Development of antimicrobial chitosan based nanofiber dressings for wound healing applications. Nanomed. J. 2018, 5, 6–14. [Google Scholar] [CrossRef]
- Boda, S.K.; Fischer, N.G.; Ye, Z.; Aparicio, C. Dual Oral Tissue Adhesive Nanofiber Membranes for pH-Responsive Delivery of Antimicrobial Peptides. Biomacromolecules 2020, 21, 4945–4961. [Google Scholar] [CrossRef]
- Salazar-Brann, S.A.; Patiño-Herrera, R.; Navarrete-Damián, J.; Louvier-Hernández, J.F. Electrospinning of chitosan from different acid solutions. AIMS Bioeng. 2021, 8, 112–129. [Google Scholar] [CrossRef]
- Anisiei, A.; Rosca, I.; Sandu, A.-I.; Bele, A.; Cheng, X.; Marin, L. Imination of Microporous Chitosan Fibers—A Route to Biomaterials with “On Demand” Antimicrobial Activity and Biodegradation for Wound Dressings. Pharmaceutics 2022, 14, 117. [Google Scholar] [CrossRef]
- Lemma, S.M.; Bossard, F.; Rinaudo, M. Preparation of Pure and Stable Chitosan Nanofibers by Electrospinning in the Presence of Poly(ethylene oxide). Int. J. Mol. Sci. 2016, 17, 1790. [Google Scholar] [CrossRef] [PubMed]
- Abid, S.; Hussain, T.; Nazir, A.; Zahir, A.; Ramakrishna, S.; Hameed, M.; Khenoussi, N. Enhanced antibacterial activity of PEO-chitosan nanofibers with potential application in burn infection management. Int. J. Biol. Macromol. 2019, 135, 1222–1236. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Tang, J.; Fu, H.; Fu, Y.; Wu, Y. Characteristics, Controlled-release and Antimicrobial Properties of Tea Tree Oil Liposomes-incorporated Chitosan-based Electrospun Nanofiber Mats. Fibers Polym. 2019, 20, 698–708. [Google Scholar] [CrossRef]
- Yu, L.; Dou, S.; Ma, J.; Gong, Q.; Zhang, M.; Zhang, X.; Li, M.; Zhang, W. An Antimicrobial Peptide-Loaded Chitosan/Polyethylene Oxide Nanofibrous Membrane Fabricated by Electrospinning Technology. Front. Mater. 2021, 8, 650223. [Google Scholar] [CrossRef]
- Kalalinia, F.; Taherzadeh, Z.; Jirofti, N.; Amiri, N.; Foroghinia, N.; Beheshti, M.; Bazzaz, B.S.F.; Hashemi, M.; Shahroodi, A.; Pishavar, E.; et al. Evaluation of wound healing efficiency of vancomycin-loaded electrospun chitosan/poly ethylene oxide nanofibers in full thickness wound model of rat. Int. J. Biol. Macromol. 2021, 177, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Bayat, S.; Amiri, N.; Pishavar, E.; Kalalinia, F.; Movaffagh, J.; Hashemi, M. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life Sci. 2019, 229, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Lungu, R.; Anisiei, A.; Rosca, I.; Sandu, A.-I.; Ailincai, D.; Marin, L. Double functionalization of chitosan based nanofibers towards biomaterials for wound healing. React. Funct. Polym. 2021, 167, 105028. [Google Scholar] [CrossRef]
- Naeimi, A.; Payandeh, M.; Ghara, A.R.; Ghadi, F.E. In vivo evaluation of the wound healing properties of bio-nanofiber chitosan/ polyvinyl alcohol incorporating honey and Nepeta dschuparensis. Carbohydr. Polym. 2020, 240, 116315. [Google Scholar] [CrossRef]
- Ghasemian Lemraski, E.; Jahangirian, H.; Dashti, M.; Khajehali, E.; Sharafinia, M.S.; Rafiee-Moghaddam, R.; Webster, T.J. Antimicrobial Double-Layer Wound Dressing Based on Chitosan/Polyvinyl Alcohol/Copper: In vitro and in vivo Assessment. Int. J. Nanomed. 2021, 16, 223–235. [Google Scholar] [CrossRef]
- Pandey, V.K.; Upadhyay, S.N.; Niranjan, K.; Mishra, P.K. Antimicrobial biodegradable chitosan-based composite Nano-layers for food packaging. Int. J. Biol. Macromol. 2020, 157, 212–219. [Google Scholar] [CrossRef]
- Raza, Z.A.; Naeem, A.R.; Shafi, R.; Abid, S. Chitosan-incorporated poly(hydroxybutyrate) porous electrospun scaffold for potential biomedical applications. Polym. Bull. 2023, 81, 1691–1705. [Google Scholar] [CrossRef]
- Ghazalian, M.; Afshar, S.; Rostami, A.; Rashedi, S.; Bahrami, S.H. Fabrication and characterization of chitosan-polycaprolactone core-shell nanofibers containing tetracycline hydrochloride. Colloids Surf. A Physicochem. Eng. Asp. 2022, 636, 128163. [Google Scholar] [CrossRef]
- Zhou, L.; Cai, L.; Ruan, H.; Zhang, L.; Wang, J.; Jiang, H.; Wu, Y.; Feng, S.; Chen, J. Electrospun chitosan oligosaccharide/polycaprolactone nanofibers loaded with wound-healing compounds of Rutin and Quercetin as antibacterial dressings. Int. J. Biol. Macromol. 2021, 183, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Shabunin, A.S.; Yudin, V.E.; Dobrovolskaya, I.P.; Zinovyev, E.V.; Zubov, V.; Ivan’kova, E.M.; Morganti, P. Composite Wound Dressing Based on Chitin/Chitosan Nanofibers: Processing and Biomedical Applications. Cosmetics 2019, 6, 16. [Google Scholar] [CrossRef]
- Ali, I.H.; Ouf, A.; Elshishiny, F.; Taskin, M.B.; Song, J.; Dong, M.; Chen, M.; Siam, R.; Mamdouh, W. Antimicrobial and Wound-Healing Activities of Graphene-Reinforced Electrospun Chitosan/Gelatin Nanofibrous Nanocomposite Scaffolds. ACS Omega 2022, 7, 1838–1850. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jiang, F.; Duan, Y.; Li, Q.; Qu, Y.; Zhao, S.; Yue, X.; Huang, C.; Zhang, C.; Pan, X. Chitosan electrospun nanofibers derived from Periplaneta americana residue for promoting infected wound healing. Int. J. Biol. Macromol. 2023, 229, 654–667. [Google Scholar] [CrossRef]
- Al-Musawi, S.; Albukhaty, S.; Al-Karagoly, H.; Sulaiman, G.M.; Alwahibi, M.S.; Dewir, Y.H.; Soliman, D.A.; Rizwana, H. Antibacterial Activity of Honey/Chitosan Nanofibers Loaded with Capsaicin and Gold Nanoparticles for Wound Dressing. Molecules 2020, 25, 4770. [Google Scholar] [CrossRef]
- Amariei, G.; Kokol, V.; Boltes, K.; Letón, P.; Rosal, R. Incorporation of antimicrobial peptides on electrospun nanofibres for biomedical applications. RSC Adv. 2018, 8, 28013–28023. [Google Scholar] [CrossRef]
- Amariei, G.; Kokol, V.; Vivod, V.; Boltes, K.; Letón, P.; Rosal, R. Biocompatible antimicrobial electrospun nanofibers functionalized with ε-poly-l-lysine. Int. J. Pharm. 2018, 553, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Gu, Y.; Cui, H. Novel electrospun gelatin-glycerin-ε-Poly-lysine nanofibers for controlling Listeria monocytogenes on beef. Food Packag. Shelf Life 2018, 18, 21–30. [Google Scholar] [CrossRef]
- Lin, L.; Zhu, Y.; Cui, H. Electrospun thyme essential oil/gelatin nanofibers for active packaging against Campylobacter jejuni in chicken. LWT 2018, 97, 711–718. [Google Scholar] [CrossRef]
- Mayandi, V.; Choong, A.C.W.; Dhand, C.; Lim, F.P.; Aung, T.T.; Sriram, H.; Dwivedi, N.; Periayah, M.H.; Sridhar, S.; Fazil, M.H.U.T.; et al. Multifunctional Antimicrobial Nanofiber Dressings Containing ε-Polylysine for the Eradication of Bacterial Bioburden and Promotion of Wound Healing in Critically Colonized Wounds. ACS Appl. Mater. Interfaces 2020, 12, 15989–16005. [Google Scholar] [CrossRef]
- Wang, D.; Sun, J.; Li, J.; Sun, Z.; Liu, F.; Du, L.; Wang, D. Preparation and characterization of gelatin/zein nanofiber films loaded with perillaldehyde, thymol, or ε-polylysine and evaluation of their effects on the preservation of chilled chicken breast. Food Chem. 2022, 373, 131439. [Google Scholar] [CrossRef]
- Grimaudo, M.A.; Concheiro, A.; Alvarez-Lorenzo, C. Crosslinked Hyaluronan Electrospun Nanofibers for Ferulic Acid Ocular Delivery. Pharmaceutics 2020, 12, 274. [Google Scholar] [CrossRef]
- Lan, X.; Liu, Y.; Wang, Y.; Tian, F.; Miao, X.; Wang, H.; Tang, Y. Coaxial electrospun PVA/PCL nanofibers with dual release of tea polyphenols and ε-poly (L-lysine) as antioxidant and antibacterial wound dressing materials. Int. J. Pharm. 2021, 601, 120525. [Google Scholar] [CrossRef]
- Han, Y.; Shi, C.; Cui, F.; Chen, Q.; Tao, Y.; Li, Y. Solution properties and electrospinning of polyacrylamide and ε-polylysine complexes. Polymer 2020, 204, 122806. [Google Scholar] [CrossRef]
- Lin, L.; Xue, L.; Duraiarasan, S.; Haiying, C. Preparation of ε-polylysine/chitosan nanofibers for food packaging against Salmonella on chicken. Food Packag. Shelf Life 2018, 17, 134–141. [Google Scholar] [CrossRef]
- Yang, Q.; Cui, S.; Song, X.; Hu, J.; Zhou, Y.; Liu, Y. An antimicrobial peptide-immobilized nanofiber mat with superior performances than the commercial silver-containing dressing. Mater. Sci. Eng. C 2021, 119, 111608. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Jin, Y.; Wang, X.; Yao, S.; Li, Y.; Wu, Q.; Ma, G.; Cui, F.; Liu, H. An Antimicrobial Peptide-Loaded Gelatin/Chitosan Nanofibrous Membrane Fabricated by Sequential Layer-by-Layer Electrospinning and Electrospraying Techniques. Nanomaterials 2018, 8, 327. [Google Scholar] [CrossRef] [PubMed]
- Khosravimelal, S.; Chizari, M.; Farhadihosseinabadi, B.; Moghaddam, M.M.; Gholipourmalekabadi, M. Fabrication and characterization of an antibacterial chitosan/silk fibroin electrospun nanofiber loaded with a cationic peptide for wound-dressing application. J. Mater. Sci. Mater. Med. 2021, 32, 114. [Google Scholar] [CrossRef]
- Afshar, A.; Yuca, E.; Wisdom, C.; Alenezi, H.; Ahmed, J.; Tamerler, C.; Edirisinghe, M. Next-generation Antimicrobial Peptides (AMPs) incorporated nanofibre wound dressings. Med. Devices Sens. 2021, 4, e10144. [Google Scholar] [CrossRef]
- Chaiarwut, S.; Ekabutr, P.; Chuysinuan, P.; Chanamuangkon, T.; Supaphol, P. Surface immobilization of PCL electrospun nanofibers with pexiganan for wound dressing. J. Polym. Res. 2021, 28, 344. [Google Scholar] [CrossRef]
- Su, Y.; Wang, H.; Mishra, B.; Narayana, J.L.; Jiang, J.; Reilly, D.A.; Hollins, R.R.; Carlson, M.A.; Wang, G.; Xie, J. Nanofiber Dressings Topically Delivering Molecularly Engineered Human Cathelicidin Peptides for the Treatment of Biofilms in Chronic Wounds. Mol. Pharm. 2019, 16, 2011–2020. [Google Scholar] [CrossRef] [PubMed]
- Hajikhani, M.; Emam-Djomeh, Z.; Askari, G. Fabrication and characterization of mucoadhesive bioplastic patch via coaxial polylactic acid (PLA) based electrospun nanofibers with antimicrobial and wound healing application. Int. J. Biol. Macromol. 2021, 172, 143–153. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Jiang, L.; Liu, J.; Zhang, J.; Shao, W. Electrospun PVA/gelatin based nanofiber membranes with synergistic antibacterial performance. Colloids Surf. A Physicochem. Eng. Asp. 2022, 637, 128196. [Google Scholar] [CrossRef]
- Bardoňová, L.; Kotzianová, A.; Skuhrovcová, K.; Židek, O.; Bártová, T.; Kulhánek, J.; Hanová, T.; Kutláková, K.M.; Vágnerová, H.; Krpatová, V.; et al. Antimicrobial nanofibrous mats with controllable drug release produced from hydrophobized hyaluronan. Carbohydr. Polym. 2021, 267, 118225. [Google Scholar] [CrossRef] [PubMed]
- Bardoňová, L.; Kotzianová, A.; Skuhrovcová, K.; Židek, O.; Vágnerová, H.; Kulhánek, J.; Hanová, T.; Knor, M.; Starigazdová, J.; Kutláková, K.M.; et al. Effects of emulsion, dispersion, and blend electrospinning on hyaluronic acid nanofibers with incorporated antiseptics. Int. J. Biol. Macromol. 2022, 194, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Suner, S.C.; Yildirim, Y.; Yurt, F.; Ozel, D.; Oral, A.; Ozturk, I. Antibiotic loaded electrospun poly (lactic acid) nanofiber mats for drug delivery system. J. Drug Deliv. Sci. Technol. 2022, 71, 103263. [Google Scholar] [CrossRef]
- Friuli, V.; Pisani, S.; Conti, B.; Bruni, G.; Maggi, L. Tablet Formulations of Polymeric Electrospun Fibers for the Controlled Release of Drugs with pH-Dependent Solubility. Polymers 2022, 14, 2127. [Google Scholar] [CrossRef]
- Turan, C.U.; Guvenilir, Y. Electrospun poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin/chitosan ternary nanofibers with antibacterial activity for treatment of skin infections. Eur. J. Pharm. Sci. 2022, 170, 106113. [Google Scholar] [CrossRef]
- De Silva, R.T.; Dissanayake, R.K.; Mantilaka, M.M.M.G.P.G.; Wijesinghe, W.P.S.L.; Kaleel, S.S.; Premachandra, T.N.; Weerasinghe, L.; Amaratunga, G.A.J.; de Silva, K.M.N. Drug-Loaded Halloysite Nanotube-Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Sustained Antimicrobial Protection. ACS Appl. Mater. Interfaces 2018, 10, 33913–33922. [Google Scholar] [CrossRef] [PubMed]
- Khalek, M.A.A.; Gaber, S.A.A.; El-Domany, R.A.; El-Kemary, M.A. Photoactive electrospun cellulose acetate/polyethylene oxide/methylene blue and trilayered cellulose acetate/polyethylene oxide/silk fibroin/ciprofloxacin nanofibers for chronic wound healing. Int. J. Biol. Macromol. 2021, 193, 1752–1766. [Google Scholar] [CrossRef]
- İnal, M.; Mülazımoğlu, G. Production and characterization of bactericidal wound dressing material based on gelatin nanofiber. Int. J. Biol. Macromol. 2019, 137, 392–404. [Google Scholar] [CrossRef]
- Elsherbiny, D.A.; Abdelgawad, A.M.; El-Naggar, M.E.; Hemdan, B.A.; Ghazanfari, S.; Jockenhövel, S.; Rojas, O.J. Bioactive tri-component nanofibers from cellulose acetate/lignin//N-vanillidene-phenylthiazole copper-(II) complex for potential diaper dermatitis control. Int. J. Biol. Macromol. 2022, 205, 703–718. [Google Scholar] [CrossRef]
- Anand, S.; Pandey, P.; Begum, M.Y.; Chidambaram, K.; Arya, D.K.; Gupta, R.K.; Sankhwar, R.; Jaiswal, S.; Thakur, S.; Rajinikanth, P.S. Electrospun Biomimetic Multifunctional Nanofibers Loaded with Ferulic Acid for Enhanced Antimicrobial and Wound-Healing Activities in STZ-Induced Diabetic Rats. Pharmaceuticals 2022, 15, 302. [Google Scholar] [CrossRef]
- Jeckson, T.A.; Neo, Y.P.; Sisinthy, S.P.; Foo, J.B.; Choudhury, H.; Gorain, B. Formulation and characterisation of deferoxamine nanofiber as potential wound dressing for the treatment of diabetic foot ulcer. J. Drug Deliv. Sci. Technol. 2021, 66, 102751. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Wang, C.-Y.; Chen, K.-H.; Lai, Y.-R.; Chiu, C.-Y.; Lee, H.-C.; Chang, Y.-K. Electrospinning of Quaternized Chitosan-Poly(vinyl alcohol) Composite Nanofiber Membrane: Processing Optimization and Antibacterial Efficacy. Membranes 2022, 12, 332. [Google Scholar] [CrossRef]
- Ouerghemmi, S.; Degoutin, S.; Maton, M.; Tabary, N.; Cazaux, F.; Neut, C.; Blanchemain, N.; Martel, B. Core-Sheath Electrospun Nanofibers Based on Chitosan and Cyclodextrin Polymer for the Prolonged Release of Triclosan. Polymers 2022, 14, 1955. [Google Scholar] [CrossRef] [PubMed]
- Cestari, M.; Caldas, B.S.; Fonseca, D.P.; Balbinot, R.B.; Lazarin-Bidóia, D.; Otsuka, I.; Nakamura, C.V.; Borsali, R.; Muniz, E.C. Silk fibroin nanofibers containing chondroitin sulfate and silver sulfadiazine for wound healing treatment. J. Drug Deliv. Sci. Technol. 2022, 70, 103221. [Google Scholar] [CrossRef]
- Chinatangkul, N.; Limmatvapirat, C.; Nunthanid, J.; Luangtana-Anan, M.; Sriamornsak, P.; Limmatvapirat, S. Design and characterization of monolaurin loaded electrospun shellac nanofibers with antimicrobial activity. Asian J. Pharm. Sci. 2018, 13, 459–471. [Google Scholar] [CrossRef]
Polymers | Additives | Incorporation | Antimicrobial Activity | Application | References |
---|---|---|---|---|---|
COL, CHIT | Melissa officinalis L. and Anethum graveolens L. essential oils | coaxial electrospinning | S. aureus, E. coli, E. faecalis, S. typhimurium; C. albicans C. glabrata; A. brasiliensis | wound dressing | Râpă et al. (2021) [91] |
gelatin, PVA, PVP | Ajwain essential oil, aloe vera extract | coaxial spinning | S. aureus | wound dressing | Zare et al. (2021) [92] |
gelatin, PVA | Propolis | electrospinning | S. aureus, P. aeruginosa | wound dressing | Ulag et al. (2021) [93] |
sodium alginate, PVA, silk fibroin | asiaticoside | electrospinning | S. aureus, P. aeruginosa | wound dressing | Anand et al. (2022) [94] |
sodium alginate | Terminalia catappa extract | electrospinning | human skin melanoma B16F10 cells | wound dressing | Muthulakshmi et al. (2022) [95] |
cellulose acetate | crude annatto extract | electrospinning | in vivo testing on rats | wound healing | Antunes dos Santos et al. (2021) [96] |
nanocellulose | lysozyme | spontaneous fiber formation | S. aureus | wound dressing | Silva et al. (2020) [97] |
PU, carboxymethylcellulose | Malva sylvestris extract | electrospinning | S. aureus, E. coli | wound dressing | Almasian et al. (2020) [98] |
sodium hyaluronate | ε-polylysine | solution freeze drying | S. aureus, E. coli | wound dressing | Yang et al. (2021) [99] |
CHIT, PLGA | AuresinePlus (bacteriolytic enzyme) | electrospinning | S. aureus | wound dressing | Urbanek et al. (2021) [100] |
CHIT, PCL | Jaft (internal layer of oak fruit) | electrospinning | S. aureus, E. coli | tissue engineering | Hashemi et al. (2021) [101] |
gellan, PVA | eucalyptol/β-cyclodextrin inclusion complex | electrospinning | C. albicans, C. glabrata | wound healing | Mishra et al. (2021) [102] |
Polymers | Additives | Incorporation | Antimicrobial Activity | Application | References |
---|---|---|---|---|---|
PEO | - | Blend electrospinning | E. coli, S. aureus, C. albicans, A. brasiliensis | Wound healing | Anisiei et al. (2022) [114] |
PEO | - | Blend electrospinning | - | - | Lemma et al. (2016) [115] |
PEO | Ciprofloxacin, Zinc oxide | Blend electrospinning | E. coli, S. aureus | Burns, wound healing | Abid et al. (2019) [116] |
PEO | Terpinen-4-ol | Blend electrospinning | E. coli, S. aureus | Long-term antimicrobial material | Ge et al. (2019) [117] |
PEO | Antimicrobial peptide NP10 | Blend electrospinning | E. coli, S. aureus | Wound healing | Yu et al. (2021) [118] |
PEO | Vancomycin | Blend electrospinning | S. aureus, MRSA | Wound healing | Kalalinia et al. (2021) [119] |
PEO | Bromelain | Blend electrospinning | - | Wound healing | Bayat et al. (2019) [120] |
PEO | - | Blend electrospinning | E. coli, S. aureus, C. albicans, C. glabrata | Wound healing | Lungu et al. (2021) [121] |
PVA | Zinc oxide | Blend electrospinning | E. coli, P. aeruginosa, B. subtilis, S. aureus | Wound healing | Ahmed et al. (2018) [12] |
PVA | Honey, Nepeta dschuparensis | Blend electrospinning | - | Wound healing | Naeimi et al., (2020) [122] |
PVA | Echinacea purpurea extract | Blend electrospinning | S. aureus | Wound healing | Fahimirad et al. (2023) [84] |
PVP, PVA | Cu NPs | Blend electrospinning, co-electrospinning | S. aureus, B. cereus, E. coli, P. aeruginosa | Wound healing | Lemraski et al. (2021) [123] |
PVA, PHB | - | Blend electrospinning | E. coli, S. aureus | Wound healing, drug carrier | Raza et al. (2023) [125] |
PVA, PEO | - | Blend electrospinning | E. coli, S. aureus | Wound healing | Li et al. (2023) [130] |
PCL | Dexpanthenol | Blend electrospinning | P. aeruginosa | Drug release | Wang et al. (2018) [74] |
PCL | Tetracycline | Co-electrospinning | E. coli, S. aureus | Wound healing | Ghazalian et al. (2022) [126] |
PCL | Rutin, Quercetin | Blend electrospinning | E. coli, S. aureus | Wound healing | Zhou et al. (2021) [127] |
Copolyamide | - | Blend electrospinning | - | Wound healing | Shabunin et al. (2019) [128] |
Gelatin | Graphene nanosheet | Blend electrospinning | E. coli, S. aureus | Wound healing | Ali et al. (2022) [129] |
- | Tripolyphosphate, honey, gold nanoparticles, capsaicin | Blend electrospinning | P. multocida, K. rhinoscleromatis, S. pyogenes, V. vulnificus | Wound healing | Al-Musawi et al. (2020) [131] |
Polymers | Additives | Incorporation | Antimicrobial Activity | Application | References |
---|---|---|---|---|---|
Gelatin | Polydopamine | Blend | S. aureus, MRSA, P. aeruginosa, E. coli, Acinetobacter, Enterococcus | Wound healing | Mayandi et al. (2020) [136] |
PVP, HA | Ferulic acid | Blend | Ocular Delivery | Grimaudo et al. (2020) [138] | |
Polyacrylamid, PVA | Electrostatic adsorption | S. aureus, S. epidermidis, E. coli | Wound healing | Amariei et al. (2018) [133] | |
PVA, PCL | Tea polyphenols | Coaxial electrospinning | E. Coli, S. aureus | Wound healing | Lan et al. (2021) [139] |
Polyacrylamide | - | Blend | Improve to ES | Han et al. (2020) [140] | |
PEO, starch | - | Crosslinking | E. coli, S. aureus | Wound healing | Yang et al. (2021a) [142] |
PEO, hyaluronic acid | - | Crosslinking | E. coli, S. aureus | Wound healing | Yang et al. (2021b) [99] |
AMP | Polymers | Additives | Incorporation | Antimicrobial Activity | Application | References |
---|---|---|---|---|---|---|
Lysozym, Nisin | PAA, PVA | Glycerin | Electrostatic adsorption | S. aureus | Biomedical applications | Amariei et al. (2018) [132] |
Tryptophan (Try)-rich peptide— Pac-525 | Gelatin, CHIT | PLGA, HAp | Layer-by-layer electrospinning, electrospraying | S. aureus, E. coli | Coating materials of biomedical devices | He et al. (2018) [143] |
CM11( cecropin melittin-derived) | CHIT, silk fibroin | - | Blend electrospinning | E. coli, S. aureus, P. aeruginosa | Wound healing | Khosravimelal et al. (2021) [144] |
GH12-COOH-M2; AMP2 | PEO | - | Centrifugal spinning | S. epidermidis | Biological dressing | Afshar et al. (2021) [145] |
Pexiganan | PCL | - | Rinsing of PCL mats in PBS with pexiganan | S. aureus, E. coli | Wound healing | Chaiarwut et al. (2021) [146] |
Cathelicidin peptide 17BIPHE2 | PCL | - | Coaxial electrospinning | S. aureus, K. pneumoniae, A. baumannii | Sutures, coating materials of biomedical devices, or hemostasis materials | Su et al. (2019) [147] |
Polymers | Additives | Incorporation | Antimicrobial Activity | Application | References |
---|---|---|---|---|---|
COL, PLA, PVP, PEO | cefazoline | coaxial spinning | E. coli, S. aureus, P. aeruginosa. | wound dressing | Hajikhani et al. (2021) [148] |
gelatin, PVA | amoxicillin, peppermint oil | electrospinning | E. coli, C. albicans, S. aureus | wound dressing | He et al. (2022) [149] |
poly(ω-pentadecalactone-co-ε-caprolactone), gelatin, CHIT | tetracycline hydrochloride | electrospinning | S. aureus, B. subtilis, E. coli | drug delivery | Turan et al. (2022) [154] |
sodium alginate | halloysite nanotubes with cephalexine | electrospinning | S. aureus, S. epidermidis, P. aeruginosa, E. coli | tissue engineering | De Silva et al. (2018) [155] |
cellulose acetate, PEO, silk fibrion | ciprofloxacin | electrospinning | S. aureus, K. pneumoniae, P. aeruginosa | wound dressing | Abdel Khalek et al. (2021) [156] |
CHIT, PEO | vancomycin | electrospinning | S. aureus | wound healing | Kalalinia et al. (2021) [119] |
CHIT, PCL | tetracycline hydrochloride | core–shell electrospinning | S. aureus, E. coli | wound healing | Ghazalian et al. (2022) [126] |
Polymers | Additives | Incorporation | Antimicrobial Activity | Application | References |
---|---|---|---|---|---|
gelatin | poly([2-(methacryloyloxy)ethyl] trimethylammonium chloride) | electrospinning | S. aureus, E. coli, methicillin-resistant S. aureus, A. baumannii | wound dressing | Inal et al. (2019) [157] |
cellulose acetate, lignin | N-vanillidene-phenylthiazole copper-(II) complex | electrospinning | P. aeruginosa, A. baumannii, S. epidermidis, S. faecalis | diaper dermatitis prevention | Elsherbiny et al. (2022) [158] |
nanocellulose | lysozyme | spontaneous fiber formation | S. aureus | wound dressing | Silva et al. (2020) [97] |
cellulose acetate, PCL, silk-sericin | ferulic acid | electrospinning | S. aureus, P. aeruginosa | wound dressing | Anand et al. (2022) [159] |
hyaluronic acid derivative (lauroyl HA), PEO | octenidine dihydrochloride, triclosan | electrospinning | S aureus, P. aeruginosa | wound dressing | Bardoňová et al. (2021) [150] |
hyaluronic acid derivative (lauroyl HA), native HA, PEO | octenidine dihydrochloride, triclosan | electrospinning | S aureus, P. aeruginosa | wound dressing | Bardoňová et al. (2022) [151] |
CHIT, sodium alginate, PVA | deferoxamine | electrospinning | S. aureus, P. aeruginosa | wound healing | Jeckson et al. (2021) [160] |
Quaternized CHIT, PVA | N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride | electrospinning | E. coli | wound healing | Wu et al. (2022) [161] |
CHIT, cyclodextrin | triclosan | core–shell electrospinning | S. aureus, E. coli | wound healing | Ouerghemmi et al. (2022) [162] |
silk fibroin, PEO, chondroitin sulfate | silver sulfadiazine | electrospinning | E.coli, P. aeruginosa, B. subtilis, S. aureus | wound healing | Cestari et al. (2022) [163] |
shellac | monolaurin | electrospinning | S. aureus, E. coli | wound healing | Chinatangkul et al. (2018) [164] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piskláková, L.; Skuhrovcová, K.; Bártová, T.; Seidelmannová, J.; Vondrovic, Š.; Velebný, V. Trends in the Incorporation of Antiseptics into Natural Polymer-Based Nanofibrous Mats. Polymers 2024, 16, 664. https://doi.org/10.3390/polym16050664
Piskláková L, Skuhrovcová K, Bártová T, Seidelmannová J, Vondrovic Š, Velebný V. Trends in the Incorporation of Antiseptics into Natural Polymer-Based Nanofibrous Mats. Polymers. 2024; 16(5):664. https://doi.org/10.3390/polym16050664
Chicago/Turabian StylePiskláková, Lenka, Kristýna Skuhrovcová, Tereza Bártová, Julie Seidelmannová, Štěpán Vondrovic, and Vladimír Velebný. 2024. "Trends in the Incorporation of Antiseptics into Natural Polymer-Based Nanofibrous Mats" Polymers 16, no. 5: 664. https://doi.org/10.3390/polym16050664
APA StylePiskláková, L., Skuhrovcová, K., Bártová, T., Seidelmannová, J., Vondrovic, Š., & Velebný, V. (2024). Trends in the Incorporation of Antiseptics into Natural Polymer-Based Nanofibrous Mats. Polymers, 16(5), 664. https://doi.org/10.3390/polym16050664