Carbon-Based Composites with Biodegradable Matrix for Flexible Paper Electronics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
3. Results and Discussion
3.1. Viscosity Measurements
3.2. Electrical Measurement and Bending
3.3. Adhesion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Research and Markets. Printed Electronics Market with COVID-19 Impact Analysis by Printing Technology (Screen, Inkjet, Gravure), Application (Displays, Sensors, Batteries), Material (Inks, Substrates), End-Use Industry, and Geography—Global Forecast to 2025; Research and Markets: Dublin, Ireland, 2020. [Google Scholar]
- IMARC Group. Printed Electronics Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2022–2027; IMARC Group: New York, NY, USA, 2022. [Google Scholar]
- IDTechEx. Flexible, Printed and Organic Electronics 2019–2029: Forecasts, Players & Opportunities; IDTechEx: Cambridge, UK, 2018. [Google Scholar]
- Transparency Market Research. Printed Electronics Market (Technology: Flexography, Inkjet Printing, Screen Printing, Offset Printing, and Others; and Material: Substrates and Inks)—Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 2023–2031; Transparency Market Research: Albany, NY, USA, 2023. [Google Scholar]
- Tan, M.J.; Owh, C.; Chee, P.L.; Kyaw, A.K.K.; Kai, D.; Loh, X.J. Biodegradable electronics: Cornerstone for sustainable electronics and transient applications. J. Mater. Chem. C 2016, 4, 5531–5558. [Google Scholar] [CrossRef]
- Weiss Ferreira, L.; Decker, C. A survey on organic smart labels for the Internet-of-Things. In Proceedings of the 2010 Seventh International Conference on Networked Sensing Systems (INSS), Kassel, Germany, 15–18 June 2010; pp. 161–164. [Google Scholar] [CrossRef]
- European Standard EN 13432; Requirements for Packaging Recoverable through Composting and Biodegradation. European Committee for Standardization: Brussels, Belgium, 2000. Available online: https://www.en-standard.eu/bs-en-13432-2000-packaging.-requirements-for-packaging-recoverable-through-composting-and-biodegradation.-test-scheme-and-evaluation-criteria-for-the-final-acceptance-of-packaging/ (accessed on 31 December 2023).
- European Standard EN 14995; Plastics—Evaluation of Compostability—Test Scheme and Specifications. European Committee for Standardization: Brussels, Belgium, 2006.
- ISO 17088:2021; Specifications for Compostable Plastics. ISO: Geneva, Switzerland, 2021.
- Cruz, S.M.F.; Rocha, L.A.; Viana, J.C. Printing Technologies on Flexible Substrates for Printed Electronics. In Flexible Electronics; InTech: London, UK, 2018. [Google Scholar] [CrossRef]
- Suganuma, K. Introduction to Printed Electronics; Springer: New York, NY, USA, 2014; p. 87. [Google Scholar]
- Nag, A.; Alahi, M.E.E.; Mukhopadhyay, S.C.; Liu, Z. Multi-Walled Carbon Nanotubes-Based Sensors for Strain Sensing Applications. Sensors 2021, 21, 1261. [Google Scholar] [CrossRef]
- Tobjörk, D.; Österbacka, R. Paper Electronics. Adv. Mater. 2011, 23, 1935–1961. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Gritsenko, D.; Liu, Q.; Lu, X.; Xu, J. Recent Advancements in Functionalized Paper-Based Electronics. ACS Appl. Mater. Interfaces 2016, 8, 20501–20515. [Google Scholar] [CrossRef]
- Samir, A.; Ashour, F.H.; Hakim, A.A.; Bassyouni, M. Recent Advances in Biodegradable Polymers for Sustainable Applications. npj Mater. Degrad. 2022, 6, 68. [Google Scholar] [CrossRef]
- Chiong, J.A.; Tran, H.; Lin, Y.; Zheng, Y.; Bao, Z. Integrating Emerging Polymer Chemistries for the Advancement of Recyclable, Biodegradable, and Biocompatible Electronics. Adv. Sci. 2021, 8, e2101233. [Google Scholar] [CrossRef] [PubMed]
- Olaiya, N.G.; Surya, I.; Oke, P.K.; Rizal, S.; Sadiku, E.R.; Ray, S.S.; Farayibi, P.K.; Hossain, M.S.; Abdul Khalil, H.P.S. Properties and Characterization of a PLA–Chitin–Starch Biodegradable Polymer Composite. Polymers 2019, 11, 1656. [Google Scholar] [CrossRef]
- Zaaba, N.F.; Jaafar, M. A Review on Degradation Mechanisms of Polylactic Acid: Hydrolytic, Photodegradative, Microbial, and Enzymatic Degradation. Polym. Eng. Sci. 2020, 60, 2061–2075. [Google Scholar] [CrossRef]
- Zhao, D.; Zhu, Y.; Cheng, W.; Chen, W.; Wu, Y.; Yu, H. Cellulose-Based Flexible Functional Materials for Emerging Intelligent Electronics. Adv. Mater. 2021, 33, 200061. [Google Scholar] [CrossRef]
- Liu, K.; Tran, H.; Feig, V.R.; Bao, Z. Biodegradable and Stretchable Polymeric Materials for Transient Electronic Devices. MRS Bull. 2020, 45, 96–102. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Kumar, V.; Jansson, E.; Huttunen, O.-H.; Yamamoto, A.; Vikman, M.; Khakalo, A.; Hiltunen, J.; Behfar, M.H. Biodegradable Cellulose Nanocomposite Substrate for Recyclable Flexible Printed Electronics. Adv. Electron. Mater. 2023, 9, 2201094. [Google Scholar] [CrossRef]
- Hosseini, E.S.; Dervin, S.; Ganguly, P.; Dahiya, R. Biodegradable Materials for Sustainable Health Monitoring Devices. ACS Appl. Bio Mater. 2021, 4, 163–194. [Google Scholar] [CrossRef]
- Jung, Y.H.; Chang, T.H.; Zhang, H.; Yao, C.; Zheng, Q.; Yang, V.W.; Mi, H.; Kim, M.; Cho, S.J.; Park, D.W.; et al. High-Performance Green Flexible Electronics Based on Biodegradable Cellulose Nanofibril Paper. Nat. Commun. 2015, 6, 7170. [Google Scholar] [CrossRef]
- Ahmad, A.F.; Aziz, S.A.; Obaiys, S.J.; Zaid, M.H.M.; Matori, K.A.; Samikannu, K.; Aliyu, U.S. Biodegradable Poly (lactic acid)/Poly (ethylene glycol) Reinforced Multi-Walled Carbon Nanotube Nanocomposite Fabrication, Characterization, Properties, and Applications. Polymers 2020, 12, 427. [Google Scholar] [CrossRef]
- Royer, S.-J.; Greco, F.; Kogler, M.; Deheyn, D.D. Not so Biodegradable: Polylactic Acid and Cellulose/Plastic Blend Textiles Lack Fast Biodegradation in Marine Waters. PLoS ONE 2023, 18, e0284681. [Google Scholar] [CrossRef]
- Coltelli, M.-B.; Aliotta, L.; Fasano, G.; Miketa, F.; Brkić, F.; Alonso, R.; Romei, M.; Cinelli, P.; Canesi, I.; Gigante, V.; et al. Recyclability Studies on Poly(lactic acid)/Poly(butylene succinate-co-adipate) (PLA/PBSA) Biobased and Biodegradable Films. Macromol. Mater. Eng. 2023, 308, 100515. [Google Scholar] [CrossRef]
- Kim, K.-S.; Yoo, J.; Shim, J.-S.; Ryu, Y.-I.; Choi, S.; Lee, J.-Y.; Lee, H.M.; Koo, J.; Kang, S.-K. Biodegradable Molybdenum/Polybutylene Adipate Terephthalate Conductive Paste for Flexible and Stretchable Transient Electronics. Adv. Mater. Technol. 2022, 7, 2001297. [Google Scholar] [CrossRef]
- Atreya, M.; Dikshit, K.; Marinick, G.; Nielson, J.; Bruns, C.; Whiting, G.L. Poly(lactic acid)-Based Ink for Biodegradable Printed Electronics With Conductivity Enhanced through Solvent Aging. ACS Appl. Mater. Interfaces 2020, 12, 23494–23501. [Google Scholar] [CrossRef]
- Meng, Q.; Manas-Zloczower, I. Carbon Nanotubes Enhanced Cellulose Nanocrystals Films with Tailorable Electrical Conductivity. Compos. Sci. Technol. 2015, 120, 1–8. [Google Scholar] [CrossRef]
- Barras, R.; Cunha, I.; Gaspar, D.; Fortunato, E.; Martins, R.; Pereira, L. Printable Cellulose-Based Electroconductive Composites for Sensing Elements in Paper Electronics. Flex. Print. Electron. 2017, 2, 014006. [Google Scholar] [CrossRef]
- Guo, Y.; Zuo, X.; Xue, Y.; Tang, J.; Gouzman, M.; Fang, Y.; Zhou, Y.; Wang, L.; Yu, Y.; Rafailovich, M.H. Engineering Thermally and Electrically Conductive Biodegradable Polymer Nanocomposites. Compos. Part B Eng. 2020, 189, 107905. [Google Scholar] [CrossRef]
- Raczyński, T.; Janczak, D.; Szałapak, J.; Walter, P.; Jakubowska, M. Investigation of Carbon-Based Composites for Elastic Heaters and Effects of Hot Pressing in Thermal Transfer Process on Thermal and Electrical Properties. Materials 2021, 14, 7606. [Google Scholar] [CrossRef]
- Zheng, W.; Wong, S.C. Electrical Conductivity and Dielectric Properties of PMMA/Expanded Graphite Composites. Compos. Sci. Technol. 2003, 63, 225–235. [Google Scholar] [CrossRef]
- Sengupta, R.; Bhattacharya, M.; Bandyopadhyay, S.; Bhowmick, A.K. A Review on the Mechanical and Electrical Properties of Graphite and Modified Graphite Reinforced Polymer Composites. Prog. Polym. Sci. 2011, 36, 638–670. [Google Scholar] [CrossRef]
- Kalaitzidou, K.; Fukushima, H.; Drzal, L.T. Multifunctional Polypropylene Composites Produced by Incorporation of Exfoliated Graphite Nanoplatelets. Carbon 2007, 45, 1446–1452. [Google Scholar] [CrossRef]
- Duan, L.; Spoerk, M.; Wieme, T.; Cornillie, P.; Xia, H.; Zhang, J.; Cardon, L.; D’hooge, D.R. Designing Formulation Variables of Extrusion-Based Manufacturing of Carbon Black Conductive Polymer Composites for Piezoresistive Sensing. Compos. Sci. Technol. 2019, 171, 78–85. [Google Scholar] [CrossRef]
- Bourrat, X. Electrically Conductive Grades of Carbon Black: Structure and Properties. Carbon 1993, 31, 287–302. [Google Scholar] [CrossRef]
- Phillips, C.; Al-Ahmadi, A.; Potts, S.J.; Claypole, T.; Deganello, D. The Effect of Graphite and Carbon Black Ratios on Conductive Ink Performance. J. Mater. Sci. 2017, 52, 9520–9530. [Google Scholar] [CrossRef]
- Gubbels, F.; Jerome, R.; Teyssie, P.; Vanlathem, E.; Deltour, R.; Calderone, A.; Parents, V.; Bredas, J.L. Selective Localization of Carbon Black in Immiscible Polymer Blends: A Useful Tool to Design Electrical Conductive Composites. Macromolecules 1994, 27, 1972–1974. [Google Scholar] [CrossRef]
- Dybowska-Sarapuk, L.; Janczak, D.; Podsiadly, B.; Jakubowska, M.; Sloma, M. Electrical and Rheological Percolation Threshold of Graphene Pastes for Screen-Printing. Circuit World 2019, 45, 26–30. [Google Scholar] [CrossRef]
- Pepłowski, A.; Rathi, S.; Piotrkowski, B.; Ziółkowski, R.; Janczak, D.; Krzemiński, J.; Brosch, M.; Jakubowska, M. Electrochemistry of Graphene Nanoplatelets Printed Electrodes for Cortical Direct Current Stimulation. Front. Neurosci. 2020, 14, 594235. [Google Scholar] [CrossRef] [PubMed]
- Prasertmanakit, S.; Praphairaksit, N.; Chiangthong, W.; Muangsin, N. Ethyl Cellulose Microcapsules for Protecting and Controlled Release of Folic Acid. AAPS PharmSciTech 2009, 10, 1104–1112. [Google Scholar] [CrossRef]
- Roy, R.K. A Primer on the Taguchi Method; Society of Manufacturing Engineers: Southfield, MI, USA, 1990. [Google Scholar]
- Lin, J.C.; Wang, C.Y. Effects of Surfactant Treatment of Silver Powder on the Rheology of Its Thick-Film Paste. Mater. Chem. Phys. 1996, 45, 136–144. [Google Scholar] [CrossRef]
- ISO 2409; Paints and Varnishes—Cross-Cut Test. ISO: Geneva, Switzerland, 2020.
Level 1 | Level 2 | Level 3 | |
---|---|---|---|
EC Weight Concentration [%] | 8 | 10 | 12 |
Conductive Phase material | Carbon Black (CB) | Graphite (Gr) | Graphene (GNP) |
Weight Concentration of Conductive Phase [%] | 8 | 10 | 13 |
Substrate | Paper 80 g/m3 | Papier 100 g/m3 | PET |
Curing temperature [°C] | 60 | 90 | 120 |
Material | Viscosity (in Pa·s) for Shear Speed of 18 1/s | Viscosity (in Pa·s) for Shear Speed of 100 1/s |
---|---|---|
EC8CB8 | 57.1 | 10.9 |
EC10CB8 | 208.5 | 28.9 |
EC12CB8 | 218.3 | 35.0 |
EC10CB10 | 417.1 | 21.7 |
EC8CB10 | 177.2 | 19.6 |
EC12CB13 | x | x |
EC10CB13 | x | x |
EC8Gr10 | 4.4 | 3.6 |
EC8Gr13 | 6.2 | 4.4 |
EC10Gr8 | 12.7 | 7.4 |
Ec10Gr13 | 65.1 | 8.6 |
EC12Gr8 | 26.9 | 12.8 |
EC12Gr10 | 29.1 | 12.8 |
EC8GNP8 | 130.4 | 31.9 |
EC8GNP13 | 192.8 | 4.2 |
EC10GNP8 | 96.5 | 27.7 |
EC12GNP10 | 120.5 | 14.0 |
EC12GNP13 | 316.1 | 39.4 |
EC10GNP10 | 166.9 | 40.0 |
EC8CB6 | 86.1 | 13.8 |
EC8_CB13 | x | x |
Name | Polymer (Wt%) | Conductive Material | Wt% | Substrate | Curing Temperature [°C] | Resistance [KΩ/sq] | Resistance Drop after Bending | Std. Dev. | Layer Quality |
---|---|---|---|---|---|---|---|---|---|
EC8CB8 | EC8 | CB | 8 | Paper 80 | 60 | 0.80 | 0% | 0.16 | 4 |
EC8GR10 | EC8 | Grafit | 10 | Paper 100 | 90 | 92.00 | 16% | 6.22 | 0 |
EC8GNP13 | EC8 | GNP | 13 | PET | 120 | 1.25 | 6% | 0.61 | 1 |
EC10GR8 | EC10 | Grafit | 8 | Paper 100 | 60 | 999.00 | x | 1 | |
EC10GNP10 | EC10 | GNP | 10 | PET | 90 | 5.63 | 9% | 0.39 | 1 |
EC10CB13 | EC10 | CB | 13 | Paper 80 | 120 | x | x | x | |
EC12CB8 | EC12 | CB | 8 | PET | 90 | 1.11 | 0% | 0.10 | 5 |
EC12GR10 | EC12 | Grafit | 10 | Paper 80 | 120 | 999.00 | x | 1 | |
EC12GNP13 | EC12 | GNP | 13 | Paper 100 | 60 | 2.45 | 10% | 0.23 | 1 |
EC8GNP8 | EC8 | GNP | 8 | Paper 100 | 120 | 1.07 | 1% | 0.22 | 0 |
EC8CB10 | EC8 | CB | 10 | PET | 60 | 1.15 | −11% | 0.20 | 5 |
EC8GR13 | EC8 | Grafit | 13 | Paper 80 | 90 | 10.99 | 15% | 0.74 | 1 |
EC10GNP8 | EC10 | GNP | 8 | Paper 80 | 90 | 4.11 | 3% | 2.03 | 1 |
EC10CB10 | EC10 | CB | 10 | Paper 100 | 120 | 0.94 | −2% | 0.44 | 1 |
EC10GR13 | EC10 | Grafit | 13 | PET | 60 | 10.18 | 26% | 2.12 | 5 |
EC12GR8 | EC12 | Grafit | 8 | PET | 120 | 999.00 | x | 5 | |
EC12GNP10 | EC12 | GNP | 10 | Paper 80 | 60 | 2.88 | 9% | 0.60 | 1 |
EC12CB13 | EC12 | CB | 13 | Paper 100 | 90 | x | x | x | |
EC8CB13 | EC8 | CB | 13 | PET | 90 | x | x | x | |
EC8CB6 | EC8 | CB | 6 | PET | 90 | 0.90 | 1% | 0.16 | 5 |
EC8CB6 | EC8 | CB | 6 | Paper 100 | 90 | 0.99 | 0% | 0.10 | 1 |
EC10GNP10 | EC10 | GNP | 10 | Paper 100 | 90 | 6.58 | 7% | 0.63 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szałapak, J.; Zdanikowski, B.; Kądziela, A.; Lepak-Kuc, S.; Dybowska-Sarapuk, Ł.; Janczak, D.; Raczyński, T.; Jakubowska, M. Carbon-Based Composites with Biodegradable Matrix for Flexible Paper Electronics. Polymers 2024, 16, 686. https://doi.org/10.3390/polym16050686
Szałapak J, Zdanikowski B, Kądziela A, Lepak-Kuc S, Dybowska-Sarapuk Ł, Janczak D, Raczyński T, Jakubowska M. Carbon-Based Composites with Biodegradable Matrix for Flexible Paper Electronics. Polymers. 2024; 16(5):686. https://doi.org/10.3390/polym16050686
Chicago/Turabian StyleSzałapak, Jerzy, Bartosz Zdanikowski, Aleksandra Kądziela, Sandra Lepak-Kuc, Łucja Dybowska-Sarapuk, Daniel Janczak, Tomasz Raczyński, and Małgorzata Jakubowska. 2024. "Carbon-Based Composites with Biodegradable Matrix for Flexible Paper Electronics" Polymers 16, no. 5: 686. https://doi.org/10.3390/polym16050686
APA StyleSzałapak, J., Zdanikowski, B., Kądziela, A., Lepak-Kuc, S., Dybowska-Sarapuk, Ł., Janczak, D., Raczyński, T., & Jakubowska, M. (2024). Carbon-Based Composites with Biodegradable Matrix for Flexible Paper Electronics. Polymers, 16(5), 686. https://doi.org/10.3390/polym16050686