Mechanical and Ballistic Properties of Epoxy Composites Reinforced with Babassu Fibers (Attalea speciosa)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Ballistics Test
2.4. Mechanical Tests
2.4.1. Tensile Tests
2.4.2. Izod Impact Test
2.5. Scanning Electron Microscopy (SEM)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Ballistic Tests
3.2. Mechanical Properties
3.2.1. Tensile Tests
3.2.2. Izod Impact Test
3.3. Literature Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, H.T.; Green, W.H.; LaSalvia, J.C. Ballistically-Induced Damage in Ceramic Targets as REVEALED by X-ray Computed Tomography. In Advances in Ceramic Armor III; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 192–201. [Google Scholar]
- Nurazzi, N.M.; Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Aisyah, H.A.; Rafiqah, S.A.; Sabaruddin, F.A.; Kamarudin, S.H.; Norrrahim, M.N.F.; Ilyas, R.A.; et al. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers 2021, 13, 646. [Google Scholar] [CrossRef] [PubMed]
- NIJ Standard 0101.06; Ballistic Resistance of Personal Body Armor. US Department of Justice: Washington, DC, USA, 2008.
- Grujicic, M.; Pandurangan, B.; d’Entremont, B. The Role of Adhesive in the Ballistic/Structural Performance of Ceramic/Polymer–Matrix Composite Hybrid Armor. Mater. Des. 2012, 41, 380–393. [Google Scholar] [CrossRef]
- Nayak, S.Y.; Sultan, M.T.H.; Shenoy, S.B.; Kini, C.R.; Samant, R.; Shah, A.U.M.; Amuthakkannan, P. Potential of Natural Fibers in Composites for Ballistic Applications—A Review. J. Nat. Fibers 2022, 19, 1648–1658. [Google Scholar] [CrossRef]
- Movahedi, N.; Linul, E. Quasi-Static Compressive Behavior of the Ex-Situ Aluminum-Alloy Foam-Filled Tubes under Elevated Temperature Conditions. Mater. Lett. 2017, 206, 182–184. [Google Scholar] [CrossRef]
- Dalil, M.; Wirjosentono, B.; Koto, J.; Ginting, A.; Arief, D.S. Tensile Characteristics of Fiberglass-Filled High Density Poyethylene Composites Formed Using Hot Press Mold for Cold Water Pipe. AIP Conf. Proc. 2023, 2626, 040023. [Google Scholar]
- Naveen, J.; Jayakrishna, K.; Hameed Sultan, M.T.B.; Amir, S.M.M. Ballistic Performance of Natural Fiber Based Soft and Hard Body Armour—A Mini Review. Front. Mater. 2020, 7, 608139. [Google Scholar] [CrossRef]
- Ribeiro, M.P.; de Mendonça Neuba, L.; da Silveira, P.H.; da Luz, F.S.; da Silva Figueiredo, A.B.; Monteiro, S.N.; Moreira, M.O. Mechanical, Thermal and Ballistic Performance of Epoxy Composites Reinforced with Cannabis Sativa Hemp Fabric. J. Mater. Res. Technol. 2021, 12, 221–233. [Google Scholar] [CrossRef]
- Pires, E.N.; Merlini, C.; Al-Qureshi, H.A.; Salmória, G.V.; Barra, G.M.O. Effect of Alkaline Treatment of Jute Fibers on the Mechanical Behavior of Epoxy Matrix Composites. Polymers 2012, 22, 339–344. [Google Scholar] [CrossRef]
- Weng, B.; Xu, K.; Yan, B.; Zhang, Z.; Li, C.; Tan, Y.; Zhang, K.; Lv, Y.; Wang, F.; Guo, Y.; et al. Microcapsules of Chitosan-Loaded Luffa Seed Oil for Improving the Mold-Resistance of Bamboo. Ind. Crops Prod. 2023, 199, 116772. [Google Scholar] [CrossRef]
- Dittenber, D.B.; GangaRao, H.V.S. Critical Review of Recent Publications on Use of Natural Composites in Infrastructure. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1419–1429. [Google Scholar] [CrossRef]
- Song, H.; Liu, T.; Gauvin, F. Enhancing mechanical performance of green fiber cement composites: Role of eco-friendly alkyl ketene dimer on surfaces of hemp fibers. J. Mater. Res. Technol. 2024, 28, 3121–3132. [Google Scholar] [CrossRef]
- Kannan, G.; Thangaraju, R. Recent Progress on Natural Lignocellulosic Fiber Reinforced Polymer Composites: A Review. J. Nat. Fibers 2022, 19, 7100–7131. [Google Scholar] [CrossRef]
- Li, M.; Pu, Y.; Thomas, V.M.; Yoo, C.G.; Ozcan, S.; Deng, Y.; Nelson, K.; Ragauskas, A.J. Recent Advancements of Plant-Based Natural Fiber–Reinforced Composites and Their Applications. Compos. B Eng. 2020, 200, 108254. [Google Scholar] [CrossRef]
- Healey, A.; Cotton, J.; Maclachlan, S.; Smith, P.; Yeomans, J. Understanding the ballistic event: Methodology and initial observations. J. Mater. Sci. 2017, 52, 3074–3085. [Google Scholar] [CrossRef] [PubMed]
- Naik, N.K.; Shrirao, P. Composite structures under ballistic impact, Composite Structures. Compos. Struct. 2004, 66, 579–590. [Google Scholar] [CrossRef]
- Asim, M.; Abdan, K.; Jawaid, M.; Nasir, M.; Dashtizadeh, Z.; Ishak, M.R.; Hoque, M.E. A Review on Pineapple Leaves Fibre and Its Composites. Int. J. Polym. Sci. 2015, 2015, 950567. [Google Scholar] [CrossRef]
- Rajole, S.; Ravishankar, K.; Kulkarni, S. Performance study of jute-epoxy composites/sandwiches under normal ballistic impact. Def. Technol. 2020, 16, 947–955. [Google Scholar] [CrossRef]
- Mukhammad, A.F.H.; Rusnaldy, R.; Ismail, R.; Riyadi, T.W.B. Determination of the ballistic performance ramie-fiber-reinforced epoxy compositesic ceramic in multilayered armor system. East. -Eur. J. Enterp. Technol. 2023, 122, 55–63. [Google Scholar] [CrossRef]
- Akter, M.; Uddin, M.H.; Anik, H.R. Plant fiber-reinforced polymer composites: A review on modification, fabrication, properties, and applications. Polym. Bull. 2024, 81, 1–85. [Google Scholar] [CrossRef]
- da Silveira, P.H.P.M.; Cardoso, B.F.d.A.F.; Marchi, B.Z.; Monteiro, S.N. Amazon Natural Fibers for Application in Engineering Composites and Sustainable Actions: A Review. Eng 2024, 5, 133–179. [Google Scholar] [CrossRef]
- Instituto de Pesquisas Jardim Botanico do Rio de Janeiro. Flora e Funga do Brasil—Attalea speciosa Mart. ex Spreng. 2022. Available online: https://floradobrasil.jbrj.gov.br/consulta/#CondicaoTaxonCP (accessed on 28 November 2023).
- de Morais, J.P.G.; Campana, M.; Del Valle, T.A.; Moreira, T.G.; da Silva, E.D.R.; do Prado, R.F.; de Oliveira, R.E. Inclusion of Babassu Bran Produced in Milk Production in Amazonia. Trop. Anim. Heal. Prod. 2021, 53, 527. [Google Scholar] [CrossRef] [PubMed]
- Lemos, A.L.; Maus, C.J.; Santana, R.M.C. Characterization of natural fibers: Wood, sugarcane and babassu for use in biocomposites. Cellul. Chem. Technol. 2017, 51, 711–718. [Google Scholar]
- Chaves, Y.S.; da Silveira, P.H.P.M.; Monteiro, S.N.; Nascimento, L.F.C. Babassu Coconut Fibers: Investigation of Chemical and Surface Properties (Attalea speciosa). Polymers 2023, 15, 3863. [Google Scholar] [CrossRef] [PubMed]
- Chaves, Y.S.; da Silveira, P.H.P.; Neuba, L.d.M.; Junio, R.F.P.; Ribeiro, M.P.; Monteiro, S.N.; Nascimento, L.F.C. Evaluation of the Density, Mechanical, Thermal and Chemical Properties of Babassu Fibers (Attalea speciosa) for Potential Composite Reinforcement. J. Mater. Res. Technol. 2023, 23, 2089–2100. [Google Scholar] [CrossRef]
- D3039/D3039M-17; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D256-10; Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. ASTM International: West Conshohocken, PA, USA, 2018.
- Souza, A.T.; Neuba, L.d.M.; Junio, R.F.P.; Carvalho, M.T.; Candido, V.S.; Figueiredo, A.B.-H.d.S.; Monteiro, S.N.; Nascimento, L.F.C.; da Silva, A.C.R. Ballistic Properties and Izod Impact Resistance of Novel Epoxy Composites Reinforced with Caranan Fiber (Mauritiella armata). Polymers 2022, 14, 3348. [Google Scholar] [CrossRef] [PubMed]
- Nanda, A.; Mohapatra, B.B.; Mahapatra, A.P.K. Multiple Comparison Test by Tukey’s Honestly Significant Difference (HSD): Do the Confident Level Control Type I Error. Int. J. Stat. Appl. Math. 2021, 6, 59–65. [Google Scholar] [CrossRef]
- Kalish, C.W.; Thevenow-Harrison, J.T. Descriptive and Inferential Problems of Induction. In Psychology of Learning and Motivation; Academic Press: Cambridge, MA, USA, 2014; pp. 1–39. [Google Scholar]
- de Carvalho, A.M.X.; de Souza, M.R.; Marques, T.B.; de Souza, D.L.; de Souza, E.F.M. Familywise Type I Error of ANOVA and ANOVA on Ranks in Factorial Experiments. Ciência Rural. 2023, 53, e20220146. [Google Scholar] [CrossRef]
- Tamilarasan, A.; Renugambal, A. An Integrated RSM—Improved Salp Swarm Algorithm for Quality Characteristics in AWJM of Ananas Comosus-HIPS Composites. Int. J. Lightweight Mater. Manuf. 2023, 6, 297–310. [Google Scholar] [CrossRef]
- Reis, R.H.M.; Nunes, L.F.; da Luz, F.S.; Candido, V.S.; da Silva, A.C.R.; Monteiro, S.N. Ballistic Performance of Guaruman Fiber Composites in Multilayered Armor System and as Single Target. Polymers 2021, 13, 1203. [Google Scholar] [CrossRef]
- Oliveira, M.S.; da Luz, F.S.; Lopera, H.A.C.; Nascimento, L.F.C.; Filho, F.d.C.G.; Monteiro, S.N. Energy Absorption and Limit Velocity of Epoxy Composites Incorporated with Fique Fabric as Ballistic Armor—A Brief Report. Polymers 2021, 13, 2727. [Google Scholar] [CrossRef]
- Raju; Loy, C.W.; Cho, K.; Farrar, P.; Prusty, B.G. Design and Tribological Performance of Short S-Glass Fibre Reinforced Biocomposites on the Influence of Fibre Length and Concentration. Sci. Rep. 2023, 13, 1397. [Google Scholar] [CrossRef]
- Harp, Y.S.; Montaser, M.A.; Zaghloul, N.M. Flowable fiber-reinforced versus Flowable bulk-fill Resin Composites: Degree of Conversion and Microtensile Bond Strength to Dentin in High C-factor Cavities. J. Esthet. Restor. Dent. 2022, 34, 699–706. [Google Scholar] [CrossRef]
- Sampaio, U.M.; Pereira, A.P.A.; Campelo, P.H.; Pastore, G.M.; Chang, Y.K.; Clerici, M.T.P.S. Micronised-roasted Coffee from Unripe Fruits Improves Bioactive Compounds and Fibre Contents in Rice Extruded Breakfast Cereals. Int. J. Food Sci. Technol. 2021, 56, 5688–5697. [Google Scholar] [CrossRef]
- Prasad, L.; Singh, V.; Patel, R.V.; Yadav, A.; Kumar, V.; Winczek, J. Physical and Mechanical Properties of Rambans (Agave) Fiber Reinforced with Polyester Composite Materials. J. Nat. Fibers 2022, 19, 6104–6118. [Google Scholar] [CrossRef]
- Odesanya, K.O.; Ahmad, R.; Jawaid, M.; Bingol, S.; Adebayo, G.O.; Wong, Y.H. Natural Fibre-Reinforced Composite for Ballistic Applications: A Review. J. Polym. Environ. 2021, 29, 3795–3812. [Google Scholar] [CrossRef]
- Geethika, V.N.; Rao, V.D.P. Study of Tensile Strength of Agave Americana Fibre Reinforced Hybrid Composites. Mater. Today Proc. 2017, 4, 7760–7769. [Google Scholar] [CrossRef]
- Lee, S.; Cho, D.; Park, W.; Lee, S.; Han, S.; Drzal, L. Novel Silk/Poly(Butylene Succinate) Biocomposites: The Effect of Short Fibre Content on Their Mechanical and Thermal Properties. Compos. Sci. Technol. 2005, 65, 647–657. [Google Scholar] [CrossRef]
- Shaker, K.; Nawab, Y. Lignocellulosic Fiber Structure. In Lignocellulosic Fibers; Springer: Cham, Switzerland, 2022; pp. 11–19. [Google Scholar] [CrossRef]
- Sature, P.; Mache, A. Mechanical characterization and water absorption studies on jute/hemp reinforced hybrid composites. Am. J. Mater. Sci. 2015, 5, 133–139. [Google Scholar] [CrossRef]
- Shah, D.U.; Schubel, P.J.; Clifford, M.J. Can Flax Replace E-Glass in Structural Composites? A Small Wind Turbine Blade Case Study. Compos. B Eng. 2013, 52, 172–181. [Google Scholar] [CrossRef]
- Kalagi, G.R.; Patil, R.; Nayak, N. Experimental Study on Mechanical Properties of Natural Fiber Reinforced Polymer Composite Materials for Wind Turbine Blades. Mater. Today Proc. 2018, 5, 2588–2596. [Google Scholar] [CrossRef]
- Lau, K.T.; Hung, P.Y.; Zhu, M.H.; Hui, D. Properties of Natural Fiber Composites for Structural Engineering Applications. Compos. B Eng. 2017, 136, 222–233. [Google Scholar] [CrossRef]
- Rong, M.Z.; Zhang, M.Q.; Liu, Y.; Yang, G.C.; Zeng, H.M. The Effect of Fiber Treatment on the Mechanical Properties of Unidirectional Sisal-Reinforced Epoxy Composites. Compos. Sci. Technol. 2001, 61, 1437–1447. [Google Scholar] [CrossRef]
- de Moura, C.V.R.; Sousa, D.d.C.; de Moura, E.M.; de Araújo, E.C.E.; Sittolin, I.M. New Biodegradable Composites from Starch and Fibers of the Babassu Coconut. Polímeros 2021, 31, e2021007. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.G.A.; Le, T.M. A Review of Recent Developments in Natural Fibre Composites and Their Mechanical Performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef]
- David, A.G.; Ramalingam, V.S.; Chandran, A.P.; Ramachandran, A.; Selvam, A. Statistical Modelling and Assessment of Surface Roughness in Drilling of Hybrid Fiber Composite. Multidiscip. Sci. J. 2023, 6, 2024019. [Google Scholar] [CrossRef]
- Bekraoui, N.; El Qoubaa, Z.; Essadiqi, E. Experimental Optimization of Multi-Quality Laser Cutting Characteristics of Jute/Epoxy Laminate: Full Factorial Design and Grey Relational Analysis. Lasers Manuf. Mater. Process. 2023, 10, 443–470. [Google Scholar] [CrossRef]
- de Mendonça Neuba, L.; Camposo Pereira, A.; Felipe Pereira Junio, R.; Teixeira Souza, A.; Soares Chaves, Y.; Picanço Oliveira, M.; Neves Monteiro, S. Ballistic Performance of Cyperus Malaccensis Sedge Fibers Reinforcing Epoxy Matrix as a Standalone Target. J. Mater. Res. Technol. 2023, 23, 4367–4375. [Google Scholar] [CrossRef]
- Gopalan, V.; Rajarajan, S.; Wilson, M.; Venkatesan, J.; Elango, M.; Natarajan, S.; Rajakumar, S. Studies on Fly Ash/Coir/Sugarcane Reinforced Epoxy Polymer Matrix Composite. Materwiss Werksttech 2023, 54, 215–228. [Google Scholar] [CrossRef]
- Maou, S.; Meftah, Y.; Bouchamia, I.; Benyaghla, A. Alkali-Treated Date Palm Fiber-Reinforced Unsaturated Polyester Composites: Thermo-Mechanical Performances and Structural Applications. Iran. Polym. J. 2023, 32, 1581–1593. [Google Scholar] [CrossRef]
- Mohanraj, C.M.; Ramesh Kumar, R.; Mathanbabu, M.; Ashokkumar, M. Investigation on Mechanical Characterization of Abutilon Indicum Fiber Nonwoven Fabric Reinforced Epoxy Composite Materials. Mater. Res. Express 2023, 10, 015101. [Google Scholar] [CrossRef]
- Coverdale Rangel Velasco, D.; Perissé Duarte Lopes, F.; Souza, D.; Colorado Lopera, H.A.; Neves Monteiro, S.; Fontes Vieira, C.M. Evaluation of Composites Reinforced by Processed and Unprocessed Coconut Husk Powder. Polymers 2023, 15, 1195. [Google Scholar] [CrossRef] [PubMed]
- de Farias, M.A.; Farina, M.Z.; Pezzin, A.P.T.; Silva, D.A.K. Unsaturated Polyester Composites Reinforced with Fiber and Powder of Peach Palm: Mechanical Characterization and Water Absorption Profile. Mater. Sci. Eng. C 2009, 29, 510–513. [Google Scholar] [CrossRef]
- Alshahrani, H.; Pathinettampadian, G.; Gujba, A.K.; Prakash Vincent Rethnam, A. Effect of Palmyra Sprout Fiber and Biosilica on Mechanical, Wear, Thermal and Hydrophobic Behavior of Epoxy Resin Composite. J. Ind. Text. 2022, 52, 152808372211373. [Google Scholar] [CrossRef]
- Meliande, N.M.; Oliveira, M.S.; Silveira, P.H.P.M.d.; Dias, R.R.; Marçal, R.L.S.B.; Monteiro, S.N.; Nascimento, L.F.C. Curaua–Aramid Hybrid Laminated Composites for Impact Applications: Flexural, Charpy Impact and Elastic Properties. Polymers 2022, 14, 3749. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.V.; Reddy, R.V.S.; Rajendra Prasad, P.; Mohana Krishnudu, D.; Reddy, R.M.; Rao, H.R. Evaluation of Mechanical and Wear Performances of Natural Fiber Reinforced Epoxy Composites. J. Nat. Fibers 2022, 19, 2218–2231. [Google Scholar] [CrossRef]
- Marchi, B.Z.; da Silveira, P.H.P.M.; Bezerra, W.B.A.; Nascimento, L.F.C.; Lopes, F.P.D.; Candido, V.S.; da Silva, A.C.R.; Monteiro, S.N. Ballistic Performance, Thermal and Chemical Characterization of Ubim Fiber (Geonoma baculifera) Reinforced Epoxy Matrix Composites. Polymers 2023, 15, 3220. [Google Scholar] [CrossRef]
- Junio, R.; Nascimento, L.; Neuba, L.; Souza, A.; Moura, J.; Garcia Filho, F.; Monteiro, S. Copernicia Prunifera Leaf Fiber: A Promising New Reinforcement for Epoxy Composites. Polymers 2020, 12, 2090. [Google Scholar] [CrossRef] [PubMed]
- da Silva, T.T.; da Silveira, P.H.P.M.; Figueiredo, A.B.-H.d.S.; Monteiro, S.N.; Ribeiro, M.P.; Neuba, L.d.M.; Simonassi, N.T.; Filho, F.d.C.G.; Nascimento, L.F.C. Dynamic Mechanical Analysis and Ballistic Performance of Kenaf Fiber-Reinforced Epoxy Composites. Polymers 2022, 14, 3629. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, B.F.d.A.F.; Ramos, F.J.H.T.V.; da Silveira, P.H.P.M.; de Oliveira, A.G.B.A.M.; Figueiredo, A.B.-H.d.S.; Gomes, A.V.; da Veiga-Junior, V.F. Mechanical and Ballistic Characterization of High-Density Polyethylene Composites Reinforced with Alumina and Silicon Carbide Particles. J. Met. Mater. Miner. 2022, 32, 42–49. [Google Scholar] [CrossRef]
- Meliande, N.M.; da Silveira, P.H.P.M.; Monteiro, S.N.; Nascimento, L.F.C. Tensile Properties of Curaua–Aramid Hybrid Laminated Composites for Ballistic Helmet. Polymers 2022, 14, 2588. [Google Scholar] [CrossRef]
- Cunha, J.d.S.C.d.; Nascimento, L.F.C.; Costa, U.O.; Figueiredo, A.B.-H.d.S.; Monteiro, S.N. Ballistic performance of epoxy composites reinforced with Amazon titica vine fibers. Tecnol. Metal. Mater. Mineração 2023, 20, e2766. [Google Scholar] [CrossRef]
- Pereira, A.C.; Lima, A.M.; Demosthenes, L.C.d.C.; Oliveira, M.S.; Costa, U.O.; Bezerra, W.B.A.; Monteiro, S.N.; Rodriguez, R.J.S.; Deus, J.F.d.; Anacleto Pinheiro, W. Ballistic Performance of Ramie Fabric Reinforcing Graphene Oxide-Incorporated Epoxy Matrix Composite. Polymers 2020, 12, 2711. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.S.; Luz, F.S.d.; Teixeira Souza, A.; Demosthenes, L.C.d.C.; Pereira, A.C.; Filho, F.d.C.G.; Braga, F.d.O.; Figueiredo, A.B.-H.d.S.; Monteiro, S.N. Tucum Fiber from Amazon Astrocaryum vulgare Palm Tree: Novel Reinforcement for Polymer Composites. Polymers 2020, 12, 2259. [Google Scholar] [CrossRef] [PubMed]
Babassu Fiber | |
---|---|
Diameter (mm) | 0.18–0.48 |
Density (g/cm3) | 0.27–0.79 |
Tensile Strength (MPa) | 17.96–100.76 |
Elastic Modulus (GPa) | 1.18–2.98 |
Crystallinity Index (%) | 81.06 |
Microfibril Angle (°) | 7.64 |
Moisture (%) | 7.05 |
Lignin (%) | 28.53 |
Hemicellulose (%) | 32.34 |
Cellulose (%) | 37.97 |
Sample Group | Composition |
---|---|
Epoxy | 100 vol.% Epoxy |
EB10 | 90 vol.% Epoxy + 10 vol.% Babassu fibers |
EB20 | 80 vol.% Epoxy + 20 vol.% Babassu fibers |
EB30 | 70 vol.% Epoxy + 30 vol.% Babassu fibers |
Samples | Vi (m/s) | Vr (m/s) | Eabs (J) | VL (m/s) |
---|---|---|---|---|
Epoxy | 258.90 ± 0.90 | 246.80 ± 3.27 | 44.56 ± 13.09 | 77.34 ± 12.75 |
EB10 | 260.18 ± 1.06 | 183.40 ± 13.45 | 202.68 ± 44.86 | 165.91 ± 18.71 |
EB20 | 259.44 ± 1.03 | 197.00 ± 13.62 | 163.23 ± 41.07 | 148.22 ± 19.47 |
EB30 | 258.90 ± 0.90 | 198.20 ± 14.01 | 156.68 ± 38.11 | 145.74 ± 17.19 |
Number of Replicates | Fiber Concentration | ||
---|---|---|---|
EB10 | EB20 | EB30 | |
1 | 208.56 | 213.96 | 218.81 |
2 | 145.77 | 181.98 | 150.24 |
3 | 218.25 | 146.45 | 158.27 |
4 | 264.60 | 169.68 | 139.53 |
5 | 176.23 | 104.08 | 116.56 |
Sample Groups | Counting | Sum | Average | Variance |
---|---|---|---|---|
EB10 | 5 | 1013.41 | 202.68 | 2012.35 |
EB20 | 5 | 816.15 | 163.23 | 1686.74 |
EB30 | 5 | 783.41 | 156.68 | 1451.96 |
Sources of Variation | SQ | GL | MQ | F | p-Value | Critical F |
---|---|---|---|---|---|---|
Between groups | 6192.29 | 2 | 3096.11 | 1.80 | 0.21 | 3.89 |
Within groups | 20,604.3 | 12 | 1717.03 | |||
Total | 26,796.53 | 14 |
Grouping Information Using the Tukey Method and 95% Confidence | |||
---|---|---|---|
Group | N | Mean | Grouping |
EB10 | 5 | 202.68 | A |
EB20 | 5 | 163.23 | A |
EB30 | 5 | 156.68 | A |
Sample | Tensile Strength (MPa) | Elastic Modulus (GPa) | Elongation (%) |
---|---|---|---|
Epoxy | 30.12 ± 2.79 | 1.79 ± 0.11 | 1.22 ± 0.18 |
EB10 | 34.55 ± 5.92 | 2.58 ± 0.34 | 1.49 ± 0.23 |
EB20 | 39.44 ± 9.28 | 2.72 ± 0.34 | 1.54 ± 0.16 |
EB30 | 46.13 ± 6.87 | 2.95 ± 0.22 | 1.70 ± 0.10 |
Tensile | |||||
Sources of variation | SQ | GL | MQ | F | Fc (tabulated) |
Between groups | 1131.53 | 3 | 377.18 | 8.56 | 2.95 |
Within groups | 1234.2 | 28 | 44.08 | ||
Total | 2365.73 | 31 | |||
Elastic Modulus | |||||
Sources of variation | SQ | GL | MQ | F | Fc (tabulated) |
Between groups | 6.04 | 3 | 2.02 | 27.95 | 2.95 |
Within groups | 2.02 | 28 | 0.07 | ||
Total | 8.06 | 31 | |||
Elongation | |||||
Sources of variation | SQ | GL | MQ | F | Fc (tabulated) |
Between groups | 0.96 | 3 | 0.32 | 10.60 | 2.95 |
Within groups | 0.84 | 28 | 0.03 | ||
Total | 1.80 | 31 |
Tensile (HSD = 9.06) | |||
Group | N | Mean | Grouping |
Epoxy | 8 | 30.12 | A |
EB10 | 8 | 34.55 | AB |
EB20 | 8 | 39.44 | BC |
EB30 | 8 | 46.13 | C |
Elastic modulus (HSD = 32.63) | |||
Group | N | Mean | Grouping |
Epoxy | 8 | 1.79 | A |
EB10 | 8 | 2.58 | B |
EB20 | 8 | 2.72 | B |
EB30 | 8 | 2.95 | B |
Elongation (HSD = 28.19) | |||
Group | N | Mean | Grouping |
Epoxy | 8 | 1.22 | A |
EB10 | 8 | 1.49 | B |
EB20 | 8 | 1.54 | B |
EB30 | 8 | 1.70 | B |
Sample | Izod Impact Resistance (J/m) |
---|---|
Epoxy | 25.21 ± 4.01 |
EB10 | 37.96 ± 7.94 |
EB20 | 53.35 ± 7.02 |
EB30 | 62.53 ± 7.43 |
Sources of Variation | SQ | GL | MQ | F | Fc (Tabulated) |
---|---|---|---|---|---|
Between groups | 6541.31 | 3 | 2180.44 | 47.46 | 2.95 |
Within groups | 1286.35 | 28 | 45.91 | ||
Total | 7827.65 | 31 |
Izod Impact Energy (HSD = 9.25) | |||
---|---|---|---|
Group | N | Mean | Grouping |
Epoxy | 8 | 25.21 | A |
EB10 | 8 | 37.96 | A |
EB20 | 8 | 53.35 | B |
EB30 | 8 | 62.53 | C |
Composite | Tensile Strength (MPa) | Izod Impact Resistance (J/m) | VL (m/s) | Eabs (J) | Ref. |
---|---|---|---|---|---|
Epoxy | 30.12 ± 2.79 | 25.21 ± 4.01 | 77.34 ± 12.75 | 44.56 ± 13.09 | PW * |
Epoxy + 10 vol.% babassu fibers | 34.55 ± 5.92 | 37.96 ± 7.94 | 165.91 ± 18.71 | 202.68 ± 44.86 | PW * |
Epoxy + 20 vol.% babassu fibers | 39.44 ± 9.28 | 53.35 ± 7.02 | 148.22 ± 19.47 | 163.23 ± 41.07 | PW * |
Epoxy + 30 vol.% babassu fibers | 46.13 ± 6.87 | 62.53 ± 7.43 | 145.74 ± 17.19 | 156.68 ± 38.11 | PW * |
Epoxy + 40 vol.% titica vine fibers | - | 58.65 ± 9.26 | 221.46 ± 8.10 | 81.02 ± 5.87 | [68] |
Epoxy + 30 vol.% ramie fabric + 0.5 vol.% GO ** | - | - | - | 130.34 ± 9.51 | [69] |
Epoxy + 30 vol.% kenaf fibers | - | - | - | 94.81 ± 2.01 | [65] |
Epoxy + 30 vol.% hemp fabric | 51.70 ± 9.90 | 134.10 ± 11.50 | 256.30 ± 10.50 | 108.50 ± 2.10 | [9] |
Epoxy + 30 vol.% caranan fibers | - | 151.81 ± 32.04 | 226.56 ± 10.91 | 48.17 ± 8.25 | [30] |
Epoxy + 30 vol.% guaruman fibers | - | - | 254.70 ± 12.80 | 105.50 ± 10.60 | [35] |
Epoxy + 40 vol.% tucum fibers | 38.30 ± 8.10 | 216 | - | 69.60 ± 9.14 | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaves, Y.S.; Monteiro, S.N.; Nascimento, L.F.C.; Rio, T.G.-d. Mechanical and Ballistic Properties of Epoxy Composites Reinforced with Babassu Fibers (Attalea speciosa). Polymers 2024, 16, 913. https://doi.org/10.3390/polym16070913
Chaves YS, Monteiro SN, Nascimento LFC, Rio TG-d. Mechanical and Ballistic Properties of Epoxy Composites Reinforced with Babassu Fibers (Attalea speciosa). Polymers. 2024; 16(7):913. https://doi.org/10.3390/polym16070913
Chicago/Turabian StyleChaves, Yago Soares, Sergio Neves Monteiro, Lucio Fabio Cassiano Nascimento, and Teresa Gómez-del Rio. 2024. "Mechanical and Ballistic Properties of Epoxy Composites Reinforced with Babassu Fibers (Attalea speciosa)" Polymers 16, no. 7: 913. https://doi.org/10.3390/polym16070913
APA StyleChaves, Y. S., Monteiro, S. N., Nascimento, L. F. C., & Rio, T. G. -d. (2024). Mechanical and Ballistic Properties of Epoxy Composites Reinforced with Babassu Fibers (Attalea speciosa). Polymers, 16(7), 913. https://doi.org/10.3390/polym16070913