Mitigation of Silicon Contamination in Fuel Cell Gasket Materials through Silica Surface Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Commercial LSR Test
2.3. Surface Modification of Silica Particles
2.4. Preparation of Silicone Rubber/Silica Filler Composites
2.5. Characterization
3. Results and Discussion
3.1. Contamination of Filler
3.2. Synthesis of Surface-Modified Silica
3.3. Compatibility of Silicone Rubber/Surface-Modified Silica Composites
3.4. Mechanical Properties of Silicone Rubber/Surface-Modified Silica Composites
3.5. Silicon Elution of Silicone Rubber/Surface-Modified Silica Composites
4. Conclusions
- (1)
- Contamination of the filler: silicon contamination of silicone gaskets under simulated PEM fuel cell conditions occurred owing to the leaching of silica, a common filler used to improve the mechanical properties of elastomeric gaskets.
- (2)
- Synthesis of surface-treated silica: Surface treatment of silica was successfully performed using three different silane coupling agents, MTMS, VTES, and TFPTMS. Various analytical techniques, such as SEM, EDS, TGA, EA, XPS, and FT-IR spectroscopy, were employed to examine changes in surface chemistry and, hence, confirm surface modifications.
- (3)
- Compatibility of silicone rubber/surface-modified silica composites: The compatibility between the silicone rubber and surface-treated silica was confirmed by SEM. Results show that the fillers were well dispersed within the polymer matrix without agglomeration, confirming good compatibility. However, a slight decrease in compatibility was observed as silane content increased.
- (4)
- Mechanical properties: The mechanical properties—namely, tensile strength, elongation at break, and hardness—of the silicone rubber composites were investigated. The mechanical properties of the composite containing fumed silica, which exhibited better dispersion, were superior to those containing MVF-SiO2. Moreover, the mechanical properties deteriorated as the content of the silane coupling agent increased.
- (5)
- Silicon contamination: Silicon leaching from the silicone rubber composites was investigated by ICP-OES. Silicon leaching was significantly reduced in surface-treated silica, i.e., MVF-SiO2, compared to that in the composite containing fumed silica. Furthermore, the reduction in silicon leaching was more pronounced at higher contents of the silane coupling agent. These results confirm that silica surface treatment was effective in preventing the leaching of silica filler under PEM fuel cell conditions.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dawood, F.; Anda, M.; Shafiullah, G. Hydrogen production for energy: An overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Lin, C.-W.; Chien, C.-H.; Tan, J.; Chao, Y.J.; Van Zee, J. Chemical degradation of five elastomeric seal materials in a simulated and an accelerated PEM fuel cell environment. J. Power Sources 2011, 196, 1955–1966. [Google Scholar] [CrossRef]
- Tan, J.; Chao, Y.; Lee, W.-K.; Smith, C.; Van Zee, J.; Williams, C. Degradation of gasket materials in a simulated fuel cell environment. In Proceedings of the International Conference on Fuel Cell Science, Engineering and Technology, Irvine, CA, USA, 19–21 June 2006; pp. 233–241. [Google Scholar]
- Redline, E.M.; Celina, M.C.; Harris, C.E.; Giron, N.H.; Sugama, T.; Pyatina, T. Anomalous aging of EPDM and FEPM under combined thermo-oxidative and hydrolytic conditions. Polym. Degrad. Stab. 2017, 146, 317–326. [Google Scholar] [CrossRef]
- Mitra, S.; Ghanbari-Siahkali, A.; Kingshott, P.; Almdal, K.; Rehmeier, H.K.; Christensen, A.G. Chemical degradation of fluoroelastomer in an alkaline environment. Polym. Degrad. Stab. 2004, 83, 195–206. [Google Scholar] [CrossRef]
- Schulze, M.; Knöri, T.; Schneider, A.; Gülzow, E. Degradation of sealings for PEFC test cells during fuel cell operation. J. Power Sources 2004, 127, 222–229. [Google Scholar] [CrossRef]
- Tan, J.; Chao, Y.; Yang, M.; Williams, C.; Van Zee, J. Degradation characteristics of elastomeric gasket materials in a simulated PEM fuel cell environment. J. Mater. Eng. Perform. 2008, 17, 785–792. [Google Scholar] [CrossRef]
- Tan, J.; Chao, Y.-J.; Li, X.; Van Zee, J. Degradation of silicone rubber under compression in a simulated PEM fuel cell environment. J. Power Sources 2007, 172, 782–789. [Google Scholar] [CrossRef]
- Li, G.; Gong, J.; Tan, J.; Zhu, D.; Jia, W. Study on mechanical properties of silicone rubber materials used as gaskets in PEM fuel cell environment. In Proceedings of the 8nd International Conference on Physical and Numerical Simulation of Materials Processing, ICPNS’16, Washington, DC, USA, 14–17 October 2016; Volume 16, pp. 1–6. [Google Scholar]
- Wu, F.; Chen, B.; Pan, M. Degradation of the sealing silicone rubbers in a proton exchange membrane fuel cell at cold start conditions. Int. J. Electrochem. Sci. 2020, 15, 3013–3028. [Google Scholar] [CrossRef]
- Wu, F.; Chen, B.; Yan, Y.; Chen, Y.; Pan, M. Degradation of silicone rubbers as sealing materials for proton exchange membrane fuel cells under temperature cycling. Polymers 2018, 10, 522. [Google Scholar] [CrossRef]
- Tan, J.; Chao, Y.; Wang, H.; Gong, J.; Van Zee, J. Chemical and mechanical stability of EPDM in a PEM fuel cell environment. Polym. Degrad. Stab. 2009, 94, 2072–2078. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Han, J.; Nguyen, X.L.; Yu, S.; Goo, Y.-M.; Le, D.D. Review of the durability of polymer electrolyte membrane fuel cell in long-term operation: Main influencing parameters and testing protocols. Energies 2021, 14, 4048. [Google Scholar] [CrossRef]
- Lin, C.-W.; Chien, C.-H.; Tan, J.; Chao, Y.-J.; Van Zee, J. Dynamic mechanical characteristics of five elastomeric gasket materials aged in a simulated and an accelerated PEM fuel cell environment. Int. J. Hydrogen Energy 2011, 36, 6756–6767. [Google Scholar] [CrossRef]
- Liu, Y.; Chi, W.; Duan, H.; Zou, H.; Yue, D.; Zhang, L. Property improvement of room temperature vulcanized silicone elastomer by surface-modified multi-walled carbon nanotube inclusion. J. Alloys Compd. 2016, 657, 472–477. [Google Scholar] [CrossRef]
- Sumi, D.; Dhanabalan, A.; Thimmappa, B.; Krishnamurthy, S. Effect of colloidal silica dispersions on the properties of PDMS-colloidal silica composites. J. Appl. Polym. Sci. 2012, 125, E515–E522. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, X.; Liu, F.; Li, X.; Zhang, Z. Adjusting the properties of silicone rubber filled with nanosilica by changing the surface organic groups of nanosilica. Compos. Part B Eng. 2015, 75, 47–52. [Google Scholar] [CrossRef]
- Mei, H.; Chen, G.; Zhu, Q.; Dong, P.; Zhao, D.; Ahmed Raza, W. Improving properties of silicone rubber composites using macromolecular silane coupling agent (MMSCA). J. Appl. Polym. Sci. 2016, 133, 43415. [Google Scholar] [CrossRef]
- Jong, L. Improved mechanical properties of silica reinforced rubber with natural polymer. Polym. Test. 2019, 79, 106009. [Google Scholar] [CrossRef]
- Hyde, E.D.; Seyfaee, A.; Neville, F.; Moreno-Atanasio, R. Colloidal silica particle synthesis and future industrial manufacturing pathways: A review. Ind. Eng. Chem. Res. 2016, 55, 8891–8913. [Google Scholar] [CrossRef]
- Geng, C.; Zhang, Q.; Lei, W.; Yu, F.; Lu, A. Simultaneously reduced viscosity and enhanced strength of liquid silicone rubber/silica composites by silica surface modification. J. Appl. Polym. Sci. 2017, 134, 45544. [Google Scholar] [CrossRef]
- Li, Y.; Han, B.; Wen, S.; Lu, Y.; Yang, H.; Zhang, L.; Liu, L. Effect of the temperature on surface modification of silica and properties of modified silica filled rubber composites. Compos. Part A Appl. Sci. Manuf. 2014, 62, 52–59. [Google Scholar] [CrossRef]
- Le Strat, D.; Dalmas, F.; Randriamahefa, S.; Jestin, J.; Wintgens, V. Mechanical reinforcement in model elastomer nanocomposites with tuned microstructure and interactions. Polymer 2013, 54, 1466–1479. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; Yao, Y.; Chen, S. Effect of microstructural damage on the mechanical properties of silica nanoparticle-reinforced silicone rubber composites. Eng. Fract. Mech. 2020, 235, 107195. [Google Scholar] [CrossRef]
- Gherib, S.; Chazeau, L.; Pelletier, J.-M.; Satha, H. Influence of the filler type on the rupture behavior of filled elastomers. J. Appl. Polym. Sci. 2010, 118, 435–445. [Google Scholar] [CrossRef]
- Liu, D.; Song, L.; Song, H.; Chen, J.; Tian, Q.; Chen, L.; Sun, L.; Lu, A.; Huang, C.; Sun, G. Correlation between mechanical properties and microscopic structures of an optimized silica fraction in silicone rubber. Compos. Sci. Technol. 2018, 165, 373–379. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, Y.; Xu, K.; An, L.; Su, Y.; Li, X.; Zhang, Z. Effect of nano-silica filler on microstructure and mechanical properties of polydimethylsiloxane-based nanocomposites prepared by “inhibition-grafting” method. Compos. Sci. Technol. 2018, 167, 355–363. [Google Scholar] [CrossRef]
- Xie, C.; Lai, X.; Li, H.; Zeng, X. Effective improvement of anti-tracking of addition-cure liquid silicone rubber via charge dissipation of fluorosilane-grafted silica. Polym. Degrad. Stab. 2019, 167, 250–258. [Google Scholar] [CrossRef]
- Yue, Y.; Zhang, H.; Zhang, Z.; Chen, Y. Tensile properties of fumed silica filled polydimethylsiloxane networks. Compos. Part A Appl. Sci. Manuf. 2013, 54, 20–27. [Google Scholar] [CrossRef]
- Tong, Y.; Liu, H.; Chen, A.; Guan, H.; Kong, J.; Liu, S.; He, C. Effect of surface chemistry and morphology of silica on the thermal and mechanical properties of silicone elastomers. J. Appl. Polym. Sci. 2018, 135, 46646. [Google Scholar] [CrossRef]
- Tan, J.; Chao, Y.; Van Zee, J.; Lee, W. Degradation of elastomeric gasket materials in PEM fuel cells. Mater. Sci. Eng. A 2007, 445, 669–675. [Google Scholar] [CrossRef]
- Deng, F.; Wang, L.; Zhou, Y.; Gong, X.; Zhao, X.; Hu, T.; Wu, C. Effect of nanosilica content on the corrosion inhibition of composite coatings of a filled epoxy resin grafted with a hydrophobic fluoroalkylsilane: A dual critical concentrations interpretation. RSC Adv. 2017, 7, 48876–48893. [Google Scholar] [CrossRef]
- Park, J.; Lee, J.; Hong, Y. Effects of vinylsilane-modified nanosilica particles on electrical and mechanical properties of silicone rubber nanocomposites. Polymer 2020, 197, 122493. [Google Scholar] [CrossRef]
- Brassard, J.-D.; Sarkar, D.K.; Perron, J. Synthesis of monodisperse fluorinated silica nanoparticles and their superhydrophobic thin films. ACS Appl. Mater. Interfaces 2011, 3, 3583–3588. [Google Scholar] [CrossRef] [PubMed]
- Ghamarpoor, R.; Jamshidi, M. Synthesis of vinyl-based silica nanoparticles by sol–gel method and their influences on network microstructure and dynamic mechanical properties of nitrile rubber nanocomposites. Sci. Rep. 2022, 12, 15286. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chen, S.; Su, W.; Zhu, L.; Cheng, X.; Wu, J.; Zhao, S.; Zhou, C. Construction of a durable superhydrophobic surface based on the oxygen inhibition layer of organosilicon resins. Thin Solid Film. 2021, 717, 138467. [Google Scholar] [CrossRef]
- Jiang, M.-J.; Dang, Z.-M.; Xu, H.-P. Enhanced electrical conductivity in chemically modified carbon nanotube/methylvinyl silicone rubber nanocomposite. Eur. Polym. J. 2007, 43, 4924–4930. [Google Scholar] [CrossRef]
- Coleman, J.N.; Khan, U.; Blau, W.J.; Gun’ko, Y.K. Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon 2006, 44, 1624–1652. [Google Scholar] [CrossRef]
- Jin, S.-H.; Hong, J.-H.; Kim, I.; Yun, J.-H.; Shim, S.-E. Effect of vinyltriethoxysilane content on mechanical and physical properties of precipitated silica reinforced silicone rubber. Polym. Korea 2011, 35, 342–349. [Google Scholar] [CrossRef]
Fumed Silica (g) | MTMS (g) | VTES (g) | TFPTMS (g) | |
---|---|---|---|---|
SiO2 | 20 | - | - | - |
MVF-SiO2-1 | 20 | 4 | 4 | 1 |
MVF-SiO2-2 | 20 | 4 | 4 | 2 |
MVF-SiO2-4 | 20 | 4 | 4 | 4 |
MVF-SiO2-16 | 20 | 4 | 4 | 16 |
Silicon Concentration (mg/L) | |
---|---|
Silicone containing silica | 122.8 ± 3.3 |
Silicone without silica | 2.3 ± 0.2 |
Element (at.%) | |||
---|---|---|---|
Silicon | Oxygen | Carbon | |
Silicone with silica | 32.42 | 58.06 | 9.52 |
Sample | Element (at.%) | |||
---|---|---|---|---|
Silicon | Oxygen | Carbon | Fluorine | |
SiO2 | 34.21 | 57.13 | 8.66 | - |
MVF-SiO2-1 | 24.17 | 51.92 | 22.71 | 1.20 |
MVF-SiO2-2 | 24.01 | 47.63 | 26.68 | 2.08 |
MVF-SiO2-4 | 16.23 | 47.55 | 32.23 | 3.99 |
MVF-SiO2-16 | 16.09 | 42.05 | 33.91 | 7.95 |
Sample | Element (wt.%) | |
---|---|---|
Carbon | Hydrogen | |
SiO2 | 0.20 | 0.21 |
MVF-SiO2-1 | 3.71 | 0.79 |
MVF-SiO2-2 | 4.17 | 0.82 |
MVF-SiO2-4 | 7.48 | 1.29 |
MVF-SiO2-16 | 16.04 | 2.31 |
Sample | Tensile Strength (MPa) | Elongation at Break (%) | Hardness (Shore A) |
---|---|---|---|
Silicone rubber/ SiO2 | 5.99 | 232.21 | 65 |
Silicone rubber/MVF-SiO2-1 | 3.28 | 138.58 | 64 |
Silicone rubber/MVF-SiO2-2 | 2.90 | 124.30 | 63 |
Silicone rubber/MVF-SiO2-4 | 2.86 | 123.60 | 62 |
Silicone rubber/MVF-SiO2-16 | 1.64 | 73.02 | 55 |
Silicon Concentration (mg/L) | |
---|---|
Silicone rubber/SiO2 | 65.5 ± 3.1 |
Silicone rubber/MVF-SiO2-1 | 5.9 ± 0.4 |
Silicone rubber/MVF-SiO2-2 | 5.5 ± 0.3 |
Silicone rubber/MVF-SiO2-4 | 4.8 ± 0.6 |
Silicone rubber/MVF-SiO2-16 | 4.6 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sim, Y.L.; Lee, J.; Oh, S.M.; Kim, D.B.; Kim, K.; Baeck, S.-H.; Shim, S.E.; Qian, Y. Mitigation of Silicon Contamination in Fuel Cell Gasket Materials through Silica Surface Treatment. Polymers 2024, 16, 914. https://doi.org/10.3390/polym16070914
Sim YL, Lee J, Oh SM, Kim DB, Kim K, Baeck S-H, Shim SE, Qian Y. Mitigation of Silicon Contamination in Fuel Cell Gasket Materials through Silica Surface Treatment. Polymers. 2024; 16(7):914. https://doi.org/10.3390/polym16070914
Chicago/Turabian StyleSim, Yoo Lim, Jaewon Lee, Su Min Oh, Dong Beom Kim, Kijong Kim, Sung-Hyeon Baeck, Sang Eun Shim, and Yingjie Qian. 2024. "Mitigation of Silicon Contamination in Fuel Cell Gasket Materials through Silica Surface Treatment" Polymers 16, no. 7: 914. https://doi.org/10.3390/polym16070914
APA StyleSim, Y. L., Lee, J., Oh, S. M., Kim, D. B., Kim, K., Baeck, S. -H., Shim, S. E., & Qian, Y. (2024). Mitigation of Silicon Contamination in Fuel Cell Gasket Materials through Silica Surface Treatment. Polymers, 16(7), 914. https://doi.org/10.3390/polym16070914