Synthesis, Structure, Properties, and Applications of Fluorinated Polyurethane
Abstract
:1. Introduction
2. Synthesis of Typical PU
2.1. Hard Segments
2.1.1. Isocyanates
2.1.2. Chain Extenders
2.2. Soft Segments
Polyols
3. Design and Synthesis of FPU
3.1. Design of Fluorochemicals as Hard Segments
3.1.1. Fluorinated Isocyanates
3.1.2. Fluorinated Capping Agents
3.1.3. Fluorinated Chain Extenders
3.2. Design Fluorochemicals as Soft Segments
3.2.1. Fluorinated Polyester Polyols
3.2.2. Fluorinated Polyether Polyols
3.3. Fluorinated Additives
4. Advances in the Application of Functionalized FPU
4.1. Coatings
4.2. Clothing Textiles
4.3. Aerospace Industry
4.4. Biomedical Industry
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Cao, N.; Bai, Y.; Barras, A.; Szunerits, S.; Boukherroub, R. Polyurethane Sponge Functionalized with Superhydrophobic Nanodiamond Particles for Efficient Oil/Water Separation. Chem. Eng. J. 2017, 307, 319–325. [Google Scholar] [CrossRef]
- Takeichi, T.; Suefuji, K.; Inoue, K. Preparation of High–temperature Polyurethane by Alloying with Reactive Polyamide. J. Polym. Sci. Pol. Chem. 2002, 40, 3497–3503. [Google Scholar] [CrossRef]
- Bayer, O. Das Di–Isocyanat–Polyadditionsverfahren (Polyurethane). Angew. Chem. 1947, 59, 257–272. [Google Scholar] [CrossRef]
- Das, A.; Mahanwar, P. A Brief Discussion on Advances in Polyurethane Applications. Adv. Ind. Eng. Polym. Res. 2020, 3, 93–101. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, J.; Peng, X.; Ma, X.; Peng, S. Structure–Property Relationships of Novel Fluorinated Polycarbonate Polyurethane Films with High Transparency and Thermal Stability. Res. Chem. Intermed. 2019, 45, 845–862. [Google Scholar] [CrossRef]
- Zhang, L.; Kong, Q.; Kong, F.; Liu, T.; Qian, H. Synthesis and Surface Properties of Novel Fluorinated Polyurethane Base on F–containing Chain Extender. Polym. Adv. Technol. 2020, 31, 616–629. [Google Scholar] [CrossRef]
- Liu, T.; Ye, L. Synthesis and Properties of Fluorinated Thermoplastic Polyurethane Elastomer. J. Fluor. Chem. 2010, 131, 36–41. [Google Scholar] [CrossRef]
- Ge, Z.; Zhang, X.Y.; Dai, J.B.; Li, W.H.; Luo, Y.J. Synthesis and Characterization of Fluorinated Polyurethane with Fluorine-Containing Pendent Groups. Chin. Chem. Lett. 2008, 19, 1293–1296. [Google Scholar] [CrossRef]
- Graham, P.; Stone, M.; Thorpe, A.; Nevell, T.G.; Tsibouklis, J. Fluoropolymers with Very Low Surface Energy Characteristics. J. Fluor. Chem. 2000, 104, 29–36. [Google Scholar] [CrossRef]
- Smirnova, O.; Glazkov, A.; Yarosh, A.; Sakharov, A. Fluorinated Polyurethanes, Synthesis and Properties. Molecules 2016, 21, 904. [Google Scholar] [CrossRef]
- Cheng, Q.; Liu, C.; Liu, S. Fabrication of a Robust Superhydrophobic Polyurethane Sponge for Oil–Water Separation. Surf. Eng. 2019, 35, 403–410. [Google Scholar] [CrossRef]
- Lovelace, A.M. Fluorinated Polyurethane Resins; United States Patent and Trademark Office: Alexandria, VI, USA, 1958. [Google Scholar]
- Jia, Y.; Zhang, L.; Qin, M.; Li, Y.; Gu, S.; Guan, Q.; You, Z. Highly Efficient Self-Healable and Robust Fluorinated Polyurethane Elastomer for Wearable Electronics. Chem. Eng. J. 2022, 430, 133081. [Google Scholar] [CrossRef]
- Li, N.; Yang, R.; Tian, Y.; Lu, P.; Huang, N.; Li, H.; Chen, X. Synthesis of Durable Hydrophobic Fluorinated Polyurethanes with Exceptional Cavitation Erosion Resistance. Tribol. Int. 2023, 177, 107973. [Google Scholar] [CrossRef]
- Shen, C.; Yan, S.; Ou, Y.; Jiao, Q. Influence of Fluorinated Polyurethane Binder on the Agglomeration Behaviors of Aluminized Propellants. Polymers 2022, 14, 1124. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Zhang, Q.; Gong, J.; Xin, X. Developing an Acidproof Breathable Composite Fabric Based on Fluorinated Polyurethane/Isotropic Pitch Electrospun Nanofibers. J. Ind. Text. 2019, 50, 891–905. [Google Scholar] [CrossRef]
- Akindoyo, J.O.; Beg, M.D.H.; Ghazali, S.; Islam, M.R.; Jeyaratnam, N.; Yuvaraj, A.R. Polyurethane Types, Synthesis and Applications-a Review. RSC Adv. 2016, 6, 114453–114482. [Google Scholar] [CrossRef]
- Chattopadhyay, D.K.; Webster, D.C. Thermal Stability and Flame Retardancy of Polyurethanes. Prog. Polym. Sci. 2009, 34, 1068–1133. [Google Scholar] [CrossRef]
- Zia, K.M.; Anjum, S.; Zuber, M.; Mujahid, M.; Jamil, T. Synthesis and Molecular Characterization of Chitosan Based Polyurethane Elastomers Using Aromatic Diisocyanate. Int. J. Biol. Macromol. 2014, 66, 26–32. [Google Scholar] [CrossRef]
- Wurtz, A. Just Liebigs. Ann. Chem. 1984, 71, 326. [Google Scholar]
- Cui, Y.; Zhang, G.; Ding, C. Recent Advances in Lossen Rearrangement. Chin. J. Org. Chem. 2022, 42, 2015–2027. [Google Scholar] [CrossRef]
- Taheri, N.; Sayyahi, S. Effect of Clay Loading on the Structural and Mechanical Properties of Organoclay/HDI-Based Thermoplastic Polyurethane Nanocomposites. e-Polymers 2016, 16, 65–73. [Google Scholar] [CrossRef]
- Narayan, R.; Chattopadhyay, D.K.; Sreedhar, B.; Raju, K.; Mallikarjuna, N.N.; Aminabhavi, T.M. Synthesis and Characterization of Crosslinked Polyurethane Dispersions Based on Hydroxylated Polyesters. J. Appl. Polym. Sci. 2006, 99, 368–380. [Google Scholar] [CrossRef]
- Chattopadhyay, D.K.; Raju, K. Structural Engineering of Polyurethane Coatings for High Performance Applications. Prog. Polym. Sci. 2007, 32, 352–418. [Google Scholar] [CrossRef]
- Sonnenschein, M.F. Polyurethanes: Science, Technology, Markets, and Trends, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Liu, C.; Shi, Y.; Ma, C.; Liu, L.; Liu, Z.; Que, Y.; Wang, L. Effect of Isocyanate Hard Segment on Structure and Property of Polyurethane. Polym. Mat. Sci. Eng. 2021, 37, 79–84. [Google Scholar] [CrossRef]
- Liu, Y. Polyurethane Resins and Their Applications; Chemical Industry Press: Beijing, China, 2012; pp. 17–22. [Google Scholar]
- Wang, Y.; Li, Y.; He, M.; Bai, J.; Liu, B.; Li, Z. Effect of Chain Extender on Microphase Structure and Performance of Self-healing Polyurethane and Poly(Urethane-urea). J. Appl. Polym. Sci. 2021, 138, 51371. [Google Scholar] [CrossRef]
- Prisăcariu, C.; Scorţanu, E. Influence of the Type of Chain Extender and Urethane Group Content on the Mechanical Properties of Polyurethane Elastomers with Flexible Hard Segments. High Perform. Polym. 2011, 23, 308–313. [Google Scholar] [CrossRef]
- Kirchmeyer, S.; Müller, H.P.; Ullrich, M.; Liesenfelder, U. Thermoplastic Polyurethane Elastomers; Bayer AG: Leverkusen, Germany, 2002. [Google Scholar]
- Gum, W.F.; Riese, W.; Ulrich, H. Reaction Polymers: Polyurethanes, Epoxies, Unsaturated Polyesters, Phenolics, Special Monomers and Additives-Chemistry, Properties, Applications, Markets; Hanser Publishers: Munich, Germany, 1992; p. 838. [Google Scholar]
- Xiong, H.; Wang, Z.; Fei, P.; Ullah, I.; Javaid, A.B.; Wang, Y.; Jin, W.; Chen, L. Effects of Sucrose Fatty Acid Esters on the Stability and Bonding Performance of High Amylose Starch-Based Wood Adhesive. Int. J. Biol. Macromol. 2017, 104, 846–853. [Google Scholar] [CrossRef]
- Ionescu, M. Chemistry and Technology of Polyols for Polyurethanes; Rapra Technology: Shrewsbury, UK, 2005. [Google Scholar]
- Stradolini, P.; Gryczak, M.; Petzhold, C.L. Polyols from castor oil (Ricinus communis) and epoxidized soybean oil (Glycine max) for application as a lubricant base. J. Am. Oil Chem. Soc. 2023, 101, 321–334. [Google Scholar] [CrossRef]
- Jin, Y.; Hu, X.; Wu, C.; Zong, R.; Liu, S.; Shentu, B. Influence of palm oil-based polyols on the microstructure and properties of bio-based flexible polyurethane foams. Biomass Convers. Biorefinery 2023, 5, 1–11. [Google Scholar] [CrossRef]
- Kirpluks, M.; Vanags, E.; Abolins, A.; Michalowski, S.; Fridrihsone, A.; Cabulis, U. High functionality bio-polyols from tall oil and rigid polyurethane foams formulated solely using bio-polyols. Materials 2020, 13, 1985. [Google Scholar] [CrossRef]
- Bednarek, M. Branched Aliphatic Polyesters by Ring-Opening (Co) Polymerization. Prog. Polym. Sci. 2016, 58, 27–58. [Google Scholar] [CrossRef]
- Bailosky, L.C.; Bender, L.M.; Bode, D.; Choudhery, R.A.; Craun, G.P.; Gardner, K.J.; Michalski, C.R.; Rademacher, J.T.; Stella, G.J.; Telford, D.J. Synthesis of Polyether Polyols with Epoxidized Soy Bean Oil. Prog. Org. Coat. 2013, 76, 1712–1719. [Google Scholar] [CrossRef]
- Santos, A.M. Polyester Polyols and Their Use as the Polyol Component in Two-Component Polyurethane Paints; United States Patent and Trademark Office: Alexandria, VI, USA, 2001. [Google Scholar]
- Bakhshandeh, E.; Bastani, S.; Saeb, M.R.; Croutxé-Barghorn, C.; Allonas, X. High-Performance Water-Based UV-Curable Soft Systems with Variable Chain Architecture for Advanced Coating Applications. Prog. Org. Coat. 2019, 130, 99–113. [Google Scholar] [CrossRef]
- Seyfi, J.; Jafari, S.H.; Khonakdar, H.A.; Sadeghi, G.M.M.; Zohuri, G.; Hejazi, I.; Simon, F. Fabrication of Robust and Thermally Stable Superhydrophobic Nanocomposite Coatings Based on Thermoplastic Polyurethane and Silica Nanoparticles. Appl. Surf. Sci. 2015, 347, 224–230. [Google Scholar] [CrossRef]
- Líu, H.; Zhang, S.; Li, Y.; Yang, D.; Hu, J.; Huang, X. A Novel Perfluorocyclobutyl Aryl Ether-Based Graft Copolymer via 2-Methyl-1,4-Bistrifluorovinyloxybenzene and Styrene. Polymer 2010, 51, 5198–5206. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Z.; Yu, J.; Ding, B. Carbon Nanotubes Enhanced Fluorinated Polyurethane Macroporous Membranes for Waterproof and Breathable Application. ACS Appl. Mater. Interfaces 2015, 7, 13538–13546. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Hu, X. Research Progress of Waterborne Fluorine-Containing Polyurethane. Chin. Adhes. 2018, 27, 53–56. [Google Scholar] [CrossRef]
- Mohanty, S.; Borah, K.; Kashyap, S.S.; Sarmah, S.; Bera, M.K.; Basak, P.; Narayan, R. Development of Hydrophobic Polyurethane Film from Structurally Modified Castor Oil and Its Anticorrosive Performance. Polym. Adv. Technol. 2022, 34, 351–362. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, C.; Gao, J.; Chen, Y.; Yu, F.; Chen, M.; Zhang, H. A Novel Hydrophobic Coating Film of Water-Borne Fluoro-Silicon Polyacrylate Polyurethane with Properties Governed by Surface Self-Segregation. Prog. Org. Coat. 2019, 134, 134–144. [Google Scholar] [CrossRef]
- Xie, X.; Tan, H.; Li, J.; Zhong, Y. Synthesis and Characterization of Fluorocarbon Chain End-capped Poly(Carbonate Urethane)s as Biomaterials: A Novel Bilayered Surface Structure. J. Biomed. Mater. Res. Part A 2008, 84, 30–43. [Google Scholar] [CrossRef]
- Su, S.K.; Gu, J.H.; Lee, H.T.; Wu, C.L.; Su, Y.R.; Suen, M.C. Biodegradable Polyurethanes: Novel Effects of the Fluorine-Containing Chain Extender on the Thermal, Physical and Water Vapor Permeation Properties. J. Polym. Res. 2018, 25, 227. [Google Scholar] [CrossRef]
- Qiao, Z.; Xu, D.; Yan, Y.; Song, S.; Yin, M.; Luo, J. Synthesis and Antifouling Activities of Fluorinated Polyurethanes. Polym. Int. 2019, 68, 1361–1366. [Google Scholar] [CrossRef]
- Tamareselvy, K.; Venkatarao, K.; Kothandaraman, H. Synthesis and Characterization of Some Halogen-containing Poly (Esterurethane) s. J. Polym. Sci. Pol. Chem. 1990, 28, 2679–2693. [Google Scholar] [CrossRef]
- Jiang, W.C.; Huang, Y.; Gu, G.T.; Meng, W.D.; Qing, F.L. A Novel Waterborne Polyurethane Containing Short Fluoroalkyl Chains: Synthesis, Characterization and Its Application on Cotton Fabrics Surface. Appl. Surf. Sci. 2006, 253, 2304–2309. [Google Scholar] [CrossRef]
- Hollander, J.; Trischler, F.D.; Gosnell, R.B. Synthesis of Polyurethanes from Fluorinated Diisocyanates. J. Polym. Sci. 1967, 5, 2757–2767. [Google Scholar] [CrossRef]
- Lim, C.H.; Choi, H.S.; Noh, S.T. Surface Modification with Waterborne Fluorinated Anionic Polyurethane Dispersions. J. Appl. Polym. Sci. 2002, 86, 3322–3330. [Google Scholar] [CrossRef]
- Wen, J.; Sun, Z.; Xiang, J.; Fan, H.; Chen, Y.; Yan, J. Preparation and Characteristics of Waterborne Polyurethane with Various Lengths of Fluorinated Side Chains. Appl. Surf. Sci. 2019, 494, 610–618. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, M.; Chen, R.; Liu, Q.; Liu, J.; Yu, J.; Zhang, H.; Liu, P.; Lin, C.; Wang, J. Polyurethane Coating with Heterogeneity Structure Induced by Microphase Separation: A New Combination of Antifouling and Cavitation Erosion Resistance. Prog. Org. Coat. 2021, 151, 106032. [Google Scholar] [CrossRef]
- Tang, Y.W.; Santerre, J.P.; Labow, R.S.; Taylor, D.G. Synthesis of Surface-Modifying Macromolecules for Use in Segmented Polyurethanes. J. Appl. Polym. Sci. 1996, 62, 1133–1145. [Google Scholar] [CrossRef]
- Zhong, Y.; Xie, X.; Li, J.; He, C.; Fan, C. Fluorinated Polyurethane Material and its Preparation Method; Intellectual Property Press: Beijing, China, 2002. [Google Scholar]
- Lahiouhel, D.; Améduri, B.; Boutevin, B. A Telechelic Fluorinated Diol from 1, 6-Diiodoperfluorohexane. J. Fluor. Chem. 2001, 107, 81–88. [Google Scholar] [CrossRef]
- Zhu, Q.; Han, C.C. Study of Telechelic Polyurethane with Perfluoropolyether Tails. Polymer 2010, 51, 877–882. [Google Scholar] [CrossRef]
- Kim, B.; Lee, J.; Lee, E.; Jeong, K.; Seo, J.H. One-Pot Coatable Fluorinated Polyurethane Resin Solution for Robust Superhydrophobic Anti-Fouling Surface. Prog. Org. Coat. 2024, 187, 108097. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Du, B.; Li, P.; Lai, X.; Niu, Y. Preparation and Properties of a Novel Waterborne Fluorinated Polyurethane-Acrylate Hybrid Emulsion. Colloid Polym. Sci. 2014, 292, 579–587. [Google Scholar] [CrossRef]
- Ge, Z. Synthesis, Characterization and Properties of PTMG-g-HFP and Fluorinated Polyurethanes; University of Science and Technology of China: Hefei, China, 2007. [Google Scholar]
- Chen, K.Y.; Kuo, J.F. Synthesis and Properties of Novel Fluorinated Aliphatic Polyurethanes with Fluoro Chain Extenders. Macromol. Chem. Phys. 2000, 201, 2676–2686. [Google Scholar] [CrossRef]
- Xu, W.; Lü, B.; Hu, Y.; Song, L.; Nie, S. Synthesis and Characterization of Novel Fluorinated Polyurethane Elastomers Based on 2, 2-bis [4-(4-amino-2-trifluoromehyloxyphenyl) Phenyl] Propane. Polym. Adv. Technol. 2012, 23, 877–883. [Google Scholar] [CrossRef]
- Li, J.W.; Tsai, H.A.; Lee, H.T.; Cheng, Y.H.; Chiu, C.W.; Suen, M. Synthesis and Properties of Side Chain Fluorinated Polyurethanes and Evaluation of Changes in Microphase Separation. Prog. Org. Coat. 2020, 145, 105702. [Google Scholar] [CrossRef]
- Xu, W.; Wang, W.; Hao, L.; Liu, H.; Hai, F.; Wang, X. Synthesis and Properties of Novel Triazine-Based Fluorinated Chain Extender Modified Waterborne Polyurethane Hydrophobic Films. Prog. Org. Coat. 2021, 157, 106282. [Google Scholar] [CrossRef]
- Jiang, R.; Zheng, X.; Zhu, S.; Li, W.; Zhang, H.; Liu, Z.; Zhou, X. Recent Advances in Functional Polyurethane Chemistry: From Structural Design to Applications. ChemistrySelect 2023, 8, e202204132. [Google Scholar] [CrossRef]
- Wu, J.; Wang, C.; Lin, W.; Ngai, T. A Facile and Effective Approach for the Synthesis of Fluorinated Waterborne Polyurethanes with Good Hydrophobicity and Antifouling Properties. Prog. Org. Coat. 2021, 159, 106405. [Google Scholar] [CrossRef]
- Shi, X.; Shi, H.X.; Wu, H.K.; Shen, H.M.; Cao, P. Synthesis and Properties of Novel Fluorinated Polyurethane Based on Fluorinated Gemini Diol. Polym. Adv. Technol. 2018, 29, 1939–1952. [Google Scholar] [CrossRef]
- Luo, X.; Xu, J.; Tang, W.; Dai, X.; Zhang, X. Synthesis and Characterization of Fluoro-Modified Polyurethane. Polym. Bull. 2001, 4, 57–62. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, Z.; Wang, Y. Fluorinated Waterborne Shape Memory Polyurethane Urea for Potential Medical Implant Application. J. Appl. Polym. Sci. 2012, 127, 710–716. [Google Scholar] [CrossRef]
- Zeng, S.; Wang, Q.; Chen, P.; Xu, Y.; Nie, W.; Zhou, Y. Controllable Hydrolytic Stability of Novel Fluorinated Polyurethane Films by Incorporating Fluorinated Side Chains. Prog. Org. Coat. 2022, 165, 106729. [Google Scholar] [CrossRef]
- Stephen, F.; Alberto, P.F. Polyurethane Foam Prepared from a Halogen Containing Polyether; United States Patent and Trademark Office: Alexandria, VI, USA, 1966. [Google Scholar]
- Hougham, G.; Cassidy, P.E.; Johns, K.; Davidson, T. Fluoropolymers 2; Kluwer Academic Publishers: New York, NY, USA, 1999. [Google Scholar]
- Turri, S.; Levi, M.; Trombetta, T. Waterborne Anionomeric Polyurethane–Ureas from Functionalized Fluoropolyethers. J. Appl. Polym. Sci. 2004, 93, 136–144. [Google Scholar] [CrossRef]
- Jia, R.P.; Zong, A.X.; He, X.Y.; Xu, J.Y.; Huang, M. Synthesis of Newly Fluorinated Thermoplastic Polyurethane Elastomers and Their Blood Compatibility. Fiber. Polym. 2015, 16, 231–238. [Google Scholar] [CrossRef]
- Król, P.; Pielichowska, K.; Król, B.; Nowicka, K.; Walczak, M.; Kowal, M. Polyurethane Cationomers Containing Fluorinated Soft Segments with Hydrophobic Properties. Colloid Polym. Sci. 2021, 299, 1011–1029. [Google Scholar] [CrossRef]
- Zhu, M.J.; Qing, F.L.; Meng, W.D. Novel Waterborne Polyurethanes Containing Short Fluoroalkyl Chains: Synthesis and Applications on Cotton Fabrics. J. Appl. Polym. Sci. 2008, 109, 1911–1915. [Google Scholar] [CrossRef]
- Lee, Y.; Bae, S.; Hwang, B.; Schroeder, M.; Lee, Y.; Baik, S. Considerably Improved Water and Oil Washability of Highly Conductive Stretchable Fibers by Chemical Functionalization with Fluorinated Silane. J. Mater. Chem. C 2019, 7, 12297–12305. [Google Scholar] [CrossRef]
- Jiang, M.; Zhao, X.; Ding, X.; Zheng, Z.; Peng, Y. A Novel Approach to Fluorinated Polyurethane by Macromonomer Copolymerization. Eur. Polym. J. 2005, 41, 1798–1803. [Google Scholar] [CrossRef]
- Sow, C.; Riedl, B.; Blanchet, P. UV-Waterborne Polyurethane-Acrylate Nanocomposite Coatings Containing Alumina and Silica Nanoparticles for Wood: Mechanical, Optical, and Thermal Properties Assessment. J. Coat. Technol. Res. 2011, 8, 211–221. [Google Scholar] [CrossRef]
- Li, G.; Shen, Y.; Ren, Q. Effect of Fluorinated Acrylate on the Surface Properties of Cationic Fluorinated Polyurethane-Acrylate Hybrid Dispersions. J. Appl. Polym. Sci. 2005, 97, 2192–2196. [Google Scholar] [CrossRef]
- Lim, H.; Lee, Y.; Park, I.J.; Lee, S.B. Synthesis and Surface Property of Aqueous Fluorine-Containing Polyurethane. J. Colloid Interface Sci. 2001, 241, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, J.; Wu, Q.; Zhang, J.; Wu, M. Progress in Fluorinated Polyurethane-Acrylate Emulsions. Paint. Coat. Ind. 2007, 37, 55–58. [Google Scholar] [CrossRef]
- Jiang, M.; Zheng, Z.; Ding, X.; Cheng, X.; Peng, Y. Convenient Synthesis of Novel Fluorinated Polyurethane Hybrid Latexes and Core-Shell Structures via Emulsion Polymerization Process with Self-Emulsification of Polyurethane. Colloid Polym. Sci. 2007, 285, 1049–1054. [Google Scholar] [CrossRef]
- Jiang, G.; Tuo, X.; Wang, D.; Li, Q. Preparation, Characterization, and Properties of Fluorinated Polyurethanes. J. Polym. Sci. Pol. Chem. 2009, 47, 3248–3256. [Google Scholar] [CrossRef]
- Tan, J.; Liu, W.; Wang, Z. Preparation and Performance of Waterborne UV-urable Polyurethane Containing Long Fluorinated Side Chains. J. Appl. Polym. Sci. 2017, 134, 44506. [Google Scholar]
- Wang, Y.; Qiu, F.; Xu, B.; Xu, J.; Jiang, Y.; Yang, D.; Li, P. Preparation, Mechanical Properties and Surface Morphologies of Waterborne Fluorinated Polyurethane-Acrylate. Prog. Org. Coat. 2013, 76, 876–883. [Google Scholar] [CrossRef]
- Zhong, X.; Lin, J.; Wang, Z.; Xiao, C.; Yang, H.; Wang, J.; Wu, X. Preparation of a Crosslinked Coating Containing Fluorinated Water-Dispersible Polyurethane Particles. Prog. Org. Coat. 2016, 99, 216–222. [Google Scholar] [CrossRef]
- Ge, Z.; Zhang, X.; Dai, J.; Li, W.; Luo, Y. Advances in Synthesis and Application of Fluorinated Polyurethane. New Chem. Mater. 2009, 37, 14–16. [Google Scholar] [CrossRef]
- Cui, X.; Zhong, S.; Wang, H. Synthesis and Characterization of Emulsifier-Free Core–Shell Fluorine-Containing Polyacrylate Latex. Colloid Surf. A-Physicochem. Eng. Asp. 2007, 303, 173–178. [Google Scholar] [CrossRef]
- Reisinger, J.J.; Hillmyer, M.A. Synthesis of Fluorinated Polymers by Chemical Modification. Prog. Polym. Sci. 2002, 27, 971–1005. [Google Scholar] [CrossRef]
- Shen, C.; Su, L. Waterproofing Coatings for Buildings; Chemical Industry Press: Beijing, China, 2003. [Google Scholar]
- Wang, H.; Wang, Z.; Liu, W. Preparation and Properties of Fluorinated Polyurethane-acrylate Coatings Used in Building Waterproof Coating. Guangzhou Chem. 2016, 41, 33–37. [Google Scholar]
- Park, J.M.; Kim, S.Y.; An, S.K.; Lee, Y.H.; Kim, H.D. UV-Curable Fluorinated Crosslinkable Polyurethane-Acrylates for Marine Antifouling Coatings. Clean Tech. 2017, 23, 148–157. [Google Scholar] [CrossRef]
- Han, Y.; Jiang, Y.; Tan, P.; Zhang, Y.; Zhang, Q.; Li, K.; Tan, L. Waterborne Fluorinated Polyurethane Containing Guanidine for Antibacterial and Anti-Inorganic Fouling Coatings with Improved Mechanical Properties. Prog. Org. Coat. 2022, 173, 107219. [Google Scholar] [CrossRef]
- Zhao, B.; Jia, R.; Zhang, Y.; Liu, D.; Zheng, X. Design and Synthesis of Antibacterial Waterborne Fluorinated Polyurethane. J. Appl. Polym. Sci. 2018, 136, 46923. [Google Scholar] [CrossRef]
- Chen, M.; Ou, B.; Guo, Y.; Guo, Y.; Kang, Y.; Liu, H.; Yan, J.; Tian, L. Preparation of an Environmentally Friendly Antifouling Degradable Polyurethane Coating Material Based on Medium-Length Fluorinated Diols. J. Macromol. Sci. Part A Pure Appl. Chem. 2018, 55, 483–488. [Google Scholar] [CrossRef]
- Tang, C.; Xie, C.; Peng, F.; Ou, J.; Xue, M. Preparation of Zinc Oxide-Graphene Oxide/Aqueous Fluorinated Polyurethane Superdouble Sparse Coatings and Resistance to Marine Atmospheric Corrosion. In Proceedings of the 10th National Corrosion Conference, Nanchang, China, 24 October 2019. [Google Scholar]
- Yan, L.; Kou, K.; Wang, Z.; Tian, P. Research and Application of New Fluorinated Polyurethane. Chin. Adhes. 2008, 17, 56–62. [Google Scholar]
- Giesy, J.P.; Kannan, K.; Jones, P.D. Global Biomonitoring of Perfluorinated Organics. Sci. World J. 2001, 1, 627–629. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M. Novel Waterborne Polyurethanes Containingshort Fluoroalkyl Chains: Synthesis, Characterization and Their Applications on Cotton Fabrics; Donghua University: Shanghai, China, 2007. [Google Scholar]
- Golovin, K.; Boban, M.; Mabry, J.M.; Tuteja, A. Designing Self-Healing Superhydrophobic Surfaces with Exceptional Mechanical Durability. ACS Appl. Mater. Interfaces 2017, 9, 11212–11223. [Google Scholar] [CrossRef]
- Zheng, F.; Deng, H.; Zhao, X.; Li, X.; Yang, C.; Yang, Y.; Zhang, A. Fluorinated Hyperbranched Polyurethane Electrospun Nanofibrous Membrane: Fluorine-Enriching Surface and Superhydrophobic State with High Adhesion to Water. J. Colloid Interface Sci. 2014, 421, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Chen, W.; Gui, S.; Cao, K.; Cheng, H.; Lin, Y. Progress of Applied Research on Electrostatic Spinning Nanofiber Preparation Technology. Light. Text. Ind Tech. 2022, 51, 110–113. [Google Scholar] [CrossRef]
- Wang, J. Synthesis of Waterborne Fluorinated Polyurethane and Application in Waterproof and Breathable Fabric; Donghua University: Shanghai, China, 2015. [Google Scholar]
- Ge, J.; Si, Y.; Fu, F.; Wang, J.; Yang, J.; Cui, L.; Ding, B.; Yu, J.; Sun, G. Amphiphobic Fluorinated Polyurethane Composite Microfibrous Membranes with Robust Waterproof and Breathable Performances. RSC Adv. 2013, 3, 2248–2255. [Google Scholar] [CrossRef]
- Zhao, F.; Xu, Y. Study on the Technology of the Cryogenic Static Sealing. Cryogenics 2001, 2, 23–26. [Google Scholar] [CrossRef]
- Zheng, F. Current Situation and Development Plan on Standards for Domestic Aeronautical Sealant. Chin. Qual. Stand. Rev. 2019, 1, 43–48. [Google Scholar] [CrossRef]
- Koch, E.C. Metal-Fluorocarbon Based Energetic Materials; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Pang, A. Solid Rocket Propellant Theory and Engineering; China Aerospace Press: Beijing, China, 2014. [Google Scholar]
- Xu, W.; Wang, X.; Dai, W.; Zhang, Y.; Wang, G. Preparation of Waterborne Polyurethanes Containing F/Si and Their Hydrophobicity and Fire-Retardancy Properties. Polyurethane Ind. 2016, 31, 19–22. [Google Scholar] [CrossRef]
- Tang, G.; Wang, H.; Chen, C.; Xu, Y.; Chen, D.; Wang, D.; Luo, Y.; Li, X. Thermal Decomposition of Nano Al-Based Energetic Composites with Fluorinated Energetic Polyurethane Binders: Experimental and Theoretical Understandings for Enhanced Combustion and Energetic Performance. RSC Adv. 2022, 12, 24163–24171. [Google Scholar] [CrossRef] [PubMed]
- DeLuca, L.; Marchesi, E.; Spreafico, M.; Reina, A.; Maggi, F.; Rossettini, L.; Bandera, A.; Colombo, G.; Kosowski, B.M. Aggregation versus agglomeration in metallized solid rocket propellants. Int. J. Energ. Mater. Ch. 2010, 9, 91–105. [Google Scholar] [CrossRef]
- Glotv, O.G.; Yagodnikov, D.A.; Vorob’ev, V.S.; Zarko, V.E.; Simonenko, V.N. Ignition, Combustion, and Agglomeration of Encapsulated Aluminum Particles in a Composite Solid Propellant. II. Experimental Studies of Agglomeration. Combust. Explos. 2007, 43, 320–333. [Google Scholar] [CrossRef]
- Rashkovsky, S.A. Metal agglomeration in solid propellants combustion. Combust. Sci. Technol. 1998, 136, 125–148. [Google Scholar] [CrossRef]
- Zhang, X.; Kim, J.S.; Kwon, Y. Synthesis and Thermal Analysis of Nano-Aluminum/Fluorinated Polyurethane Elastomeric Composites for Structural Energetics. J. Nanosci. Nanotechnol. 2017, 17, 2488–2492. [Google Scholar] [CrossRef]
- Yang, S.; Wang, S.; Du, X.; Du, Z.; Cheng, X.; Wang, H. Mechanically Robust Self-Healing and Recyclable Flame-Retarded Polyurethane Elastomer Based on Thermoreversible Crosslinking Network and Multiple Hydrogen Bonds. Chem. Eng. J. 2020, 391, 123544. [Google Scholar] [CrossRef]
- Tan, H. Synthesis, Structure and Properties of Novel Biomedical Polyurethanes; Sichuan University: Chengdu, China, 2004. [Google Scholar]
- Venkatraman, S.; Boey, F.; Lao, L.L. Implanted Cardiovascular Polymers: Natural, Synthetic and Bio-Inspired. Prog. Polym. Sci. 2008, 33, 853–874. [Google Scholar] [CrossRef]
- Tan, H.; Li Jie, H.; Fu, Q. Design, Preparation and Properties of Biomedical Phospholipid Polyurethanes. Sci. Sin. Chim 2012, 5, 661–675. [Google Scholar] [CrossRef]
- Tan, D.; Zhang, X.; Li, J.; Tan, H.; Fu, Q. Modification of Poly (Ether Urethane) with Fluorinated Phosphorylcholine Polyurethane for Improvement of the Blood Compatibility. J. Biomed. Mater. Res. Part A 2012, 100, 380–387. [Google Scholar] [CrossRef]
- Tan, H.; Li, J.; Xie, X.; Guo, M.; Fu, Q.; Zhong, Y. Insight into Surface Structure and Hemocompatibility of Fluorinated Poly (ether urethane) s and Poly (ether urethane) s Blends. J. Biomed Eng. 2004, 4, 566–569. [Google Scholar] [CrossRef]
C | H | F | Cl | Br | I | At | |
---|---|---|---|---|---|---|---|
Bond length (×10−10 m) | 1.70 | 1.2 | 1.35 | 1.85 | 1.96 | 2.16 | - |
Electronegetivity | 2.55 | 2.10 | 3.98 | 3.16 | 2.96 | 2.66 | 2.20 |
Number of valence electrons | 2 | 1 | 5 | 5 | 5 | 5 | 5 |
Ionization energy (kJ·mol−1) | 1086.5 | 1319.85 | 1689.83 | 1257 | 1139.9 | 1008.4 | 890 ± 40 |
Electron affinity (kJ·mol−1) | 121.7 | 72.78 | 328.1 | 348.5 | 324.5 | 295.1 | 233 |
C-X bond length (×10−10 m) | 1.53 | 1.091 | 1.32–1.43 | 1.72–1.85 | 1.87–1.96 | 2.13 | - |
C-X bond energy (kJ·mol−1) | 332 | 416.90 | 485.67 | 326.80 | 276 | 240 | - |
Atomic polarizability (α, cm3/10−24) | 1.76 | 0.66 | 0.68 | 2.58 | 3.05 | 4.7/5.35 | - |
Code | Structure | -NCO Content% | Product Features |
---|---|---|---|
TDI | 48.2 | Good thermal stability | |
MDI | 33.5 | Good thermal stability Good moldability Good mechanical properties | |
HDI | 49.7–49.5 | Good mechanical properties Good chemical resistance Good weather resistance Good adhesion | |
XDI | 44 | Good light stability | |
IPDI | 37.5–37.8 | Good light resistance Good chemical resistance Good weather resistance Good abrasion resistance | |
PPDI | 52.5 | Good moisture resistance Good heat resistance Good oil and tear resistance | |
TMXDI | 34.4 | High strength High adhesion Good flexibility resistance Good yellowing resistance Good acid resistance Durable |
Fluorochemical | Characteristics | Ref. |
---|---|---|
Fluorinated isocyanates | Difficult to synthesize; high cost | [27,44] |
Fluorinated capping agents | Low fluorine content; the modification effect is not obvious | [47] |
Fluorinated chain extenders | Excellent water resistance, flame retardancy, and thermal stability | [48,49] |
Fluorinated polyester polyols | High surface energy; unsatisfactory water resistance | [50] |
Fluorinated polyether polyols | Excellent hydrophobicity; excellent hydrolytic stability | [51] |
Fluorinated acrylate-non-copolymerization | Large core-shell dispersion in PU emulsions; poor emulsion stability | [46] |
Fluorinated acrylate-copolymerization | Excellent water resistance and thermal stability; good mechanical properties | [46] |
Fluorinated Capping Agents | Applications |
---|---|
F(CF2)nOH (n = 6~12) | Hydrophobic, oleophobic, and anti-adhesion fabric finishes |
F(CF2CF2)nCH2CH2OH (n = 3~7) | Hydrophobic, oleophobic, and anti-adhesion fabric finishes Emulsion polymers |
F(CF2CF2)nCH2CH2SH | Hydrophobic and oleophobic fabric finishes |
C7F15CH2OH | Rigid insulating foam |
HOCH2CF2CF2OCF(CF3) CF2OCF2=CF | Elastomer |
C6F13(CH2)2S(CH2)3OH | Fiber cladding material |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Yu, L.; Lu, Z.; Kang, H.; Li, L.; Zhao, S.; Shi, N.; You, S. Synthesis, Structure, Properties, and Applications of Fluorinated Polyurethane. Polymers 2024, 16, 959. https://doi.org/10.3390/polym16070959
Li D, Yu L, Lu Z, Kang H, Li L, Zhao S, Shi N, You S. Synthesis, Structure, Properties, and Applications of Fluorinated Polyurethane. Polymers. 2024; 16(7):959. https://doi.org/10.3390/polym16070959
Chicago/Turabian StyleLi, Donghan, Lu Yu, Zhan Lu, Hailan Kang, Long Li, Shufa Zhao, Ning Shi, and Shibo You. 2024. "Synthesis, Structure, Properties, and Applications of Fluorinated Polyurethane" Polymers 16, no. 7: 959. https://doi.org/10.3390/polym16070959
APA StyleLi, D., Yu, L., Lu, Z., Kang, H., Li, L., Zhao, S., Shi, N., & You, S. (2024). Synthesis, Structure, Properties, and Applications of Fluorinated Polyurethane. Polymers, 16(7), 959. https://doi.org/10.3390/polym16070959