Multi-Layer Polyurethane-Fiber-Prepared Entangled Strain Sensor with Tunable Sensitivity and Working Range for Human Motion Detection
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cortell-Tormo, J.M.; Garcia-Jaen, M.; Ruiz-Fernandez, D.; Fuster-Lloret, V. Lumbatex: A wearable monitoring system based on inertial sensors to measure and control the lumbar spine motion. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1644–1653. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Wang, T.; Shi, L.; Li, J.; Wang, R.; Sun, J. Highly stretchable and strain sensitive fibers based on braid-like structure and sliver nanowires. Appl. Mater. Today 2020, 19, 100610. [Google Scholar] [CrossRef]
- Liu, B.; Lin, X.; Zhao, P.; He, Y.; Liu, M. Robust Polypyrrole@Halloysite Nanotube-Coated Polyurethane Sponge as Multifunctional Flexible Sensors. ACS Sustain. Chem. Eng. 2023, 11, 8753–8763. [Google Scholar] [CrossRef]
- Wang, G.; Wang, M.; Zheng, M.; Ebo, B.; Xu, C.; Liu, Z.; He, L. Thermoplastic Polyurethane/Carbon Nanotube Composites for Stretchable Flexible Pressure Sensors. ACS Appl. Nano Mater. 2023, 6, 9865–9873. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, S.; Chen, Z.; Lai, X.; Li, H.; Zeng, X. Self-Healing and Degradable Polycaprolactone-Based Polyurethane Elastomer for Flexible Stretchable Strain Sensors. ACS Appl. Polym. Mater. 2023, 6, 905–914. [Google Scholar] [CrossRef]
- Duc, C.K.; Hoang, V.-P.; Nguyen, D.T.; Dao, T.T. A Low-Cost, Flexible Pressure Capacitor Sensor Using Polyurethane for Wireless Vehicle Detection. Polymers 2019, 11, 1247. [Google Scholar] [CrossRef]
- Lü, X.; Yu, T.; Meng, F.; Bao, W. Wide-Range and High-Stability Flexible Conductive Graphene/Thermoplastic Polyurethane Foam for Piezoresistive Sensor Applications. Adv. Mater. Technol. 2021, 6, 2100248. [Google Scholar] [CrossRef]
- Chen, T.; Xie, Y.; Wang, Z.; Lou, J.; Liu, D.; Xu, R.; Cui, Z.; Li, S.; Panahi-Sarmad, M.; Xiao, X. Recent Advances of Flexible Strain Sensors Based on Conductive Fillers and Thermoplastic Polyurethane Matrixes. ACS Appl. Polym. Mater. 2021, 3, 5317–5338. [Google Scholar] [CrossRef]
- Peng, M.; Li, X.; Liu, Y.; Chen, J.; Chang, X.; Zhu, Y. Flexible multisensory sensor based on hierarchically porous ionic liquids/thermoplastic polyurethane composites. Appl. Surf. Sci. 2023, 610, 155516. [Google Scholar] [CrossRef]
- Slobodian, P.; Danova, R.; Olejnik, R.; Matyas, J.; Münster, L. Multifunctional flexible and stretchable polyurethane/carbon nanotube strain sensor for human breath monitoring. Polym. Adv. Technol. 2019, 30, 1891–1898. [Google Scholar] [CrossRef]
- Feng, R.; Chu, Y.; Wang, X.; Wu, Q.; Tang, F. A long-term stable and flexible glucose sensor coated with poly(ethylene glycol)-modified polyurethane. J. Electroanal. Chem. 2021, 895, 115518. [Google Scholar] [CrossRef]
- Moheimani, R.; Aliahmad, N.; Aliheidari, N.; Agarwal, M.; Dalir, H. Thermoplastic polyurethane flexible capacitive proximity sensor reinforced by CNTs for applications in the creative industries. Sci. Rep. 2021, 11, 1104. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Ding, X.; Li, W.; Shen, C.; Yadav, A.; Chen, Y.; Bao, M.; Jiang, H.; Wang, D. Facile Fabrication of Conductive Graphene/Polyurethane Foam Composite and Its Application on Flexible Piezo-Resistive Sensors. Polymers 2019, 11, 1289. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Gao, Q.; Wang, X.; Schubert, D.W.; Liu, X. Flexible, conductive, and anisotropic thermoplastic polyurethane/polydopamine /MXene foam for piezoresistive sensors and motion monitoring. Compos. Part A Appl. Sci. Manuf. 2022, 155, 106838. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Dai, K.; Liu, M.; Zhou, K.; Zheng, G.; Liu, C.; Shen, C. Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimensionality for flexible strain sensors. Compos. Part A Appl. Sci. Manuf. 2017, 101, 41–49. [Google Scholar] [CrossRef]
- Xia, P.; Liu, P.; Wu, S.; Zhang, Q.; Wang, P.; Hu, R.; Xing, K.; Liu, C.; Song, A.; Yang, X.; et al. Highly stretchable and sensitive flexible resistive strain sensor based on waterborne polyurethane polymer for wearable electronics. Compos. Sci. Technol. 2022, 221, 109355. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, F.; Wang, L.; Feng, Y.; Yu, D.; Yang, T.; Wu, M.; Petru, M. High Performance Flexible Strain Sensors Based On Silver Nanowires/thermoplastic Polyurethane Composites for Wearable Devices. Appl. Compos. Mater. 2022, 29, 1621–1636. [Google Scholar] [CrossRef]
- Cao, J.; Jiang, Y.; Li, X.; Yuan, X.; Zhang, J.; He, Q.; Ye, F.; Luo, G.; Guo, S.; Zhang, Y.; et al. A Flexible and Stretchable MXene/Waterborne Polyurethane Composite-Coated Fiber Strain Sensor for Wearable Motion and Healthcare Monitoring. Sensors 2024, 24, 271. [Google Scholar] [CrossRef] [PubMed]
- Slobodian, P.; Riha, P.; Benlikaya, R.; Svoboda, P.; Petras, D. A Flexible Multifunctional Sensor Based on Carbon Nanotube/Polyurethane Composite. IEEE Sens. J. 2013, 13, 4045–4048. [Google Scholar] [CrossRef]
- Jia, Z.; Li, Z.; Ma, S.; Zhang, W.; Chen, Y.; Luo, Y.; Jia, D.; Zhong, B.; Razal, J.M.; Wang, X.; et al. Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. J. Colloid Interface Sci. 2021, 584, 1–10. [Google Scholar] [CrossRef]
- Chen, X.; Xiang, D.; Li, J.; Zhang, X.; Harkin-Jones, E.; Wu, Y.; Zhao, C.; Li, H.; Li, Z.; Wang, P.; et al. Flexible Strain Sensors with Enhanced Sensing Performance Prepared from Biaxially Stretched Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites. ACS Appl. Electron. Mater. 2022, 4, 3071–3079. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Chang, X.; Xu, Y.; Zhao, G.; Zhu, Y.; Li, Y. A highly stretchable strain sensor with both an ultralow detection limit and an ultrawide sensing range. J. Mater. Chem. A 2021, 9, 1795–1802. [Google Scholar] [CrossRef]
- Li, M.F.F.; Li, H.Y.; Zhong, W.B.; Zhao, Q.H.; Wang, D. Stretchable Conductive Polypyrrole/Polyurethane (PPy/PU) Strain Sensor with Netlike Microcracks for Human Breath Detection. ACS Appl. Mater. Interfaces 2014, 6, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Qu, M.C.; Wu, K.Q.; Schubert, D.W.; Liu, X.H. High sensitive electrospun thermoplastic polyurethane/carbon nanotubes strain sensor fitting by a novel optimization empirical model. Adv. Compos. Hybrid Mater. 2023, 6, 63. [Google Scholar] [CrossRef]
- Kim, Y.; Faseela, K.P.; Yang, S.Y.; Kim, K.; Yu, H.J.; Lim, J.Y.; Do, J.G.; Choi, H.R.; Hwang, J.H.; Baik, S. Excellent reversibility of resistive nanocomposite strain sensor composed of silver nanoflowers, polyurethane, and polyester rubber band. Compos. Sci. Technol. 2022, 221, 109305. [Google Scholar] [CrossRef]
- Yang, K.; Yin, F.; Xia, D.; Peng, H.; Yang, J.; Yuan, W. A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale 2019, 11, 9949–9957. [Google Scholar] [CrossRef]
- Tu, H.; Zhou, M.; Gu, Y.; Gu, Y. Conductive, self-healing, and repeatable graphene/carbon nanotube/polyurethane flexible sensor based on Diels-Alder chemothermal drive. Compos. Sci. Technol. 2022, 225, 109476. [Google Scholar] [CrossRef]
- He, Z.; Zhou, G.; Byun, J.-H.; Lee, S.-K.; Um, M.-K.; Park, B.; Kim, T.; Lee, S.B.; Chou, T.-W. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale 2019, 11, 5884–5890. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, S.; Wang, Y.; Fan, X.; Ding, L.; Xuan, S.; Gong, X. Conductive shear thickening gel/polyurethane sponge: A flexible human motion detection sensor with excellent safeguarding performance. Compos. Part A Appl. Sci. Manuf. 2018, 112, 197–206. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhan, P.; Ren, M.; Zheng, G.; Dai, K.; Mi, L.; Liu, C.; Shen, C. Significant Stretchability Enhancement of a Crack-Based Strain Sensor Combined with High Sensitivity and Superior Durability for Motion Monitoring. ACS Appl. Mater. Interfaces 2019, 11, 7405–7414. [Google Scholar] [CrossRef]
- Wei, X.; Cao, X.; Wang, Y.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Conductive herringbone structure carbon nanotube/thermoplastic polyurethane porous foam tuned by epoxy for high performance flexible piezoresistive sensor. Compos. Sci. Technol. 2017, 149, 166–177. [Google Scholar] [CrossRef]
- Zhu, G.; Li, H.; Peng, M.; Zhao, G.; Chen, J.; Zhu, Y. Highly-stretchable porous thermoplastic polyurethane/carbon nanotubes composites as a multimodal sensor. Carbon 2022, 195, 364–371. [Google Scholar] [CrossRef]
- Zhuang, Y.; Guo, Y.; Li, J.; Jiang, K.; Yu, Y.; Zhang, H.; Liu, D. Preparation and laser sintering of a thermoplastic polyurethane carbon nanotube composite-based pressure sensor. RSC Adv. 2020, 10, 23644–23652. [Google Scholar] [CrossRef]
- Lee, E.; Cho, G. Polyurethane nanoweb-based textile sensors treated with single-walled carbon nanotubes and silver nanowire. Text. Res. J. 2018, 89, 2938–2951. [Google Scholar] [CrossRef]
- Zhuang, Z.; Cheng, N.; Zhang, L.; Liu, L.; Zhao, J.; Yu, H. Wearable strain sensor based on highly conductive carbon nanotube/polyurethane composite fibers. Nanotechnology 2020, 31, 205701. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadeh, I.; Eskandari, M.J.; Daneshmand, H. Polyurethane acrylate/multiwall carbon nanotube composites as temperature and gas sensors: Fabrication, characterization, and simulation. Diam. Relat. Mater. 2022, 130, 109484. [Google Scholar] [CrossRef]
- Cui, X.; Miao, C.; Lu, S.; Liu, X.; Yang, Y.; Sun, J. Strain Sensors Made of MXene, CNTs, and TPU/PSF Asymmetric Structure Films with Large Tensile Recovery and Applied in Human Health Monitoring. ACS Appl. Mater. Interfaces 2023, 15, 59655–59670. [Google Scholar] [CrossRef] [PubMed]
- Sonil, N.I.; Ullah, Z.; Chen, J.; Wang, G.P. Wearable strain sensors for human motion detection and health monitoring based on hybrid graphite-textile flexible electrodes. J. Mater. Res. Technol. 2023, 26, 764–774. [Google Scholar] [CrossRef]
- Yang, G.; Luo, H.; Ding, Y.; Yang, J.; Li, Y.; Ma, C.; Yan, J.; Zhuang, X. Hierarchically Structured Carbon Nanofiber-Enabled Skin-Like Strain Sensors with Full-Range Human Motion Monitoring and Autonomous Self-Healing Capability. ACS Appl. Mater. Interfaces 2023, 15, 7380–7391. [Google Scholar] [CrossRef]
- Song, Z.Q.; Li, W.Y.; Kong, H.J.; Chen, M.Q.; Bao, Y.; Wang, N.; Wang, W.; Liu, Z.B.; Ma, Y.M.; He, Y.; et al. Merkel receptor-inspired integratable and biocompatible pressure sensor with linear and ultrahigh sensitive response for versatile applications. Chem. Eng. J. 2022, 444, 136481. [Google Scholar] [CrossRef]
- Wu, Y.T.; Yan, T.; Zhang, K.Q.; Pan, Z.J. A Hollow Core-Sheath Composite Fiber Based on Polyaniline/Polyurethane: Preparation, Properties, and Multi-Model Strain Sensing Performance. Adv. Mater. Technol. 2023, 8, 2200777. [Google Scholar] [CrossRef]
- Guo, X.H.; Hong, W.Q.; Zhao, Y.N.; Zhu, T.; Liu, L.; Li, H.J.; Wang, Z.W.; Wang, D.D.; Mai, Z.H.; Zhang, T.X. Bioinspired Dual-Mode Stretchable Strain Sensor Based on Magnetic Nanocomposites for Strain/Magnetic Discrimination. Small 2023, 19, e2205316. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Choi, H.; Cho, Y.; Jeong, J.; Sun, J.Z.; Cha, S.; Choi, M.; Bae, J.; Park, J.J. Wearable Strain Sensors with Aligned Macro Carbon Cracks Using a Two-Dimensional Triaxial-Braided Fabric Structure for Monitoring Human Health. ACS Appl. Mater. Interfaces 2021, 13, 22926–22934. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, H.M.; Ma, W.; Qiu, L.; Xia, K.L.; Zhang, Y.; Lu, H.J.; Zhu, M.J.; Liang, X.P.; Wu, X.E. Monitoring blood pressure and cardiac function without positioning via a deep learning-assisted strain sensor array. Sci. Adv. 2023, 9, eadh0615. [Google Scholar] [CrossRef]
- Shen, Z.Q.; Zhang, Z.L.; Zhang, N.B.; Li, J.H.; Zhou, P.W.; Hu, F.Q.; Rong, Y.; Lu, B.Y.; Gu, G.Y. High-Stretchability, Ultralow-Hysteresis Conducting Polymer Hydrogel Strain Sensors for Soft Machines. Adv. Mater. 2022, 34, e2203650. [Google Scholar] [CrossRef]
Materials | Fabrication Method | Range | GF | Reference |
---|---|---|---|---|
Polyaniline/thermoplastic polyurethane-based blended composite fiber | Microfluidic spinning | 0–50% | 160 | [41] |
Multi-walled carbon nanotubes/graphene/silicone rubber/Fe3O4 nanocomposite | Silvered nylon | 0–120% | 8.43 | [42] |
120–160% | 100.56 | |||
Elastic fabrics and carbon black/gelatin/polyurethane composite | Dip coating | 0−5% | 128 | [43] |
5−30% | 39 | |||
Ecoflex/encapsulated carbonized silk | Carbonization process | 0–200% | 8.81 | [44] |
Polyvinyl alcohol/Poly3,4-ethylenedioxythiophene: polystyrene sulfonate hydrogel | 3D printing | 0–300% | 4.07 | [45] |
Silvered nylon and PU/CNTs composite | Warp spinning, wet spinning | 0–60% | 127.74 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, W.; Wang, D.; Ke, Y.; Ming, X.; Jiang, H.; Li, J.; Li, M.; Chen, Q.; Wang, D. Multi-Layer Polyurethane-Fiber-Prepared Entangled Strain Sensor with Tunable Sensitivity and Working Range for Human Motion Detection. Polymers 2024, 16, 1023. https://doi.org/10.3390/polym16081023
Zhong W, Wang D, Ke Y, Ming X, Jiang H, Li J, Li M, Chen Q, Wang D. Multi-Layer Polyurethane-Fiber-Prepared Entangled Strain Sensor with Tunable Sensitivity and Working Range for Human Motion Detection. Polymers. 2024; 16(8):1023. https://doi.org/10.3390/polym16081023
Chicago/Turabian StyleZhong, Weibing, Daiqing Wang, Yiming Ke, Xiaojuan Ming, Haiqing Jiang, Jiale Li, Mufang Li, Qianqian Chen, and Dong Wang. 2024. "Multi-Layer Polyurethane-Fiber-Prepared Entangled Strain Sensor with Tunable Sensitivity and Working Range for Human Motion Detection" Polymers 16, no. 8: 1023. https://doi.org/10.3390/polym16081023
APA StyleZhong, W., Wang, D., Ke, Y., Ming, X., Jiang, H., Li, J., Li, M., Chen, Q., & Wang, D. (2024). Multi-Layer Polyurethane-Fiber-Prepared Entangled Strain Sensor with Tunable Sensitivity and Working Range for Human Motion Detection. Polymers, 16(8), 1023. https://doi.org/10.3390/polym16081023