Evaluation of the Effectiveness of Geogrids Manufactured from Recycled Plastics for Slope Stabilization—A Case Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Evaluation of Specimens
3.1.1. Tensile Test
3.1.2. Flexural Test
3.1.3. Strand Configuration
3.1.4. Welding Evaluation
3.2. Geogrid Prototypes
3.2.1. Design and Evaluation
3.2.2. Simulations of Slope Profile
3.2.3. Simulation of Geogrids
4. Discussion
4.1. Preparation of Evaluation Specimens
4.2. Geogrid Prototypes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gobinath, R.; Ganapathy, G.P.; Gayathiri, E.; Salunkhe, A.A.; Pourghasemi, H.R. Ecoengineering practices for soil degradation protection of vulnerable hill slopes. In Computers in Earth and Environmental Sciences: Artificial Intelligence and Advanced Technologies in Hazards and Risk Management; Elsevier: Amsterdam, The Netherlands, 2021; pp. 255–270. ISBN 9780323898614. [Google Scholar]
- Das, J.T.; Puppala, A.J.; Bheemasetti, T.V.; Walshire, L.A.; Corcoran, M.K. Sustainability and resilience analyses in slope stabilisation. Proc. Inst. Civ. Eng. Eng. Sustain. 2018, 171, 25–36. [Google Scholar] [CrossRef]
- Singh, N.; Hui, D.; Singh, R.; Ahuja, I.P.S.; Feo, L.; Fraternali, F. Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B Eng. 2017, 115, 409–422. [Google Scholar] [CrossRef]
- Kumar, J.S.; Nusari, M.S.; Purushotam, D.; Prasad, A.I.; Rajyaswori, S. Effectiveness of geocell wall, geogrid and micropile anchors for mitigation of unstable slopes. Geoenv. Disasters 2021, 8, 11. [Google Scholar] [CrossRef]
- Li, J.; Hu, D.; Li, L.; Li, C. Research on Application of Lattice Anchor System Design and Construction Monitoring in Slope Protection. Proc. IOP Conf. Ser. Earth Environ. Sci. 2021, 781, 022049. [Google Scholar] [CrossRef]
- Smyvalov, A.; Rodionov, M.; Galitskova, Y. Justification of application of new types of fastening of slopes of hydraulic engineering constructions. Proc. MATEC Web Conf. 2017, 117, 00159. [Google Scholar] [CrossRef]
- Alamshahi, S.; Hataf, N. Bearing capacity of strip footings on sand slopes reinforced with geogrid and grid-anchor. Geotext. Geomembr. 2009, 27, 217–226. [Google Scholar] [CrossRef]
- Niyomukiza, J.B.; Eisazadeh, A.; Tangtermsirikul, S. Recent advances in slope stabilization using porous vegetation concrete in landslide-prone regions: A review. J. Build. Eng. 2023, 76, 107129. [Google Scholar] [CrossRef]
- Han, J.; Guo, J. Geosynthetic-stabilized vegetated earth surfaces for environmental sustainability in civil engineering. In Proceedings of the Innovative Materials and Design for Sustainable Transportation Infrastructure—Selected Papers from the International Symposium on Systematic Approaches to Environmental Sustainability in Transportation, Fairbanks, AL, USA, 2–5 August 2015; American Society of Civil Engineers: Reston, VA, USA, 2015; pp. 276–285. [Google Scholar]
- Borkar, R.; Koranne, S.S. Parametric study on geogrid reinforced retaining wall system. Int. J. Eng. Appl. Sci. Technol. 2019, 4, 332–337. [Google Scholar] [CrossRef]
- Schyns, Z.O.G.; Shaver, M.P. Mechanical Recycling of Packaging Plastics: A Review. Macromol. Rapid Commun. 2021, 42, 2000415. [Google Scholar] [CrossRef]
- Chanda, M. Chemical Aspects of Polymer Recycling. Adv. Ind. Eng. Polym. Res. 2021, 4, 133–150. [Google Scholar] [CrossRef]
- Sulyman, M.; Haponiuk, J.; Formela, K. Utilization of Recycled Polyethylene Terephthalate (PET) in Engineering Materials: A Review. Int. J. Environ. Sci. Dev. 2016, 7, 100–108. [Google Scholar] [CrossRef]
- Perera, S.; Arulrajah, A.; Wong, Y.C.; Horpibulsuk, S.; Maghool, F. Utilizing recycled PET blends with demolition wastes as construction materials. Constr. Build. Mater. 2019, 221, 200–209. [Google Scholar] [CrossRef]
- Raheem, A.B.; Noor, Z.Z.; Hassan, A.; Abd Hamid, M.K.; Samsudin, S.A.; Sabeen, A.H. Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review. J. Clean. Prod. 2019, 225, 1052–1064. [Google Scholar] [CrossRef]
- Khan, M.S.; Hossain, S.; Kibria, G. Slope Stabilization Using Recycled Plastic Pins. J. Perform. Constr. Facil. 2016, 30, 04015054. [Google Scholar] [CrossRef]
- Khan, M.S.; Nobahar, M.; Ivoke, J. Numerical investigation of slope stabilization using recycled plastic pins in yazoo clay. Infrastructures 2021, 6, 47. [Google Scholar] [CrossRef]
- Abukhettala, M.; Fall, M. Geotechnical characterization of plastic waste materials in pavement subgrade applications. Transp. Geotech. 2021, 27, 100472. [Google Scholar] [CrossRef]
- Jia, M.; Zhu, W.; Xu, C. Performance of a 33m high geogrid reinforced soil embankment without concrete panel. Geotext. Geomembr. 2021, 49, 122–129. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kotwal, A.R.; Cho, B.Y.; Wilde, J.; You, B.H. Geosynthetic reinforced steep slopes: Current technology in the United States. Appl. Sci. 2019, 9, 2008. [Google Scholar] [CrossRef]
- Salimi, K.; Ghazavi, M. Soil reinforcement and slope stabilisation using recycled waste plastic sheets. Geomech. Geoengin. 2021, 16, 497–508. [Google Scholar] [CrossRef]
- Bowders, J.J.; Loehr, J.E.; Salim, H.; Chen, C.W. Engineering Properties of Recycled Plastic Pins for Slope Stabilization. Proc. Transp. Res. Rec. 2003, 1849, 39–46. [Google Scholar] [CrossRef]
- Huang, J.; Kogbara, R.B.; Hariharan, N.; Masad, E.A.; Little, D.N. A state-of-the-art review of polymers used in soil stabilization. Constr. Build. Mater. 2021, 305, 124685. [Google Scholar] [CrossRef]
- Khan, M.S.; Hossain, S.; Nobahar, M. Stabilization of the highway slope using recycled plastic pins. Transp. Res. Rec. 2021, 2675, 1331–1344. [Google Scholar] [CrossRef]
- Rahimi, A.R.; Garciá, J.M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 46. [Google Scholar] [CrossRef]
- Adhikary, K.B.; Pang, S.; Staiger, M.P. Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos. Part B Eng. 2008, 39, 807–815. [Google Scholar] [CrossRef]
- Tabassum, T.; Bheemasetti, T.V. Investigative Studies on Recycled High-Density Polyethylene and Polypropylene Pellets for Stabilization of Kaolinite Rich Soils. J. Mater. Civ. Eng. 2022, 34, 04022190. [Google Scholar] [CrossRef]
- Parra, J.R.; Loehr, J.E.; Hagemeyer, D.J.; Bowders, J.J. Field Performance of Embankments Stabilized with Recycled Plastic Reinforcement. Proc. Transp. Res. Rec. 2003, 1849, 31–38. [Google Scholar] [CrossRef]
- Loehr, J.E.; Bowders, J.J.; Owen, J.W.; Sommers, L.; Liew, W. Slope stabilization with recycled plastic pins. Transp. Res. Rec. 2000, 1714, 1–8. [Google Scholar] [CrossRef]
- Ortego, J.D.; Aminabhavi, T.M.; Harlapur, S.F.; Balundgi, R.H. A review of polymeric geosynthetics used in hazardous waste facilities. J. Hazard. Mater. 1995, 42, 115–156. [Google Scholar] [CrossRef]
- Pokharel, S.K.; Han, J.; Leshchinsky, D.; Parsons, R.L.; Halahmi, I. Investigation of factors influencing behavior of single geocell-reinforced bases under static loading. Geotext. Geomembr. 2010, 28, 570–578. [Google Scholar] [CrossRef]
- Solovyev, G.V.; Vatchnadze, K.I. Improving of Performance Characteristics during Mechanical Stabilization of Quarry Haul Roads with Stiff Polymeric Tensar Triax Hexagonal Geogrid. Proc. Procedia Eng. 2017, 189, 666–672. [Google Scholar] [CrossRef]
- Al-Barqawi, M.; Aqel, R.; Wayne, M.; Titi, H.; Elhajjar, R. Polymer geogrids: A review of material, design and structure relationships. Materials 2021, 14, 4745. [Google Scholar] [CrossRef]
- Liu, C.; Indraratna, B.; Rujikiatkamjorn, C. An analytical model for particle-geogrid aperture interaction. Geotext. Geomembr. 2021, 49, 41–44. [Google Scholar] [CrossRef]
- Zhang, J.; Hirschberg, V.; Rodrigue, D. Blending Recycled High-Density Polyethylene HDPE (rHDPE) with Virgin (vHDPE) as an Effective Approach to Improve the Mechanical Properties. Recycling 2023, 8, 2. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Maniadi, A. Sustainable additive manufacturing: Mechanical response of high-density polyethylene over multiple recycling processes. Recycling 2021, 6, 4. [Google Scholar] [CrossRef]
- Zheng, C.; Liu, J.; Fan, J.; Luan, Y.; Song, L. Research on deformation behavior of isotactic polypropylene in uniaxial geogrid manufacture. Mater. Des. 2016, 91, 1–10. [Google Scholar] [CrossRef]
- Al-Mulla, A.; Shaban, H. Study on compatibility of recycled polypropylene/high-density polyethylene blends using rheology. Polym. Bull. 2014, 71, 2335–2352. [Google Scholar] [CrossRef]
- Payne, J.; Jones, M.D. The Chemical Recycling of Polyesters for a Circular Plastics Economy: Challenges and Emerging Opportunities. ChemSusChem 2021, 14, 4041–4070. [Google Scholar] [CrossRef]
- Zhang, J.R.; Xia, L.; Lu, Z.A. Material properties and tensile behaviors of polypropylene geogrid and geonet for reinforcement of soil structures. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2002, 17, 83–86. [Google Scholar] [CrossRef]
- Yoo, H.; Jeon, H.Y.; Chang, Y.C. Evaluation of Engineering Properties of Geogrids for Soil Retaining Walls. Text. Res. J. 2010, 80, 184–192. [Google Scholar] [CrossRef]
- Dixon, J.H.; Hall, C. Briefing: New geogrid technology for ground stabilisation. Proc. Inst. Civ. Eng. Eng. Sustain. 2010, 163, 65–67. [Google Scholar] [CrossRef]
- Liu, B. Research on the Long-term Tensile Strength of Geogrid in Reinforced Soil Structure. Proc. IOP Conf. Ser. Earth Environ. Sci. 2019, 310, 022068. [Google Scholar] [CrossRef]
- Kaur, M.; Aggarwal, S.K. Weak sub-grade soil reinforced with Geogrid material—A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 955, 012108. [Google Scholar] [CrossRef]
- Lavoie, F.L.; Kobelnik, M.; Valentin, C.A.; da Silva, J.L. Durability of hdpe geomembranes: An overview. Quim. Nova 2020, 43, 656–667. [Google Scholar] [CrossRef]
- Zuo, Z.; Yang, G.; Wang, H.; Wang, Z. Experimental Investigations on Pullout Behavior of HDPE Geogrid under Static and Dynamic Loading. Adv. Mater. Sci. Eng. 2020, 2020, 5408064. [Google Scholar] [CrossRef]
- Cislaghi, A.; Sala, P.; Borgonovo, G.; Gandolfi, C.; Bischetti, G.B. Towards more sustainable materials for geo-environmental engineering: The case of geogrids. Sustainability 2021, 13, 2585. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, H.; Yang, J.; Qiu, C.; Javadi, A.A. Experimental study of a 3D printed geogrid embedded with FBG sensor for reinforcement of subgrade with underlying cave. Geotext. Geomembr. 2023, 51, 81–92. [Google Scholar] [CrossRef]
- Stathas, D.; Wang, J.P.; Ling, H.I. Model geogrids and 3D printing. Geotext. Geomembr. 2017, 45, 688–696. [Google Scholar] [CrossRef]
- Chan, K.; Zinchenko, A. Design and synthesis of functional materials by chemical recycling of waste polyethylene terephthalate (PET) plastic: Opportunities and challenges. J. Clean. Prod. 2023, 433, 139828. [Google Scholar] [CrossRef]
- Benyathiar, P.; Kumar, P.; Carpenter, G.; Brace, J.; Mishra, D.K. Polyethylene Terephthalate (PET) Bottle-to-Bottle Recycling for the Beverage Industry: A Review. Polymers 2022, 14, 2366. [Google Scholar] [CrossRef]
- Leissner, S.; Ryan-Fogarty, Y. Challenges and opportunities for reduction of single use plastics in healthcare: A case study of single use infant formula bottles in two Irish maternity hospitals. Resour. Conserv. Recycl. 2019, 151, 104462. [Google Scholar] [CrossRef]
- ASTM D638-03; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2003.
- ASTM 790; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2003.
- Rochman, T.; Sumardi; Susilo, S.H.; Wardhana, H.A. Vinyl-ester-based polymer concrete incorporating high volume fly ash under tensile, compressive, and flexural loads. J. King Saud Univ.-Eng. Sci. 2023, in press. [Google Scholar] [CrossRef]
- Abdul Nasir, A.A.; Azmi, A.I.; Lih, T.C.; Abdul Majid, M.S. Critical thrust force and critical feed rate in drilling flax fibre composites: A comparative study of various thrust force models. Compos. Part B Eng. 2019, 165, 222–232. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Solórzano, J.; Morante-Carballo, F.; Chávez, M.; Montalván-Burbano, N.; Briones-Bitar, J. Technical Closure of the Humberto Molina Astudillo Hospital and Its Implications for Sustainability, Zaruma-Ecuador. Int. J. Sustain. Dev. Plan. 2022, 17, 363–373. [Google Scholar] [CrossRef]
- Toderaș, M.; Florea, V.A.; Itu, R.B. Stability Analysis of the Tailings Dam for the Purpose of Closing, Greening, and Ensuring Its Safety—Study Case. Sustainability 2023, 15, 7606. [Google Scholar] [CrossRef]
- Moawwez, M.A.; Wang, J.P.; Hussain, M.A. Development of empirical correlations for limit equilibrium methods of slope stability analysis. Arab. J. Geosci. 2021, 14, 2020. [Google Scholar] [CrossRef]
- Koerner, G.R.; Loux, T.; Filshill, A.; Schuller, J. Geosynthetic damage due to installation stresses in ultra-light weight foamed glass aggregate versus conventional aggregate. In Geosynthetics: Leading the Way to a Resilient Planet; CRC Press: Boca Raton, FL, USA, 2023; pp. 213–218. ISBN 9781003386889. [Google Scholar]
- Dagnino, S.J. Regresión Lineal. Rev. Chil. Anest. 2014, 43, 143–149. [Google Scholar] [CrossRef]
- Noor Hasanah, T.I.T.; Wijeyesekera, D.C.; Lim, A.J.M.S.; Ismail, B. Recycled PP/HDPE blends: A thermal degradation and mechanical properties study. Proc. Appl. Mech. Mater 2014, 465–466, 932–936. [Google Scholar] [CrossRef]
- Hassan Awad, A.; El Gamasy, R.; Abd El Wahab, A.; Hazem Abdellatif, M. Mechanical and Physical Properties of PP and HDPE. Eng. Sci. 2019, 4, 34. [Google Scholar] [CrossRef]
- Lin, J.H.; Pan, Y.J.; Liu, C.F.; Huang, C.L.; Hsieh, C.T.; Chen, C.K.; Lin, Z.I.; Lou, C.W. Preparation and compatibility evaluation of polypropylene/high density polyethylene polyblends. Materials 2015, 8, 8850–8859. [Google Scholar] [CrossRef]
- Mustafa, R.; Samui, P.; Kumari, S. Seismic Performance of Gravity Retaining Walls Under Quasi-static Approach Using Probabilistic Analysis. Transp. Infrastruct. Geotechnol. 2023, 11, 612–649. [Google Scholar] [CrossRef]
- NEC-SE-GC Norma Ecuatoriana de la Construcción; Geotecnia y cimentaciones: Ministerio de Desarrollo Urbano y Vivienda: Ecuador. 2014. Available online: https://www.habitatyvivienda.gob.ec/wp-content/uploads/2023/03/7.-NEC-SE-GC-Geotecnia-y-Cimentaciones.pdf (accessed on 29 February 2024).
- Johari, A.; Mousavi, S. An analytical probabilistic analysis of slopes based on limit equilibrium methods. Bull. Eng. Geol. Environ. 2019, 78, 4333–4347. [Google Scholar] [CrossRef]
- Murat, B.I.S.; Kamalruzaman, M.S.; Azman, M.H.N.; Misroh, M.F. Assessment of Mechanical Properties of Recycled HDPE and LDPE Plastic Wastes. IOP Conf. Ser. Mater. Sci. Eng. 2020, 957, 012046. [Google Scholar] [CrossRef]
- Malyuta, D.A.; Matteson, K.L.; Ryan, C.; Berry, M.P.; Bajwa, D. An Investigation into the Tensile Properties of Recycled High-Density Polyethylene (Rhdpe) Blended with Talc Filler. Results Mater. 2023, 17, 100377. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Wen, G.; Xie, Y.M. The robust fail-safe topological designs based on the von Mises stress. Finite Elem. Anal. Des. 2020, 171, 103376. [Google Scholar] [CrossRef]
- Zou, C.; Wang, Y.; Lin, J.; Chen, Y. Creep behaviors and constitutive model for high density polyethylene geogrid and its application to reinforced soil retaining wall on soft soil foundation. Constr. Build. Mater. 2016, 114, 763–771. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, C.; Wen, X.; Lü, R.; Liang, X.; Lu, S. Development and properties of glass fiber reinforced plastics geogrid. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2015, 30, 520–527. [Google Scholar] [CrossRef]
- Ezzein, F.M.; Bathurst, R.J.; Kongkitkul, W. Nonlinear load-strain modeling of polypropylene geogrids during constant rate-of-strain loading. Polym. Eng. Sci. 2015, 55, 1617–1627. [Google Scholar] [CrossRef]
Test Specimen Code (PP/HDPE) | Tensile Modulus (MPa) | Tensile Strength (MPa) | Maximum Deformation (%) |
---|---|---|---|
T1 (0/100) | 1020 ± 21 | 22.46 ± 0.77 | 7.32 ± 0.57 |
T2 (25/75) | 982 ± 45 | 14.48 ± 0.90 | 2.37 ± 0.28 |
T3 (50/50) | 1040 ± 64 | 12.05 ± 1.04 | 1.49 ± 0.26 |
T4 (75/25) | 1127 ± 51 | 12.82 ± 0.23 | 1.58 ± 0.14 |
T5 (100/0) | 1499 ± 26 | 22.97 ± 0.63 | 2.98 ± 0.28 |
Test Specimen Code (PP/HDPE) | Flexural Modulus (MPa) | Flexural Strength (MPa) | Maximum Deformation (%) |
---|---|---|---|
T1 (0/100) | 595.13 ± 54.25 | 24.63 ± 1.07 | 7.95 ± 0.35 |
T2 (25/75) | 718.31 ± 27.72 | 24.66 ± 1.04 | 6.19 ± 0.55 |
T3 (50/50) | 941.40 ± 32.67 | 24.86 ± 1.13 | 4.74 ± 0.38 |
T4 (75/25) | 1095.15 ± 45.25 | 25.80 ± 2.37 | 4.13 ± 1.00 |
T5 (100/0) | 1583.79 ± 81.19 | 41.76 ± 1.81 | 5.30 ± 0.47 |
Configuration | Elastic Module (N) | Maximum Tension (MPa) | Maximum Deformation (mm) |
---|---|---|---|
Triple braid | 360.96 ± 28.28 | 19.67 ± 1.68 | 15.83 ± 4.93 |
Quad braid | 524.12 ± 39.66 | 22.04 ± 0.97 | 14.89 ± 1.33 |
Filament of 2 mm | 903.64 ± 48.34 | 26.11 ± 0.63 | 8.85 ± 0.88 |
Filament of 3 mm | 595.31 ± 74.98 | 23.25 ± 1.23 | 8.12 ± 0.94 |
Configuration | Elastic Limit in Strength (N) | Maximum Tension (MPa) | Maximum Deformation (mm) |
---|---|---|---|
Sheet of 1.2 mm | 105.33 ± 2.55 | 18.16 ± 0.35 | 26.03 ± 0.58 |
Sheet of 1.3 mm | 98.46 ± 2.08 | 21.77 ± 0.65 | 21.60 ± 0.78 |
Type of Welding | Temperature (°C) | Time (s) | Maximum Stress (MPa) | Maximum Force (N) | Maximum Displacement (mm) |
---|---|---|---|---|---|
Type 1 | 320 | 40 | 14.94 | 165.08 | 2.67 |
Type 2 | 60 | 19.30 | 213.23 | 6.12 | |
Type 3 | 80 | 17.24 | 190.52 | 4.69 | |
Type 4 and 5 | 350 | 25 | 18.09 | 199.98 | 4.47 |
Type 6 | 15 | 9.62 | 106.35 | 1.54 | |
Type 7 | 330 | 30 | 8.35 | 92.26 | 2.08 |
Type 8 | 20 | 8.40 | 92.86 | 3.11 | |
Type 9 | 15 | 17.75 | 196.11 | 3.84 | |
Type 10 | 360 | 15 | 7.58 | 83.79 | 1.62 |
Type 11 | 20 | 12.69 | 140.18 | 3.95 | |
Type 12 | 19 | 21.37 | 236.16 | 6.14 |
Geogrid Prototyping | Elastic Limit Strength (N) | Maximum Strength (N) | Maximum Displacement (mm) |
---|---|---|---|
Rhombohedral | 139.83 ± 4.35 | 404.84 ± 88.52 | 45.74 ± 9.53 |
Trigonal | 188.62 ± 17.57 | 620.21 ± 159.44 | 59.57 ± 14.03 |
Stratum | Cohesion (Kg/cm2) | Undrained Cohesion (Kg/cm2) | Shear Resistance angle (°) | Specific Weight (Kg/m3) | Saturated Weight (Kg/m3) | Lithology |
---|---|---|---|---|---|---|
1 | 0.33 | N/A | 23 | 1202 | 1649 | Silty clay |
Elastic Limit in Tension (MPa) | Tensile Limit (MPa) | Elastic Module (MPa) | Density (g/cm3) |
---|---|---|---|
12.51 | 22.46 | 1020.24 | 0.94 |
Material | Rhombohedral | Trigonal | ||
---|---|---|---|---|
UTM | SolidWorks | UTM | SolidWorks | |
Elastic Limit in Strong (N) | 139.83 ± 4.35 | 104 | 188.62 ± 15.71 | 210 |
Error (%) | 26% | 10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vicuña, L.; Jaramillo-Fierro, X.; Cuenca, P.E.; Godoy-Paucar, B.; Inga-Lafebre, J.D.; Chavez Torres, J.L.; García, J.F.; Guaya, D.; Febres, J.D. Evaluation of the Effectiveness of Geogrids Manufactured from Recycled Plastics for Slope Stabilization—A Case Study. Polymers 2024, 16, 1151. https://doi.org/10.3390/polym16081151
Vicuña L, Jaramillo-Fierro X, Cuenca PE, Godoy-Paucar B, Inga-Lafebre JD, Chavez Torres JL, García JF, Guaya D, Febres JD. Evaluation of the Effectiveness of Geogrids Manufactured from Recycled Plastics for Slope Stabilization—A Case Study. Polymers. 2024; 16(8):1151. https://doi.org/10.3390/polym16081151
Chicago/Turabian StyleVicuña, Lenin, Ximena Jaramillo-Fierro, Paúl Eduardo Cuenca, Brenda Godoy-Paucar, Jorge Daniel Inga-Lafebre, Jose Luis Chavez Torres, Juan Fernando García, Diana Guaya, and Juan Diego Febres. 2024. "Evaluation of the Effectiveness of Geogrids Manufactured from Recycled Plastics for Slope Stabilization—A Case Study" Polymers 16, no. 8: 1151. https://doi.org/10.3390/polym16081151
APA StyleVicuña, L., Jaramillo-Fierro, X., Cuenca, P. E., Godoy-Paucar, B., Inga-Lafebre, J. D., Chavez Torres, J. L., García, J. F., Guaya, D., & Febres, J. D. (2024). Evaluation of the Effectiveness of Geogrids Manufactured from Recycled Plastics for Slope Stabilization—A Case Study. Polymers, 16(8), 1151. https://doi.org/10.3390/polym16081151