NIR-Mediated Deformation from a CNT-Based Bilayer Hydrogel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Modification of CNTs
2.3. Preparation of the Hydrogel
2.4. Fabrication of the Bilayer Hydrogel
2.5. Characterisation of Hydrogels
2.5.1. Fourier Transform Infrared Spectrometry
2.5.2. Raman Spectrometry
2.5.3. Field-Emission Scanning Electron Microscopy
2.5.4. Tensile Measurements
2.5.5. X-ray Photoelectron Spectrometry
2.5.6. Equilibrium Swelling Ratio
2.5.7. Photothermal Conversion
2.5.8. Three-Point Bending Test
3. Results and Discussion
3.1. Characterisation of the Microstructure (Infrared Spectrum, Raman Spectrum, X-ray Photoelectron Spectroscopy and SEM)
3.2. Tensile and Swelling Properties
3.3. Photothermal Conversion Test
3.4. Bending and Complex Deformation of Hydrogels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Willner, I. Stimuli-controlled hydrogels and their applications. Acc. Chem. Res. 2017, 50, 657–658. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xuan, C.; Qian, X.; Alsaid, Y.; Hua, M.; Jin, L.; He, X. Soft phototactic swimmer based on self-sustained hydrogel oscillator. Sci. Robot. 2019, 4, eaax7112. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Cheng, X.; Ma, Z.; Sijbesma, R.P.; Ma, Z. Polymer mechanochromism from force-tuned excited-state intramolecular proton Transfer. J. Am. Chem. Soc. 2022, 144, 9971–9979. [Google Scholar] [CrossRef] [PubMed]
- Swift, T.; Swanson, L.; Geoghegan, M.; Rimmer, S. The pH-responsive behaviour of poly(acrylic acid) in aqueous solution is dependent on molar mass. Soft Matter 2016, 12, 2542–2549. [Google Scholar] [CrossRef] [PubMed]
- Montero de Espinosa, L.; Meesorn, W.; Moatsou, D.; Weder, C. Bioinspired polymer systems with stimuli-responsive mechanical properties. Chem. Rev. 2017, 117, 12851–12892. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, K.; Bai, B.; Hu, N.; Wang, H. Swelling and glyphosate-controlled release behavior of multi-responsive alginate-g-P(NIPAm-co-NDEAm)-based hydrogel. Carbohydr. Polym. 2022, 182, 119113. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.L.; Hwang, Y.; Kar, M.; Varghese, S. Smart hydrogels as functional biomimetic systems. Biomater. Sci. 2014, 2, 603–618. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Q. Stimuli-directing self-organized 3D liquid-crystalline nanostructures: From materials design to photonic applications. Adv. Funct. Mater. 2016, 26, 10–28. [Google Scholar] [CrossRef]
- Leistner, A.–L.; Kistner, D.G.; Fengler, C.; Pianowski, Z.L. Reversible photodissipation of composite photochromic azobenzene-alginate supramolecular hydrogels. RSC Adv. 2022, 12, 4771–4776. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Le, X.; Tang, X.; He, J.; Xiao, P.; Zheng, J.; Xiao, H.; Lu, W.; Zhang, J.; Huang, Y.; et al. A multiresponsive anisotropic hydrogel with macroscopic 3D complex deformations. Adv. Funct. Mater. 2016, 26, 8670–8676. [Google Scholar] [CrossRef]
- Goodrich, R.; Tai, Y.; Ye, Z.; Yin, Y.; Nam, J. Magneto-Responsive Hydrogel System for the Dynamic Mechano-Modulation of Stem Cell Niche. Adv. Mater. 2023, 33, 2211288. [Google Scholar]
- Shu, Z.; Cao, Q.; Muhammad, U.; Zhang, T.; Ji, W.; Chen, J.; Liu, C.; Wei, Y. Fabrication of high-strength magnetically responsive hydrogels by synergistic salting-out and freezing–thawing and application of their shape deformation and swimming. Polym. Eng. Sci. 2023, 63, 1567–1578. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, Z.; Zhang, J.; Chen, C.; Lei, Z.; Li, L.; Feng, Z.; Su, X. pH-Responsive polyethyleneimine hydrogel based on dynamic covalent bonds. J. Polym. Res. 2023, 30, 96. [Google Scholar] [CrossRef]
- Xiao, S.; Yang, Y.; Zhong, M.; Chen, H.; Zhang, Y.; Yang, J.; Zheng, J. Salt-responsive bilayer hydrogels with pseudo-double-network structure actuated by polyelectrolyte and antipolyelectrolyte effects. ACS Appl. Mater. Interfaces 2017, 9, 20843–20851. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Lu, W.; Yang, X.; He, J.; Le, X.; Wang, L.; Zhang, J.; Serpe, M.J.; Huang, Y.; Chen, T. Bioinspired anisotropic hydrogel actuators with on-off switchable and color-tunable fluorescence behaviors. Adv. Funct. Mater. 2018, 28, 1704568. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, F.; Wang, J.; Yu, Z.; Ge, J.; Lu, Y.; Wang, Z.; Yu, S. Highly stimuli-responsive au nanorods/poly(N-isopropylacrylamide) (PNIPAM) composite hydrogel for smart switch. ACS Appl. Mater. Interfaces 2017, 9, 24857–24863. [Google Scholar] [CrossRef] [PubMed]
- Mirvakili, S.M.; Hunter, I.W. Artificial muscles: Mechanisms, applications, and challenges. Adv. Mater. 2018, 30, 1704407. [Google Scholar] [CrossRef] [PubMed]
- Oveissi, F.; Fletcher, D.F.; Dehghani, F.; Naficy, S. Tough hydrogels for soft artificial muscles. Mater. Des. 2021, 203, 109609. [Google Scholar] [CrossRef]
- Park, C.S.; Kang, Y.-W.; Na, H.; Sun, J.-Y. Hydrogels for bioinspired soft robots. Prog. Polym. Sci. 2024, 150, 101791. [Google Scholar] [CrossRef]
- Han, Y.; Bai, T.; Liu, W. Controlled heterogeneous stem cell differentiation on a shape memory hydrogel surface. Sci. Rep. 2014, 4, 5815. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Le, X.; Zhang, J.; Chen, T.; Theato, P. Trends in polymeric shape memory hydrogels and hydrogel actuators. Polym. Chem. 2019, 10, 1036–1055. [Google Scholar] [CrossRef]
- Wang, L.; Jian, Y.; Le, X.; Lu, W.; Ma, C.; Zhang, J.; Huang, Y.; Huang, C.-F.; Chen, T. Actuating and memorizing bilayer hydrogels for a self-deformed shape memory function. Chem. Commun. 2018, 54, 1229–1232. [Google Scholar] [CrossRef] [PubMed]
- Stoychev, G.; Zakharchenko, S.; Turcaud, S.; Dunlop, J.W.C.; Ionov, L. Shape-programmed folding of stimuli-responsive polymer bilayers. ACS Nano 2012, 6, 3925–3934. [Google Scholar] [CrossRef] [PubMed]
- Din, M.I.; Khalid, R.; Akbar, F.; Ahmad, G.; Najeeb, J.; Hussain, Z.U.N. Recent progress of poly(N-isopropylacrylamide) hybrid hydrogels: Synthesis, fundamentals and applications-review. Soft Matter 2018, 16, 228–247. [Google Scholar] [CrossRef]
- Thérien-Aubin, H.; Wu, Z.L.; Nie, Z.; Kumacheva, E. Multiple shape transformations of composite hydrogel sheets. J. Am. Chem. Soc. 2013, 135, 4834–4839. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, H.S.; Yoon, J. Highly bendable bilayer-type photo-actuators comprising of reduced graphene oxide dispersed in hydrogels. Sci. Rep. 2016, 6, 20921. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, H.; Lee, E.; Jin, K.S.; Yoon, J. Programmable volume phase transition of hydrogels achieved by large thermal hysteresis for static-motion bilayer actuators. Chem. Mater. 2016, 28, 8807–8814. [Google Scholar] [CrossRef]
- Long, S.; Huang, J.; Xiong, J.; Liu, C.; Chen, F.; Shen, J.; Huang, Y.; Li, X. Designing MultistimuliResponsive Anisotropic Bilayer Hydrogel Actuators by Integrating LCST Phase Transition and Photochromic Isomerization. Polymers 2023, 15, 786. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Kurokawa, T.; Nakajima, T.; Sun, T.L.; Suekama, T.; Wu, Z.L.; Liang, S.L.; Gong, J.P. High Fracture Efficiency and Stress Concentration Phenomenon for Microgel-Reinforced Hydrogels Based on Double-Network Principle. Macromolecules 2012, 45, 9445–9451. [Google Scholar] [CrossRef]
- Hu, J.; Kurokawa, T.; Nakajima, T.; Wu, Z.L.; Liang, S.L.; Gong, J.P. Fracture Process of Microgel-Reinforced Hydrogels under Uniaxial Tension. Macromolecules 2014, 47, 3587–3594. [Google Scholar] [CrossRef]
- Roper, D.K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636–3641. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, X.; Ma, Z.; Mu, C.; Li, W. Photochromic and photothermal hydrogels derived from natural amino acids and heteropoly acids. Soft Matter 2021, 17, 10140. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Le, X.; Jian, Y.; Lu, W.; Yang, Z.; Zheng, Z.; Théato, P.; Zhang, J.; Zhang, A.; Chen, T. pH and Thermo Dual-Responsive Fluorescent Hydrogel Actuator. Macromol. Rapid Commun. 2018, 40, 1800648. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Valenzuela, C.; Ma, S.; Zhang, X.; Ma, J.; Chen, Y.; Xu, X.; Ling, W. Highly Conductive MXene/PEDOT:PSS-Integrated Poly(N-Isopropylacrylamide) Hydrogels for Bioinspired Somatosensory Soft Actuators. Adv. Funct. Mater. 2023, 33, 2214867. [Google Scholar] [CrossRef]
- Shang, H.; Le, X.; Si, M.; Wu, S.; Peng, Y.; Shan, F.; Wu, S.; Chen, T. Biomimetic Organohydrogel Actuator with High Response Speed and Synergistic Fluorescent Variation. Chem. Eng. J. 2022, 429, 132290. [Google Scholar] [CrossRef]
- Li, C.; Xue, Y.; Han, M.; Palmer, L.C.; Rogers, J.A.; Huang, Y.; Stupp, S.I. Synergistic Photoactuation of Bilayered Spiropyran Hydrogels for Predictable Origami-like Shape Change. Matter 2021, 4, 1377–1390. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, D.; Xu, H.; Yang, Y.; Wang, X.; Tian, F.; Xu, P.; An, W.; Zhao, X.; Xu, S. Rapid Recovery Hydrogel Actuators in Air with Bionic Large-Ranged Gradient Structure. ACS Appl. Mater. Interfaces 2018, 10, 40125–40131. [Google Scholar] [CrossRef] [PubMed]
- Visentin, F.; Murali, P.; Meder, F.; Mazzolai, B. Selective Stiffening in Soft Actuators by Triggered Phase Transition of Hydrogel-Filled Elastomers. Adv. Funct. Mater. 2021, 31, 2101121. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, Y.; Lv, F.; Liu, L.; Gu, Q.; Wang, S. Biomimetic 4D-Printed Breathing Hydrogel Actuators by Nanothylakoid and Thermoresponsive Polymer Networks. Adv. Funct. Mater. 2021, 31, 2105544. [Google Scholar] [CrossRef]
Sample | σ (kPa) | ε (%) | W (kJ m−3) | E (kPa) |
---|---|---|---|---|
Without CNTs and PNaAMPS | 45 ± 9 | 224 ± 29 | 65 ± 27 | 40 ± 9 |
Without CNTs | 236 ± 16 | 324 ± 18 | 396 ± 39 | 47 ± 3 |
0.05 wt% CNTs | 282 ± 11 | 405 ± 13 | 644 ± 21 | 77 ± 11 |
0.10 wt% CNTs | 309 ± 19 | 357 ± 11 | 576 ± 14 | 73 ± 10 |
0.15 wt% CNTs | 312 ± 20 | 335 ± 26 | 507 ± 25 | 79 ± 12 |
0.20 wt% CNTs | 195 ± 7 | 310 ± 20 | 361 ± 37 | 69 ± 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, S.; Liu, C.; Ren, H.; Hu, Y.; Chen, C.; Huang, Y.; Li, X. NIR-Mediated Deformation from a CNT-Based Bilayer Hydrogel. Polymers 2024, 16, 1152. https://doi.org/10.3390/polym16081152
Long S, Liu C, Ren H, Hu Y, Chen C, Huang Y, Li X. NIR-Mediated Deformation from a CNT-Based Bilayer Hydrogel. Polymers. 2024; 16(8):1152. https://doi.org/10.3390/polym16081152
Chicago/Turabian StyleLong, Shijun, Chang Liu, Han Ren, Yali Hu, Chao Chen, Yiwan Huang, and Xuefeng Li. 2024. "NIR-Mediated Deformation from a CNT-Based Bilayer Hydrogel" Polymers 16, no. 8: 1152. https://doi.org/10.3390/polym16081152
APA StyleLong, S., Liu, C., Ren, H., Hu, Y., Chen, C., Huang, Y., & Li, X. (2024). NIR-Mediated Deformation from a CNT-Based Bilayer Hydrogel. Polymers, 16(8), 1152. https://doi.org/10.3390/polym16081152