High-Temperature Polylactic Acid Proves Reliable and Safe for Manufacturing 3D-Printed Patient-Specific Instruments in Pediatric Orthopedics—Results from over 80 Personalized Devices Employed in 47 Surgeries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Design Method
2.3. Fabrication Methods
2.4. Sterilization Process
2.5. Data Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tack, P.; Victor, J.; Gemmel, P.; Annemans, L. 3D-Printing Techniques in a Medical Setting: A Systematic Literature Review. Biomed. Eng. Online 2016, 15, 115. [Google Scholar] [CrossRef]
- Yang, S.; Lin, H.; Luo, C. Meta-Analysis of 3D Printing Applications in Traumatic Fractures. Front. Surg. 2021, 8, 696391. [Google Scholar] [CrossRef]
- Yammine, K.; Karbala, J.; Maalouf, A.; Daher, J.; Assi, C. Clinical Outcomes of the Use of 3D Printing Models in Fracture Management: A Meta-Analysis of Randomized Studies. Eur. J. Trauma Emerg. Surg. 2022, 48, 3479–3491. [Google Scholar] [CrossRef]
- Papotto, G.; Testa, G.; Mobilia, G.; Perez, S.; Dimartino, S.; Giardina, S.M.C.; Sessa, G.; Pavone, V. Use of 3D Printing and Pre-Contouring Plate in the Surgical Planning of Acetabular Fractures: A Systematic Review. Orthop. Traumatol. Surg. Res. 2022, 108, 103111. [Google Scholar] [CrossRef]
- Hecker, A.; Tax, L.; Giese, B.; Schellnegger, M.; Pignet, A.L.; Reinbacher, P.; Watzinger, N.; Kamolz, L.P.; Lumenta, D.B. Clinical Applications of Three-Dimensional Printing in Upper Extremity Surgery: A Systematic Review. J. Pers. Med. 2023, 13, 294. [Google Scholar] [CrossRef]
- Raza, M.; Murphy, D.; Gelfer, Y. The Effect of Three-Dimensional (3D) Printing on Quantitative and Qualitative Outcomes in Paediatric Orthopaedic Osteotomies: A Systematic Review. EFORT Open Rev. 2021, 6, 130. [Google Scholar] [CrossRef]
- Aguado-Maestro, I.; Simón-Pérez, C.; García-Alonso, M.; Ailagas-De Las Heras, J.J.; Paredes-Herrero, E. Clinical Applications of “In-Hospital” 3D Printing in Hip Surgery: A Systematic Narrative Review. J. Clin. Med. 2024, 13, 599. [Google Scholar] [CrossRef]
- Meyer-Szary, J.; Luis, M.; Mikulski, S.; Patel, A.; Schulz, F.; Tretiakow, D.; Fercho, J.; Jaguszewska, K.; Frankiewicz, M.; Pawłowska, E.; et al. The Role of 3D Printing in Planning ComplexMedical Procedures and Training of Medical Professionals—Cross-Sectional Multispecialty Review. Int. J. Environ. Res. Public Health 2022, 19, 3331. [Google Scholar] [CrossRef]
- Garnica-Bohórquez, I.; Güiza-Argüello, V.R.; López-Gualdrón, C.I. Effect of Sterilization on the Dimensional and Mechanical Behavior of Polylactic Acid Pieces Produced by Fused Deposition Modeling. Polymers 2023, 15, 3317. [Google Scholar] [CrossRef]
- Pérez Davila, S.; González Rodríguez, L.; Chiussi, S.; Serra, J.; González, P. How to Sterilize Polylactic Acid Based Medical Devices? Polymers 2021, 13, 2115. [Google Scholar] [CrossRef]
- Kudelski, R.; Cieslik, J.; Kulpa, M.; Dudek, P.; Zagorski, K.; Rumin, R. Comparison of Cost, Material and Time Usage in FDM and SLS 3D Printing Methods. In Proceedings of the 2017 13th International Conference Perspective Technologies and Methods in MEMS Design, MEMSTECH 2017—Proceedings, Lviv, Ukraine, 20–23 April 2017; pp. 12–14. [Google Scholar] [CrossRef]
- Prabhakar, M.M.; Saravanan, A.K.; Lenin, A.H.; Leno, I.J.; Mayandi, K.; Ramalingam, P.S. A Short Review on 3D Printing Methods, Process Parameters and Materials. Mater. Today Proc. 2021, 45, 6108–6114. [Google Scholar] [CrossRef]
- Syrlybayev, D.; Zharylkassyn, B.; Seisekulova, A.; Perveen, A.; Talamona, D.; Bruno, C.; Fernandes, P.; Faroughi, A.; Ferrás, L.L.; Afonso, A.M. Optimization of the Warpage of Fused Deposition Modeling Parts Using Finite Element Method. Polymers 2021, 13, 3849. [Google Scholar] [CrossRef]
- Hanon, M.M.; Marczis, R.; Zsidai, L. Anisotropy Evaluation of Different Raster Directions, Spatial Orientations, and Fill Percentage of 3d Printed Petg Tensile Test Specimens. Key Eng. Mater. 2019, 821, 167–173. [Google Scholar] [CrossRef]
- Moreau, A.; Rony, L.; Robelet, A.; Laubacher, H.; Lebelle-Dehaut, A.V. In Vitro Comparative Study of Deformation of 3D-Printed Models Using Different Polylactic Acids Treated by Steam Sterilization. Orthop. Traumatol. Surg. Res. 2024, in press. [CrossRef]
- Meagher, M.; Tamburro, J.; Boyle, N.R. A Custom 3D Printed Paddlewheel Improves Growth in Flat Panel Photobioreactor. Biotechnol. Prog. 2024, e3430. [Google Scholar] [CrossRef]
- A Closer Look at 3D Printing Materials: Plastics—3Dnatives. Available online: https://www.3dnatives.com/en/plastics-used-3d-printing110420174/ (accessed on 29 March 2024).
- Ferràs-Tarragó, J.; Sabalza-Baztán, O.; Sahuquillo-Arce, J.M.; Angulo-Sánchez, M.Á.; Amaya-Valero, J.; De-La-Calva Ceinos, C.; Baixauli-García, F. Security of 3D-Printed Polylactide Acid Piece Sterilization in the Operating Room: A Sterility Test. Eur. J. Trauma Emerg. Surg. 2022, 48, 3895–3900. [Google Scholar] [CrossRef]
- Trisolino, G.; Depaoli, A.; Menozzi, G.C.; Lerma, L.; Di Gennaro, M.; Quinto, C.; Vivarelli, L.; Dallari, D.; Rocca, G. Virtual Surgical Planning and Patient-Specific Instruments for Correcting Lower Limb Deformities in Pediatric Patients: Preliminary Results from the In-Office 3D Printing Point of Care. J. Pers. Med. 2023, 13, 1664. [Google Scholar] [CrossRef]
- Study Details|Customized Bone Allografts by 3D-Printing|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT05700526#more-information (accessed on 26 March 2024).
- Frizziero, L.; Santi, G.M.; Liverani, A.; Napolitano, F.; Papaleo, P.; Maredi, E.; Di Gennaro, G.L.; Zarantonello, P.; Stallone, S.; Stilli, S.; et al. Computer-Aided Surgical Simulation for Correcting Complex Limb Deformities in Children. Appl. Sci. 2020, 10, 5181. [Google Scholar] [CrossRef]
- Alessandri, G.; Frizziero, L.; Santi, G.M.; Liverani, A.; Dallari, D.; Vivarelli, L.; Di Gennaro, G.L.; Antonioli, D.; Menozzi, G.C.; Depaoli, A.; et al. Virtual Surgical Planning, 3D-Printing and Customized Bone Allograft for Acute Correction of Severe Genu Varum in Children. J. Pers. Med. 2022, 12, 2051. [Google Scholar] [CrossRef]
- Frizziero, L.; Santi, G.M.; Leon-Cardenas, C.; Ferretti, P.; Sali, M.; Gianese, F.; Crescentini, N.; Donnici, G.; Liverani, A.; Trisolino, G.; et al. Heat Sterilization Effects on Polymeric, FDM-Optimized Orthopedic Cutting Guide for Surgical Procedures. J. Funct. Biomater. 2021, 12, 63. [Google Scholar] [CrossRef]
- Ferretti, P.; Leon-Cardenas, C.; Sali, M.; Santi, G.M.; Gianese, F.; Donnici, G. Material Characterization Analysis of PLA & HTPLA FDM-Sourced Elements with Annealing Procedure and Optimized Printing Parameters. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Rome, Italy, 2–5 August 2021; pp. 1410–1420. [Google Scholar]
- UNI EN ISO 17665-1:2007; Sterilizzazione Dei Prodotti Sanitari—Calore Umido—Parte 1: Requisiti per lo Sviluppo, la Convalida e il Controllo di Routine di un Processo di Sterilizzazione per Dispositivi Medici. UNI Ente Italiano Di Normazione: Milano, Italy, 2007.
- UNI CEN ISO/TS 17665-2:2009; Sterilizzazione dei Prodotti Sanitari—Calore Umido—Parte 2: Guida All’applicazione della ISO 17665-1. UNI Ente Italiano Di Normazione: Milano, Italy, 2009.
- Dodwell, E.R.; Pathy, R.; Widmann, R.F.; Green, D.W.; Scher, D.M.; Blanco, J.S.; Doyle, S.M.; Daluiski, A.; Sink, E.L. Reliability of the Modified Clavien-Dindo-Sink Complication Classification System in Pediatric Orthopaedic Surgery. JBJS Open Access 2018, 3, E0020. [Google Scholar] [CrossRef]
- Popescu, D.; Laptoiu, D.; Marinescu, R.; Botezatu, I. Design and 3D Printing Customized Guides for Orthopaedic Surgery—Lessons Learned. Rapid Prototyp. J. 2018, 24, 901–913. [Google Scholar] [CrossRef]
- Grubbs, J.; Sousa, B.C.; Cote, D.L. Establishing a Framework for Fused Filament Fabrication Process Optimization: A Case Study with PLA Filaments. Polymers 2023, 15, 1945. [Google Scholar] [CrossRef]
- Suder, J.; Bobovsky, Z.; Zeman, Z.; Mlotek, J.; Vocetka, M. The Influence of Annealing Temperature on Tensile Strength of Polylactic Acid. MM Sci. J. 2020, 2020, 4132–4137. [Google Scholar] [CrossRef]
PLA Crystal Clear | ||
---|---|---|
Thermal properties | Glass transition temperature | 55–60 °C |
Melting point | 150–230 °C | |
Decomposition temperature | >230 °C | |
Printing properties | Print temperature | 210–230 °C |
Hot pad | 50–60 °C | |
Physical properties | Material density | 1.24 g/cm3 |
Mechanical properties | Tensile strength | 50 MPa |
Parameter | Value |
---|---|
Nozzle width | 0.4 mm |
Layer height | 0.2 mm |
Infill | 100% |
Infill overlap percentage | 20% |
Nozzle temperature | 220 °C |
Bed temperature | 60 °C |
Speed | 60 mm/s |
First layer speed | 15 mm/s |
Material | Cycle | Time | Temperature |
---|---|---|---|
HTPLA | 1st cycle | 10 min | 80 °C |
2nd cycle | 50 min | 100 °C |
Anatomical Site | N. | Height (mm) | Length (mm) | Depth (mm) | Volume (cm3) | Filament Length (m) | Filament Weight (g) | Printing Time (min) | Layers (Number) |
---|---|---|---|---|---|---|---|---|---|
Upper limb | 4 | 31 ± 11 | 34 ± 17 | 17 ± 7 | 5 ± 3 | 3 ± 1 | 8 ± 4 | 53 ± 20 | 90 ± 33 |
(23–48) | (21–58) | (7–25) | (4–10) | (2–5) | (6–14) | (39–82) | (47–123) | ||
Lower limb | 79 | 54 ± 30 | 36 ± 11 | 32 ± 26 | 12 ± 8 | 7 ± 4 | 20 ± 12 | 122 ± 61 | 147 ± 58 |
(20–198) | (11–63) | (3–156) | (1–59) | (1–25) | (2–74) | (14–317) | (19–304) | ||
Total | 83 | 53 ± 30 | 36 ± 11 | 31 ± 26 | 12 ± 8 | 7 ± 4 | 19 ± 12 | 118 ± 61 | 144 ± 58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menozzi, G.C.; Depaoli, A.; Ramella, M.; Alessandri, G.; Frizziero, L.; De Rosa, A.; Soncini, F.; Sassoli, V.; Rocca, G.; Trisolino, G. High-Temperature Polylactic Acid Proves Reliable and Safe for Manufacturing 3D-Printed Patient-Specific Instruments in Pediatric Orthopedics—Results from over 80 Personalized Devices Employed in 47 Surgeries. Polymers 2024, 16, 1216. https://doi.org/10.3390/polym16091216
Menozzi GC, Depaoli A, Ramella M, Alessandri G, Frizziero L, De Rosa A, Soncini F, Sassoli V, Rocca G, Trisolino G. High-Temperature Polylactic Acid Proves Reliable and Safe for Manufacturing 3D-Printed Patient-Specific Instruments in Pediatric Orthopedics—Results from over 80 Personalized Devices Employed in 47 Surgeries. Polymers. 2024; 16(9):1216. https://doi.org/10.3390/polym16091216
Chicago/Turabian StyleMenozzi, Grazia Chiara, Alessandro Depaoli, Marco Ramella, Giulia Alessandri, Leonardo Frizziero, Adriano De Rosa, Francesco Soncini, Valeria Sassoli, Gino Rocca, and Giovanni Trisolino. 2024. "High-Temperature Polylactic Acid Proves Reliable and Safe for Manufacturing 3D-Printed Patient-Specific Instruments in Pediatric Orthopedics—Results from over 80 Personalized Devices Employed in 47 Surgeries" Polymers 16, no. 9: 1216. https://doi.org/10.3390/polym16091216
APA StyleMenozzi, G. C., Depaoli, A., Ramella, M., Alessandri, G., Frizziero, L., De Rosa, A., Soncini, F., Sassoli, V., Rocca, G., & Trisolino, G. (2024). High-Temperature Polylactic Acid Proves Reliable and Safe for Manufacturing 3D-Printed Patient-Specific Instruments in Pediatric Orthopedics—Results from over 80 Personalized Devices Employed in 47 Surgeries. Polymers, 16(9), 1216. https://doi.org/10.3390/polym16091216