The Effect of Thermoplastic Elastomer and Fly Ash on the Properties of Polypropylene Composites with Long Glass Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Composites
2.3. Characterization
2.3.1. X-ray Diffraction
2.3.2. Fourier-Transform Infrared Spectroscopy (FTIR)
2.3.3. Thermal Characterization
2.3.4. Dynamic Mechanical Analysis (DMA)
2.3.5. Mechanical Analysis
2.3.6. Nanomechanical Analysis
2.3.7. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. X-ray Diffraction Analysis
3.2. FTIR Analysis
3.3. Thermogravimetric Analysis
3.4. Differential Scanning Calorimetry Analysis
3.5. Mechanical and Dynamic Mechanical Analysis
3.6. Nanomechanical Analysis
3.7. SEM and EDX Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Errico, F.R.L. Guidelines for the Market Competitiveness of Sustainable Lightweight Design by Magnesium Solution a New Life Cycle Assessment Integrated Approach; Springer: Berlin/Heidelberg, Germany, 2015; pp. 22–27. [Google Scholar]
- Karian, H. Handbook of Polypropylene and Polypropylene Composites, 2nd ed.; Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Garcés, J.; Moll, D.; Bicerano, J.; Fibiger, R.; McLeod, D. Polymeric Nanocomposites for Automotive Applications. Adv. Mater. 2000, 12, 1835–1839. [Google Scholar] [CrossRef]
- Tariq, H.; Siddique, R.M.A.; Shah, S.A.R.; Azab, M.; Attiq-Ur-Rehman; Qadeer, R.; Ullah, M.K.; Iqbal, F. Mechanical Performance of Polymeric ARGF-Based Fly Ash-Concrete Composites: A Study for Eco-Friendly Circular Economy Application. Polymers 2022, 14, 1774. [Google Scholar] [CrossRef]
- Kishore; Kulkarni, S.M.; Sunil, D.; Sharathchandra, S. Effect of surface treatment on the impact behaviour of fly-ash filled polymer composites. Polym. Int. 2002, 51, 1378–1384. [Google Scholar] [CrossRef]
- Manikandan, V.; Richard, S.; Thanu, M.C.; Rajadurai, J. Effect of fly ash as filler on mechanical & frictional properties of jute fiber reinforced composite. Int. Res. J. Eng. Technol. (IRJET) 2015, 2, 154–158. [Google Scholar]
- Venkatachalam, G.; Sharma, S.; Kumar, A.; Prakasam, V.; Satonkar, N.; Chinnaiyan, P. Research Paper Investigations on Tensile and Flexural Characteristics of Fly Ash and Banana Fiber-Reinforced Epoxy Matrix Composites. Eng. Trans. 2020, 68, 89–101. [Google Scholar] [CrossRef]
- Raja, R.S.; Manisekar, K.; Manikandan, V. Study on mechanical properties of fly ash impregnated glass fiber reinforced polymer composites using mixture design analysis. Mater. Des. 2014, 55, 499–508. [Google Scholar] [CrossRef]
- Nath, D.; Bandyopadhyay, S.; Yu, A.; Zeng, Q.; Das, T.; Blackburn, D.; White, C. Structure-property interface correlation of fly Ash-isotactic polypropylene composites. J. Mater. Sci. 2009, 44, 6078–6089. [Google Scholar] [CrossRef]
- Gummadi, J.; Kumar, G.; Gunti, R. Evaluation of Flexural Properties of Fly Ash Filled Polypropylene Composites. Int. J. Mod. Eng. Res. 2012, 2, 2584–2590. [Google Scholar]
- Kutchko, B.G.; Kim, A.G. Fly ash characterization by SEM–EDS. Fuel 2006, 85, 2537–2544. [Google Scholar] [CrossRef]
- Teodorescu, G.-M.; Vuluga, Z.; Oancea, F.; Ionita, A.; Paceagiu, J.; Ghiurea, M.; Nicolae, C.-A.; Gabor, A.R.; Raditoiu, V. Properties of Composites Based on Recycled Polypropylene and Silico-Aluminous Industrial Waste. Polymers 2023, 15, 2545. [Google Scholar] [CrossRef]
- Chrissopoulou, K.; Anastasiadis, S.H. Polyolefin/layered silicate nanocomposites with functional compatibilizers. Eur. Polym. J. 2011, 47, 600–613. [Google Scholar] [CrossRef]
- Joseph, S.; Bambola, V.; Sherhtukade, V.; Mahanwar, P. Effect of Flyash Content, Particle Size of Flyash, and Type of Silane Coupling Agents on the Properties of Recycled Poly(ethylene terephthalate)/Flyash Composites. J. Appl. Polym. Sci. 2011, 119, 201–208. [Google Scholar] [CrossRef]
- Hao, Y.-p.; Yang, H.-l.; Zhang, G.-b.; Zhang, H.-l.; Gao, G.; Dong, L.-s. Rheological, thermal and mechanical properties of biodegradable poly(propylene carbonate)/polylactide/Poly(1,2-propylene glycol adipate) blown films. Chin. J. Polym. Sci. 2015, 33, 1702–1712. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, H.; Wu, D.; Bian, J.; Hao, Y.; Zhang, G.; Liu, S.; Zhang, H.; Dong, L. Poly(1,2-propylene glycol adipate) as an Environmentally Friendly Plasticizer for Poly(vinyl chloride). Polym. Korea 2015, 39, 247–255. [Google Scholar] [CrossRef]
- Luo, G.; Li, W.; Liang, W.; Liu, G.; Ma, Y.; Niu, Y.; Li, G. Coupling effects of glass fiber treatment and matrix modification on the interfacial microstructures and the enhanced mechanical properties of glass fiber/polypropylene composites. Compos. Part B Eng. 2017, 111, 190–199. [Google Scholar] [CrossRef]
- Wu, Y.; Xia, C.; Cai, L.; Garcia, A.C.; Shi, S.Q. Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound. J. Clean. Prod. 2018, 184, 92–100. [Google Scholar] [CrossRef]
- Joshi, S.V.; Drzal, L.T.; Mohanty, A.K.; Arora, S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A Appl. Sci. Manuf. 2004, 35, 371–376. [Google Scholar] [CrossRef]
- Vuluga, Z.; Panaitescu, D.M.; Radovici, C.; Nicolae, C.; Iorga, M.D. Effect of SEBS on morphology, thermal, and mechanical properties of PP/organoclay nanocomposites. Polym. Bull. 2012, 69, 1073–1091. [Google Scholar] [CrossRef]
- Vuluga, Z.; Sanporean, C.-G.; Panaitescu, D.M.; Teodorescu, G.M.; Corobea, M.C.; Nicolae, C.A.; Gabor, A.R.; Raditoiu, V. The Effect of SEBS/Halloysite Masterbatch Obtained in Different Extrusion Conditions on the Properties of Hybrid Polypropylene/Glass Fiber Composites for Auto Parts. Polymers 2021, 13, 3560. [Google Scholar] [CrossRef] [PubMed]
- Panaitescu, D.M.; Vuluga, Z.; Radovici, C.; Nicolae, C. Morphological investigation of PP/nanosilica composites containing SEBS. Polym. Test. 2012, 31, 355–365. [Google Scholar] [CrossRef]
- Sanporean, C.-G.; Vuluga, Z.; Radovici, C.; Panaitescu, D.M.; Iorga, M.; Christiansen, J.d.; Mosca, A. Polypropylene/organoclay/SEBS nanocomposites with toughness–stiffness properties. RSC Adv. 2014, 4, 6573–6579. [Google Scholar] [CrossRef]
- ISO 527-1; Plastics-Determination of Tensile Properties-Part 1: General Principles. ISO: Geneva, Switzerland, 1996.
- ISO 179-1; Plastics-Determination of Charpy Impact Properties-Part 1: Non Instrumented Impact Test. ISO: Geneva, Switzerland, 2010.
- Foresta, T.; Piccarolo, S.; Goldbeck-Wood, G. Competition between α and γ phases in isotactic polypropylene: Effects of ethylene content and nucleating agents at different cooling rates. Polymer 2001, 42, 1167–1176. [Google Scholar] [CrossRef]
- Zhang, A.; Zhao, G.; Chai, J.; Hou, J.; Yang, C. Crystallization and Mechanical Properties of Glass Fiber Reinforced Polypropylene Composites Molded by Rapid Heat Cycle Molding. Fibers Polym. 2020, 21, 2915–2926. [Google Scholar] [CrossRef]
- Kantz, M.R.; Newman, H.D., Jr.; Stigale, F.H. The skin-core morphology and structure–property relationships in injection-molded polypropylene. J. Appl. Polym. Sci. 1972, 16, 1249–1260. [Google Scholar] [CrossRef]
- Hnátková, E.; Dvorak, Z. Effect of the skin-core morphology on the mechanical properties of injection-moulded parts. Mater. Tehnol. 2016, 50, 195–198. [Google Scholar] [CrossRef]
- Denac, M.; Šmit, I.; Musil, V. Polypropylene/talc/SEBS (SEBS-g-MA) composites. Part 1. Structure. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1094–1101. [Google Scholar] [CrossRef]
- Nurul Huda, M.; Dragaun, H.; Bauer, S.; Muschik, H.; Skalicky, P. A study of the crystallinity index of polypropylene fibres. Colloid Polym. Sci. 1985, 263, 730–737. [Google Scholar] [CrossRef]
- Parenteau, T.; Ausias, G.; Grohens, Y.; Pilvin, P. Structure, mechanical properties and modelling of polypropylene for different degrees of crystallinity. Polymer 2012, 53, 5873–5884. [Google Scholar] [CrossRef]
- Vashista, M.; Paul, S. Correlation between full width at half maximum (FWHM) of XRD peak with residual stress on ground surfaces. Philos. Mag. 2012, 92, 4194–4204. [Google Scholar] [CrossRef]
- Caban, R. FTIR-ATR spectroscopic, thermal and microstructural studies on polypropylene-glass fiber composites. J. Mol. Struct. 2022, 1264, 133181. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, L.; Sutton, D.; Wang, X.; Lin, T. Needleless Melt-Electrospinning of Polypropylene Nanofibres. J. Nanomater. 2012, 2012, 382639. [Google Scholar] [CrossRef]
- Hedrick, S.A.; Chuang, S.S.C. Temperature programmed decomposition of polypropylene: In situ FTIR coupled with mass spectroscopy study. Thermochim. Acta 1998, 315, 159–168. [Google Scholar] [CrossRef]
- Zotti, M.; Ferroni, A.; Calvini, P. Microfungal biodeterioration of historic paper: Preliminary FTIR and microbiological analyses. Int. Biodeterior. Biodegrad. 2008, 62, 186–194. [Google Scholar] [CrossRef]
- Jiang, C.; Zhou, S.; Li, C.; Yue, F.; Zheng, L. Properties and mechanism of Cr(VI) removal by a ZnCl2-modified sugarcane bagasse biochar–supported nanoscale iron sulfide composite. Environ. Sci. Pollut. Res. 2023, 30, 26889–26900. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.; Sutherland, I.; Guest, A. Characterization of coated particulate fillers. J. Mater. Sci. 2000, 35, 391–397. [Google Scholar] [CrossRef]
- Zhu, L.H.; Sheng, J.F.; Guo, Z.F.; Ju, X.S.; Li, S.; Chen, Y.F.; Luo, J. Properties of Polypropylene and Surface Modified Glass-Fibre Composites. Polym. Polym. Compos. 2014, 22, 381–386. [Google Scholar] [CrossRef]
- Zoukrami, F.; Haddaoui, N.; Sclavons, M.; Devaux, J.; Vanzeveren, C. Rheological properties and thermal stability of compatibilized polypropylene/untreated silica composites prepared by water injection extrusion process. Polym. Bull. 2018, 75, 5551–5566. [Google Scholar] [CrossRef]
- Arroyo, M.; Lopez-Manchado, M.A.; Avalos, F. Crystallization kinetics of polypropylene: II. Effect of the addition of short glass fibres. Polymer 1997, 38, 5587–5593. [Google Scholar] [CrossRef]
- Lin, J.-H.; Pan, Y.-J.; Liu, C.-F.; Huang, C.-L.; Hsieh, C.-T.; Chen, C.-K.; Lin, Z.-I.; Lou, C.-W. Preparation and Compatibility Evaluation of Polypropylene/High Density Polyethylene Polyblends. Materials 2015, 8, 8850–8859. [Google Scholar] [CrossRef]
- Tjong, S.C.; Xu, S.A.; Yu Li, R.K.; Mai, Y.W. Preparation and performance characteristics of short-glass-fiber/maleated styrene–ethylene–butylene–styrene/polypropylene hybrid composites. J. Appl. Polym. Sci. 2002, 86, 1303–1311. [Google Scholar] [CrossRef]
- Lin, J.-H.; Huang, C.-L.; Liu, C.-F.; Chen, C.-K.; Lin, Z.-I.; Lou, c.-w. Polypropylene/Short Glass Fibers Composites: Effects of Coupling Agents on Mechanical Properties, Thermal Behaviors, and Morphology. Materials 2015, 8, 8279–8291. [Google Scholar] [CrossRef]
- Setz, S.; Stricker, F.; Kressler, J.; Duschek, T.; Mülhaupt, R. Morphology and mechanical properties of blends of isotactic or syndiotactic polypropylene with SEBS block copolymers. J. Appl. Polym. Sci. 1996, 59, 1117–1128. [Google Scholar] [CrossRef]
- Colucci, G.; Simon, H.; Roncato, D.; Martorana, B.; Badini, C. Effect of recycling on polypropylene composites reinforced with glass fibres. J. Thermoplast. Compos. Mater. 2015, 30, 707–723. [Google Scholar] [CrossRef]
- Fu, S.Y.; Lauke, B.; Mäder, E.; Yue, C.Y.; Hu, X. Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2000, 31, 1117–1125. [Google Scholar] [CrossRef]
- Etcheverry, M.; Barbosa, S.E. Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement. Materials 2012, 5, 1084–1113. [Google Scholar] [CrossRef]
- Kshatriya, A.S.; Kshatriya, A.S.; Mishra, A.K.; kavi Priya, V.S.J. Jute and E-glass fiber-reinforced polypropylene composites: Comparative study. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Haris, N.I.N.; Ilyas, R.A.; Hassan, M.Z.; Sapuan, S.M.; Afdzaluddin, A.; Jamaludin, K.R.; Zaki, S.A.; Ramlie, F. Dynamic Mechanical Properties and Thermal Properties of Longitudinal Basalt/Woven Glass Fiber Reinforced Unsaturated Polyester Hybrid Composites. Polymers 2021, 13, 3343. [Google Scholar] [CrossRef]
- Song, L.; Cong, F.; Wang, W.; Ren, J.; Chi, W.; Yang, B.; Zhang, Q.; Li, Y.; Li, X.; Wang, Y. The Effect of Functionalized SEBS on the Properties of PP/SEBS Blends. Polymers 2023, 15, 3696. [Google Scholar] [CrossRef]
- Panaitescu, D.; Vuluga, Z.; Frone, A.; Gabor, R.; Nicolae, C.-A.; Usurelu, C. Complex Effects of Hemp Fibers and Impact Modifiers in Multiphase Polypropylene Systems. Polymers 2023, 15, 409. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Manchado, M.; Arroyo, M. Thermal and dynamic mechanical properties of polypropylene and short organic fiber composites. Polymer 2000, 41, 7761–7767. [Google Scholar] [CrossRef]
- Enrique-Jimenez, P.; Quiles-Díaz, S.; Salavagione, H.J.; Fernández-Blázquez, J.P.; Monclús, M.A.; de Villoria, R.G.; Gómez-Fatou, M.A.; Ania, F.; Flores, A. Nanoindentation mapping of multiscale composites of graphene-reinforced polypropylene and carbon fibres. Compos. Sci. Technol. 2019, 169, 151–157. [Google Scholar] [CrossRef]
- Shokrieh, M.; Hosseinkhani, M.R.; Naimi-Jamal, M.R.; Tourani, H. Nanoindentation and nanoscratch investigations on graphene-based nanocomposites. Polym. Test. 2013, 32, 45–51. [Google Scholar] [CrossRef]
- Alateyah, A. Nano indentation and morphology study of the polypropylene and high density polyethylene nanocomposites based on exfoliated graphite Nano platelets/Nano- magnesium oxide. Int. J. Eng. Technol. 2018, 7, 891. [Google Scholar] [CrossRef]
- Aldousiri, B.; Dhakal, H.N.; Onuh, S.; Zhang, Z.Y.; Bennett, N. Nanoindentation behaviour of layered silicate filled spent polyamide-12 nanocomposites. Polym. Test. 2011, 30, 688–692. [Google Scholar] [CrossRef]
- Nardi, T.; Hammerquist, C.; Nairn, J.A.; Karimi, A.; Månson, J.-A.E.; Leterrier, Y. Nanoindentation of Functionally Graded Polymer Nanocomposites: Assessment of the Strengthening Parameters through Experiments and Modeling. Front. Mater. 2015, 2, 57. [Google Scholar] [CrossRef]
- Fu, S.Y.; Lauke, B.; Zhang, Y.H.; Mai, Y.W. On the post-mortem fracture surface morphology of short fiber reinforced thermoplastics. Compos. Part A Appl. Sci. Manuf. 2005, 36, 987–994. [Google Scholar] [CrossRef]
- Thomason, J.L.; Nagel, U.; Yang, L.; Bryce, D. A study of the thermal degradation of glass fibre sizings at composite processing temperatures. Compos. Part A Appl. Sci. Manuf. 2019, 121, 56–63. [Google Scholar] [CrossRef]
Sample | PP (wt.%) | MA (wt.%) | C (wt.%) | E (wt.%) | G (wt.%) |
---|---|---|---|---|---|
PP-25G | 75 | - | - | 25 | |
PP-30G | 70 | - | - | 30 | |
PP-25G-E | 52.5 | 2.5 | - | 20 | 25 |
PP-25G-C | 66 | 2.5 | 6.5 | - | 25 |
PP-25G-C-E | 46 | 2.5 | 6.5 | 20 | 25 |
αPP (110) | αPP (040) | αPP (130) | αPP (111) | αPP (13-1) | SiO2 (101) | IO | ||
---|---|---|---|---|---|---|---|---|
PP-25G CI = 66% | 2θ | 14.096 | 16.942 | 18.597 | 21.212 | 21.889 | 0.911 | |
d (Å) | 6.277 | 5.229 | 4.767 | 4.185 | 4.057 | |||
Height (cps) | 16,666 | 15,184 | 7433 | 6909 | 6201 | |||
Size (Å) | 120 | 152 | 111 | 78 | 119 | |||
FWHM (°) | 0.663 | 0.5273 | 0.7244 | 1.0299 | 0.6748 | |||
PP-25G-C CI = 70% | 2θ | 14.096 | 16.927 | 18.591 | 21.127 | 21.819 | 26.55 | 1.368 |
d (Å) | 6.277 | 5.233 | 4.768 | 4.201 | 4.069 | 3.3539 | ||
Height (cps) | 16,998 | 23,259 | 8362 | 3268 | 7568 | 690.12 | ||
Size (Å) | 128 | 149 | 110 | 124 | 94 | 215.31 | ||
FWHM (°) | 0.6252 | 0.5363 | 0.7297 | 0.6506 | 0.8597 | 0.4031 | ||
PP-25G-E CI = 63% | 2θ | 14.081 | 16.911 | 18.576 | 21.136 | 21.876 | 0.964 | |
d (Å) | 6.284 | 5.238 | 4.772 | 4.2 | 4.059 | |||
Height (cps) | 16,645 | 16,044 | 8270 | 5958 | 6315 | |||
Size (Å) | 122 | 148 | 107 | 74 | 110 | |||
FWHM (°) | 0.6546 | 0.5426 | 0.749 | 1.0852 | 0.732 | |||
PP-25G-C-E CI = 58% | 2θ | 14.07 | 16.896 | 18.517 | 21.131 | 21.828 | 26.5355 | 1.025 |
d (Å) | 6.286 | 5.243 | 4.787 | 4.200 | 4.068 | 3.356 | ||
Height (cps) | 11,862 | 12,157 | 6002 | 4175 | 7052 | 669.3 | ||
Size (Å) | 121 | 146 | 109 | 115 | 94 | 225.69 | ||
FWHM (°) | 0.6572 | 0.5466 | 0.733 | 0.7003 | 0.8559 | 0.3616 |
Sample | RT—230 °C Wt. Loss % | Onset Point Temp °C | Tmax °C | Residue 700 °C | Temp for Wt. Loss 5% °C |
---|---|---|---|---|---|
E | 0.03 | 418.8 | 445.2 | 0.15 | 407.2 |
PP-25G | 0.27 | 430.8 | 457 | 25.32 | 401.4 |
PP-30G | 0.28 | 430.1 | 455.7 | 29.46 | 403.6 |
PP-25G-E | 0.16 | 397.9 | 433.2 | 23.06 | 371.9 |
PP-25G-C | 0.36 | 430.5 | 456.7 | 27.34 | 396.9 |
PP-25G-C-E | 0.36 | 416.5 | 440.9 | 23.32 | 395.7 |
Sample | Cooling, Crystallization | Melting, 2nd Heating | ||||||
---|---|---|---|---|---|---|---|---|
Onset | Tc | ΔHc | Xc | Onset | Tm | ΔHm | Xc | |
°C | °C | J/g | % | °C | °C | J/g | % | |
PP-25G | 124.8 | 122.4 | 78.4 | 50.01 | 156.8 | 161.5 | 69.55 | 44.37 |
PP-30G | 124.9 | 122.3 | 74.2 | 50.71 | 156.8 | 161.1 | 65.57 | 44.81 |
PP-25G-E | 124.8 | 122.2 | 69 | 60.02 | 157.2 | 161.5 | 61.09 | 53.14 |
PP-25-G-C | 124.9 | 122.1 | 72.5 | 49.55 | 156.8 | 161.5 | 64.85 | 44.32 |
PP-25G-C-E | 127.2 | 122.6 | 57.07 | 54.61 | 152.3 | 160.8 | 55.63 | 53.23 |
Sample | Tensile Stress at Tensile Strength (MPa) | Young’s Modulus (MPa) | Axial Strain at Break (%) | Impact Strength (KJ/m2) |
---|---|---|---|---|
PP-25G | 71 ± 2 | 4576 ± 575 | 2.8 ± 0.3 | 9 ± 0.3 |
PP-30G | 80 ± 3 | 4905 ± 435 | 2.9 ± 0.3 | 10 ± 0.5 |
PP-25G-C | 62 ± 0.5 | 4162 ± 199 | 2.5 ± 0.2 | 7 ± 0.3 |
PP-25G-E | 59 ± 1.2 | 3258 ± 262 | 3.9 ± 0.3 | 13 ± 0.5 |
PP-25G-C-E | 48 ± 0.5 | 3238 ± 115 | 4.6 ± 0.3 | 11 ± 0.2 |
Sample | Storage Modulus, E′ | Loss Modulus, E″ | Loss Factor | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temp | E′ | Temp | E″ Peak1 | Temp | E″ Peak2 | Temp | E″ Peak3 | Temp | Tan Delta | Temp | Tan Delta | Temp | Tan Delta | |
°C | MPa | °C | MPa | °C | MPa | °C | MPa | °C | Tan δ Peak 1 | °C | Tan δ Peak 2 | °C | Tan δ Peak 3 | |
PP-25G | 25 | 3393 | - | - | 11.5 | 159 | 74.6 | 131.3 | - | - | 17.2 | 0.043 | 100.9 | 0.072 |
PP-30G | 25 | 3775 | - | - | 13.4 | 175.4 | 78.1 | 149.3 | - | - | 18.4 | 0.043 | 98.0 | 0.071 |
PP-25G-C | 25 | 3358 | - | - | 10.5 | 166.4 | 74.6 | 140.9 | - | - | 16.7 | 0.045 | 99.8 | 0.077 |
PP-25G-E | 25 | 2739 | −53.5 | 159.1 | 13.2 | 131.9 | 74.1 | 114.9 | −52.6 | 0.040 | 17.6 | 0.044 | 93.6 | 0.078 |
PP-25G-C-E | 25 | 2528 | −52.3 | 148.9 | 11.6 | 121.8 | 75.4 | 114.7 | −50.7 | 0.041 | 15.6 | 0.043 | 92.6 | 0.083 |
Sample | Element | %Weight | Standard Deviation, σ |
---|---|---|---|
PP-25G-C | C | 22 | 1 |
Si | 15.8 | 0.3 | |
Au | 10.5 | 0.4 | |
Al | 7.4 | 0.2 | |
Fe | 3 | 0.2 | |
Ca | 2.1 | 0.1 | |
K | 1.5 | 0.1 | |
Mg | 0.9 | 0.1 | |
Na | 0.2 | 0.1 | |
PP-25G-C-E | C | 20.9 | 1.5 |
Si | 16.5 | 0.4 | |
Au | 9 | 0.5 | |
Al | 7.8 | 0.2 | |
Fe | 5.9 | 0.4 | |
Ca | 1.4 | 0.1 | |
K | 1.3 | 0.1 | |
Mg | 0.8 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teodorescu, G.M.; Vuluga, Z.; Ion, R.M.; Fistoș, T.; Ioniță, A.; Slămnoiu-Teodorescu, S.; Paceagiu, J.; Nicolae, C.A.; Gabor, A.R.; Ghiurea, M. The Effect of Thermoplastic Elastomer and Fly Ash on the Properties of Polypropylene Composites with Long Glass Fibers. Polymers 2024, 16, 1238. https://doi.org/10.3390/polym16091238
Teodorescu GM, Vuluga Z, Ion RM, Fistoș T, Ioniță A, Slămnoiu-Teodorescu S, Paceagiu J, Nicolae CA, Gabor AR, Ghiurea M. The Effect of Thermoplastic Elastomer and Fly Ash on the Properties of Polypropylene Composites with Long Glass Fibers. Polymers. 2024; 16(9):1238. https://doi.org/10.3390/polym16091238
Chicago/Turabian StyleTeodorescu, George Mihail, Zina Vuluga, Rodica Mariana Ion, Toma Fistoș, Andreea Ioniță, Sofia Slămnoiu-Teodorescu, Jenica Paceagiu, Cristian Andi Nicolae, Augusta Raluca Gabor, and Marius Ghiurea. 2024. "The Effect of Thermoplastic Elastomer and Fly Ash on the Properties of Polypropylene Composites with Long Glass Fibers" Polymers 16, no. 9: 1238. https://doi.org/10.3390/polym16091238
APA StyleTeodorescu, G. M., Vuluga, Z., Ion, R. M., Fistoș, T., Ioniță, A., Slămnoiu-Teodorescu, S., Paceagiu, J., Nicolae, C. A., Gabor, A. R., & Ghiurea, M. (2024). The Effect of Thermoplastic Elastomer and Fly Ash on the Properties of Polypropylene Composites with Long Glass Fibers. Polymers, 16(9), 1238. https://doi.org/10.3390/polym16091238