Graphene Oxide-Based Nanocomposites for Stereolithography (SLA) 3D Printing: Comprehensive Mechanical Characterization under Combined Loading Modes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Graphene Oxide
2.3. Characterization of GO
2.4. GO-Based SLA Resin Preparation
2.5. Characterization of GO-Based Nanocomposites
2.6. Failure Criterion
3. Results and Discussions
3.1. Characterization of GO
3.2. GO Dispersion
3.3. GO-Based Nanocomposites
3.3.1. Viscoelastic Properties
3.3.2. Combined Load Experiments and Failure Criteria
3.3.3. Fracture Surface
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Armentia, S.L.; Fernández-Villamarín, S.; Ballesteros, Y.; de Real, J.C.; Dunne, N.; Paz, E. 3D Printing of a Graphene-Modified Photopolymer Using Stereolithography for Biomedical Applications: A Study of the Polymerization Reaction. Int. J. Bioprinting 2022, 8, 182–197. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y. 3D Printing of Ceramics: A Review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [Google Scholar] [CrossRef]
- Manapat, J.Z.; Mangadlao, J.D.; Tiu, B.D.B.; Tritchler, G.C.; Advincula, R.C. High-Strength Stereolithographic 3D Printed Nanocomposites: Graphene Oxide Metastability. ACS Appl. Mater. Interfaces 2017, 9, 10085–10093. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Ullah, A.; Azher, K.; Ur Rehman, A.; Akturk, N.; Juan, W.; Tüfekci, C.S.; Salamci, M.U. The Influence of Nanoparticle Dispersions on Mechanical and Thermal Properties of Polymer Nanocomposites Using SLA 3D Printing. Crystals 2023, 13, 285. [Google Scholar] [CrossRef]
- Ponnamma, D.; Yin, Y.; Salim, N.; Parameswaranpillai, J.; Thomas, S.; Hameed, N. Recent Progress and Multifunctional Applications of 3D Printed Graphene Nanocomposites. Compos. Part B Eng. 2021, 204, 108493. [Google Scholar] [CrossRef]
- Lv, X.; Ye, F.; Cheng, L.; Fan, S.; Liu, Y. Binder Jetting of Ceramics: Powders, Binders, Printing Parameters, Equipment, and Post-Treatment. Ceram. Int. 2019, 45, 12609–12624. [Google Scholar] [CrossRef]
- Mirzababaei, S. A Review on Binder Jet Additive Manufacturing of 316L Stainless Steel. J. Manuf. Mater. Process 2019, 3, 82. [Google Scholar] [CrossRef]
- Gokuldoss, P.K.; Kolla, S.; Eckert, J. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines. Materials 2017, 10, 672. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, H.; Niu, M.; Guo, Y.; Li, H. Recent Advances in Lignin-Based 3D Printing Materials: A Mini-Review. Int. J. Biol. Macromol. 2023, 253, 126660. [Google Scholar] [CrossRef]
- Guo, H.; Lv, R.; Bai, S. Recent Advances on 3D Printing Graphene-Based Composites. Nano Mater. Sci. 2019, 1, 101–115. [Google Scholar] [CrossRef]
- Huang, J.; Qin, Q.; Wang, J. A Review of Stereolithography: Processes and systems. Processes 2020, 8, 1138. [Google Scholar] [CrossRef]
- Park, H.K.; Shin, M.; Kim, B.; Park, J.W.; Lee, H. A Visible Light-Curable yet Visible Wavelength-Transparent Resin for Stereolithography 3D Printing. NPG Asia Mater. 2018, 10, 82–89. [Google Scholar] [CrossRef]
- Kam, D.; Rulf, O.; Reisinger, A.; Lieberman, R.; Magdassi, S. 3D Printing by Stereolithography Using Thermal Initiators. Nat. Commun. 2024, 15, 2285. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, L.; Dai, L.; Zhong, L.; Liu, B.; Ren, J.; Xu, Y. Synthesis and Characterization of Reinforced Acrylate Photosensitive Resin by 2-Hydroxyethyl Methacrylate-Functionalized Graphene Nanosheets for 3D Printing. J. Mater. Sci. 2018, 53, 1874–1886. [Google Scholar] [CrossRef]
- Uysal, E.; Çakir, M.; Ekici, B. Graphene Oxide/Epoxy Acrylate Nanocomposite Production via SLA and Importance of Graphene Oxide Surface Modification for Mechanical Properties. Rapid Prototyp. J. 2021, 27, 682–691. [Google Scholar] [CrossRef]
- Quan, H.; Zhang, T.; Xu, H.; Luo, S.; Nie, J.; Zhu, X. Bioactive Materials Photo-Curing 3D Printing Technique and Its Challenges. Bioact. Mater. 2020, 5, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Li, Y.; Hao, L.; Yang, Y.; Tang, T.; Tang, D.; Xiong, W. Graphene-Reinforced Biodegradable Resin Composites for Stereolithographic 3D Printing of Bone Structure Scaffolds. J. Nanomater. 2019, 2019, 1–13. [Google Scholar] [CrossRef]
- Tlegenov, Y.; San, W.Y.; Soon, H.G. A Dynamic Model for Nozzle Clog Monitoring in Fused Deposition Modelling. Rapid Prototyp. J. 2017, 23, 391–400. [Google Scholar] [CrossRef]
- Palaganas, J.O.; Palaganas, N.B.; Ramos, L.J.I.; David, C.P.C. 3D Printing of Covalent Functionalized Graphene Oxide Nanocomposite via Stereolithography. ACS Appl. Mater. Interfaces 2019, 11, 46034–46043. [Google Scholar] [CrossRef]
- Fei, G.; Parra-Cabrera, C.; Zhong, K.; Tietze, M.L.; Clays, K.; Ameloot, R. Scattering Model for Composite Stereolithography to Enable Resin–Filler Selection and Cure Depth Control. ACS Appl. Polym. Mater. 2021, 3, 6705–6712. [Google Scholar] [CrossRef]
- Lin, D.; Jin, S.; Zhang, F.; Wang, C.; Wang, Y.; Zhou, C.; Cheng, G.J. 3D Stereolithography Printing of Graphene Oxide Reinforced Complex Architectures. Nanotechnology 2015, 26, 434003. [Google Scholar] [CrossRef] [PubMed]
- Markandan, K.; Lai, C.Q. Enhanced Mechanical Properties of 3D Printed Graphene-Polymer Composite Lattices at Very Low Graphene Concentrations. Compos. Part A Appl. Sci. Manuf. 2020, 129, 105726. [Google Scholar] [CrossRef]
- Lai, C.Q.; Markandan, K.; Luo, B.; Lam, Y.C.; Chung, W.C.; Chidambaram, A. Viscoelastic and High Strain Rate Response of Anisotropic Graphene-Polymer Nanocomposites Fabricated with Stereolithographic 3D Printing. Addit. Manuf. 2021, 37, 101721. [Google Scholar] [CrossRef]
- Feng, Z.; Li, Y.; Xin, C.; Tang, D.; Xiong, W.; Zhang, H. Fabrication of Graphene-Reinforced Nanocomposites with Improved Fracture Toughness in Net Shape for Complex 3D Structures via Digital Light Processing. C. 2019, 5, 25. [Google Scholar] [CrossRef]
- Korhonen, H.; Sinh, L.H.; Luong, N.D.; Lehtinen, P.; Verho, T.; Partanen, J.; Seppälä, J. Fabrication of Graphene-Based 3D Structures by Stereolithography. Phys. Status Solidi Appl. Mater. Sci. 2016, 213, 982–985. [Google Scholar] [CrossRef]
- Xiao, R.; Ding, M.; Wang, Y.; Gao, L.; Fan, R.; Lu, Y. Stereolithography (SLA) 3D Printing of Carbon Fiber-Graphene Oxide (CF-GO) Reinforced Polymer Lattices. Nanotechnology 2021, 32, 235702. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Young, R.J.; Kinloch, I.A. Interfacial Stress Transfer in Graphene Oxide Nanocomposites. ACS Appl. Mater. Interfaces. 2013, 5, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Young, R.J.; Kinloch, I.A.; Gong, L.; Novoselov, K.S. The Mechanics of Graphene Nanocomposites: A Review. Compos. Sci. Technol. 2012, 72, 1459–1476. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Ahmad, H.; Fan, M.; Hui, D. Graphene Oxide Incorporated Functional Materials: A Review. Compos. Part B Eng. 2018, 145, 270–280. [Google Scholar] [CrossRef]
- Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the Functional Modification of Graphene/Graphene Oxide: A Review. RSC Adv. 2020, 10, 15328–15345. [Google Scholar] [CrossRef] [PubMed]
- Perrozzi, F.; Prezioso, S.; Ottaviano, L. Graphene Oxide: From Fundamentals to Applications. J. Phys. Condens. Matter 2015, 27, 13002. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.; Kim, Y.; Shin, D.; Ryoo, S.R.; Hong, B.H.; Min, D.H. Biomedical Applications of Graphene and Graphene Oxide. Acc. Chem. Res. 2013, 46, 2211–2224. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, P.C.; Smith, L.V. Characterization of Adhesive Yield Criteria Usingmixed-Mode Loading. J. Adhes. Sci. Technol. 2019, 33, 1248–1260. [Google Scholar] [CrossRef]
- Créac’hcadec, R.; Sohier, L.; Cellard, C.; Gineste, B. A Stress Concentration-Free Bonded Arcan Tensile Compression Shear Test Specimen for the Evaluation of Adhesive Mechanical Response. Int. J. Adhes. Adhes. 2015, 61, 81–92. [Google Scholar] [CrossRef]
- dos Santos, D.J.; Batalha, G.F. Failure Criterion for Adhesively Bonded Joints Using Arcan´s Experimental Method. Polímeros 2014, 24, 441–445. [Google Scholar] [CrossRef]
- Yu, L.; Zhu, Y.; Wu, Q.; Zhou, L.; Wu, X.; Zhang, Y.; Zhou, J.; Wang, Z. 3D Printing of Zirconia Nanoparticle/Boron Nitride Nanosheet Multidimensional Reinforced Acrylic Matrix Composites for Self-Lubricating Materials. ACS Appl. Nano Mater. 2023, 6, 21532–21547. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Fernando, P.H.L.; Antonino, L.D.; Garcia, G.E.S.; de Sousa Júnior, R.R.; Neto, A.V.; Nakamoto, F.Y.; dos Santos, D.J. Effects of the Incorporation of Modified Kraft Lignin on the Mechanical Properties of Epoxy Adhesive: Experimental and Theoretical Approaches. J. Adhes. 2024, 100, 83–95. [Google Scholar] [CrossRef]
- de Sousa Junior, R.R.; Gouveia, J.R.; Ito, N.M.; dos Santos, D.J. Failure Prediction of Hybrid Composite Using Arcan’s Device and Drucker-Prager Model. Polym. Test. 2017, 58, 256–261. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, L.; Wang, K.; Miao, L.; Lan, Q.; Jiang, K.; Lu, H.; Li, M.; Li, Y.; Shen, B.; et al. Analysis of Oxidation Degree of Graphite Oxide and Chemical Structure of Corresponding Reduced Graphite Oxide by Selecting Different-Sized Original Graphite. RSC Adv. 2018, 8, 17209–17217. [Google Scholar] [CrossRef] [PubMed]
- Dehghanzad, B.; Razavi Aghjeh, M.K.; Rafeie, O.; Tavakoli, A.; Jameie Oskooie, A. Synthesis and Characterization of Graphene and Functionalized Graphene via Chemical and Thermal Treatment Methods. RSC Adv. 2016, 6, 3578–3585. [Google Scholar] [CrossRef]
- Li, W.; Tang, X.-Z.; Zhang, H.-B.; Jiang, Z.-G.; Yu, Z.-Z.; Du, X.-S.; Mai, Y.-W. Simultaneous Surface Functionalization and Reduction of Graphene Oxide with Octadecylamine for Electrically Conductive Polystyrene Composites. Carbon 2011, 49, 4724–4730. [Google Scholar] [CrossRef]
- de Souza, Z.S.B.; Pinto, G.M.; Silva, G. da C.; Demarquette, N.R.; Fechine, G.J.M.; Sobrinho, M.A.M. Interface Adjustment between Poly(Ethylene Terephthalate) and Graphene Oxide in Order to Enhance Mechanical and Thermal Properties of Nanocomposites. Polym. Eng. Sci. 2021, 61, 1997–2011. [Google Scholar] [CrossRef]
- de Sousa Junior, R.R.; Garcia, G.E.S.; Antonino, L.D.; Gouveia, J.R.; dos Santos, D.J.; Carastan, D.J. Dielectric Elastomers Based on SEBS Gel: The Impact of Adding Kraft Lignin on Electro-Mechanical Performance. Express Polym. Lett. 2024, 18, 561–574. [Google Scholar] [CrossRef]
- Chiappone, A.; Roppolo, I.; Naretto, E.; Fantino, E.; Calignano, F.; Sangermano, M.; Pirri, F. Study of Graphene Oxide-Based 3D Printable Composites: Effect of the in Situ Reduction. Compos. Part B Eng. 2017, 124, 9–15. [Google Scholar] [CrossRef]
- Vallés, C.; Young, R.J.; Lomax, D.J.; Kinloch, I.A. The Rheological Behaviour of Concentrated Dispersions of Graphene Oxide. J. Mater. Sci. 2014, 49, 6311–6320. [Google Scholar] [CrossRef]
- Tavares, L.B.; Boas, C.V.; Schleder, G.R.; Nacas, A.M.; Rosa, D.S.; Santos, D.J. Bio-Based Polyurethane Prepared from Kraft Lignin and Modified Castor Oil. Express Polym. Lett. 2016, 10, 927–940. [Google Scholar] [CrossRef]
- Ramirez-Soria, E.H.; Bonilla-Cruz, J.; Flores-Amaro, M.G.; Garcia, V.J.; Lara-Ceniceros, T.E.; Longoria-Rodriguez, F.E.; Elizondo, P.; Advincula, R.C. On the Effect of Ultralow Loading of Microwave-Assisted Bifunctionalized Graphene Oxide in Stereolithographic 3d-Printed Nanocomposites. ACS Appl. Mater. Interfaces 2020, 12, 49061–49072. [Google Scholar] [CrossRef]
- Guo, B.; Ji, X.; Wang, W.; Chen, X.; Wang, P.; Wang, L.; Bai, J. Highly Flexible, Thermally Stable, and Static Dissipative Nanocomposite with Reduced Functionalized Graphene Oxide Processed through 3D Printing. Compos. Part B Eng. 2021, 208, 108598. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, Y.; Liu, M.; Zhang, Y.; Yin, Y.; Gutowski, W.S.; Deng, P.; Zheng, C. Improving the Damping Properties of Nanocomposites by Monodispersed Hybrid POSS Nanoparticles: Preparation and Mechanisms. Polymers 2019, 11, 647. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Júnior, R.R.; Garcia, G.E.S.; dos Santos, D.J.; Carastan, D.J. Viscoelastic Behavior of Pressure-Sensitive Adhesive Based on Block Copolymer and Kraft Lignin. J. Adhes. 2024, 100, 139–155. [Google Scholar] [CrossRef]
- Wang, T.; Dalton, A.B.; Keddie, J.L. Importance of Molecular Friction in a Soft Polymer−Nanotube Nanocomposite. Macromolecules 2008, 41, 7656–7661. [Google Scholar] [CrossRef]
- Luo, Y.; Kang, Z. Topology Optimization of Continuum Structures with Drucker–Prager Yield Stress Constraints. Comput. Struct. 2012, 90–91, 65–75. [Google Scholar] [CrossRef]
- Bardia, P.; Narasimhan, R. Characterisation of Pressure-sensitive Yielding in Polymers. Strain 2006, 42, 187–196. [Google Scholar] [CrossRef]
- Malek-Mohammadi, H.; Majzoobi, G.H.; Payandehpeyman, J. Mechanical Characterization of Polycarbonate Reinforced with Nanoclay and Graphene Oxide. Polym. Compos. 2019, 40, 3947–3959. [Google Scholar] [CrossRef]
Sample | G’ at 120 °C (MPa) | Tg (°C) |
---|---|---|
Pure | 12.6 | 67.5 |
0.2 GO | 12.0 | 66.2 |
0.5 GO | 14.3 | 64.2 |
1.0 GO | 13.2 | 72.8 |
Sample | Angle (°) | σ (MPa) | σn (MPa) | τs (MPa) |
---|---|---|---|---|
Pure | 0 | 11.22 ± 1.06 | 11.22 ± 1.06 | 0 |
45 | 11.55 ± 0.71 | 8.17 ± 0.50 | 8.17 ± 0.50 | |
90 | 11.10 ± 0.85 | 0 | 11.10 ± 0.85 | |
0.2 GO | 0 | 8.96 ± 2.36 | 8.96 ± 2.36 | 0 |
45 | 7.80 ± 1.82 | 5.52 ± 1.29 | 5.52 ± 1.29 | |
90 | 10.00 ± 3.29 | 0 | 10.00 ± 3.29 | |
0.5 GO | 0 | 17.25 ± 2.02 | 17.25 ± 2.02 | 0 |
45 | 15.05 ± 0.32 | 10.64 ± 0.22 | 10.64 ± 0.22 | |
90 | 17.78 ± 0.94 | 0 | 17.78 ± 0.94 | |
1.0 GO | 0 | 15.99 ± 1.16 | 15.99 ± 1.16 | 0 |
45 | 13.13 ± 0.89 | 9.28 ± 0.63 | 9.28 ± 0.63 | |
90 | 15.81 ± 2.37 | 0 | 15.81 ± 2.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, G.E.S.; de Sousa Junior, R.R.; Gouveia, J.R.; dos Santos, D.J. Graphene Oxide-Based Nanocomposites for Stereolithography (SLA) 3D Printing: Comprehensive Mechanical Characterization under Combined Loading Modes. Polymers 2024, 16, 1261. https://doi.org/10.3390/polym16091261
Garcia GES, de Sousa Junior RR, Gouveia JR, dos Santos DJ. Graphene Oxide-Based Nanocomposites for Stereolithography (SLA) 3D Printing: Comprehensive Mechanical Characterization under Combined Loading Modes. Polymers. 2024; 16(9):1261. https://doi.org/10.3390/polym16091261
Chicago/Turabian StyleGarcia, Guilherme Elias Saltarelli, Rogerio Ramos de Sousa Junior, Julia Rocha Gouveia, and Demetrio Jackson dos Santos. 2024. "Graphene Oxide-Based Nanocomposites for Stereolithography (SLA) 3D Printing: Comprehensive Mechanical Characterization under Combined Loading Modes" Polymers 16, no. 9: 1261. https://doi.org/10.3390/polym16091261
APA StyleGarcia, G. E. S., de Sousa Junior, R. R., Gouveia, J. R., & dos Santos, D. J. (2024). Graphene Oxide-Based Nanocomposites for Stereolithography (SLA) 3D Printing: Comprehensive Mechanical Characterization under Combined Loading Modes. Polymers, 16(9), 1261. https://doi.org/10.3390/polym16091261