A Multi-Phase Analytical Model for Effective Electrical Conductivity of Polymer Matrix Composites Containing Micro-SiC Whiskers and Nano-Carbon Black Hybrids
Abstract
:1. Introduction
2. Analytical Modeling
2.1. Effective Electrical Conductivity of CB-Reinforced Nanocomposites
2.1.1. Electrical Conductivity of Effective CB Nanofillers
2.1.2. Electrical Conductivity of CB/Polymer Nanocomposites
2.2. Effective Electrical Conductivity of SiC/CB Hybrid Composites
3. Results and Discussion
3.1. Validation
3.2. Parametric Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Saleh, M.H.; Saadeh, W.H. Hybrids of conductive polymer nanocomposites. Mater. Des. 2013, 52, 1071–1076. [Google Scholar] [CrossRef]
- Chanda, A.; Sinha, S.K.; Datla, N.V. Electrical conductivity of random and aligned nanocomposites: Theoretical models and experimental validation. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106543. [Google Scholar] [CrossRef]
- Jin, J.; Lin, Y.; Song, M.; Gui, C.; Leesirisan, S. Enhancing the electrical conductivity of polymer composites. Eur. Polym. J. 2013, 49, 1066–1072. [Google Scholar] [CrossRef]
- Allaoui, A.; Bai, S.; Cheng, H.M.; Bai, J.B. Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 2002, 62, 1993–1998. [Google Scholar] [CrossRef]
- Zhang, Y.; Lai, L.; Cui, D.; Zhu, Y.; Cai, H.; Yan, B.; Li, Y.; Yang, Z.; Ding, G. Hybrid effect on mechanical and thermal performance of copper matrix composites reinforced with SiC whiskers. Ceram. Int. 2024, 50, 16553–16563. [Google Scholar] [CrossRef]
- Fan, Y.; Fowler, G.D.; Zhao, M. The past, present and future of carbon black as a rubber reinforcing filler—A review. J. Clean. Prod. 2020, 247, 119115. [Google Scholar] [CrossRef]
- Xu, H.P.; Dang, Z.M.; Yao, S.H.; Jiang, M.J.; Wang, D. Exploration of unusual electrical properties in carbon black/binary-polymer nanocomposites. Appl. Phys. Lett. 2007, 90, 152912. [Google Scholar] [CrossRef]
- Wu, D.; Lv, Q.; Feng, S.; Chen, J.; Chen, Y.; Qiu, Y.; Yao, X. Polylactide composite foams containing carbon nanotubes and carbon black: Synergistic effect of filler on electrical conductivity. Carbon 2015, 95, 380–387. [Google Scholar] [CrossRef]
- Wu, X.; Lu, C.; Zhang, X.; Zhou, Z. Conductive natural rubber/carbon black nanocomposites via cellulose nanowhisker templated assembly: Tailored hierarchical structure leading to synergistic property enhancements. J. Mater. Chem. A 2015, 3, 13317–13323. [Google Scholar] [CrossRef]
- Mazaheri, M.; Payandehpeyman, J.; Jamasb, S. Modeling of Effective Electrical Conductivity and Percolation Behavior in Conductive-Polymer Nanocomposites Reinforced with Spherical Carbon Black. Appl. Compos. Mater. 2022, 29, 695–710. [Google Scholar] [CrossRef]
- Alemour, B.; Yaacob, M.H.; Lim, H.N.; Hassan, M.R. Review of electrical properties of graphene conductive composites. Int. J. Nanoelectron. Mater. 2018, 11, 371–398. [Google Scholar]
- Kim, S.Y.; Noh, Y.J.; Yu, J. Prediction and experimental validation of electrical percolation by applying a modified micromechanics model considering multiple heterogeneous inclusions. Compos. Sci. Technol. 2015, 106, 156–162. [Google Scholar] [CrossRef]
- Hashemi, R.; Weng, G.J. A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings. Carbon 2016, 96, 474–490. [Google Scholar] [CrossRef]
- He, B.; Mortazavi, B.; Zhuang, X.; Rabczuk, T. Modeling Kapitza resistance of two-phase composite material. Compos. Struct. 2016, 152, 939–946. [Google Scholar] [CrossRef]
- Saberi, M.; Ansari, R.; Hassanzadeh-Aghdam, M.K. Predicting the electrical conductivity of short carbon fiber/graphene nanoplatelet/polymer composites. Mater. Chem. Phys. 2023, 309, 128324. [Google Scholar] [CrossRef]
- Saberi, M.; Moradi, A.; Ansari, R.; Hassanzadeh-Aghdam, M.K.; Jamali, J. Developing an efficient analytical model for predicting the electrical conductivity of polymeric nanocomposites containing hybrid carbon nanotube/carbon black nanofillers. Compos. Part A Appl. Sci. Manuf. 2024, 185, 108374. [Google Scholar] [CrossRef]
- Townsend, J.; Burtovyy, R.; Aprelev, P.; Kornev, K.G.; Luzinov, I. Enhancing Mechanical and Thermal Properties of Epoxy Nanocomposites via Alignment of Magnetized SiC Whiskers. ACS Appl. Mater. Interfaces 2017, 9, 22927–22940. [Google Scholar] [CrossRef]
- Chen, Y.; Pan, F.; Wang, S.; Liu, B.; Zhang, J. Theoretical estimation on the percolation threshold for polymer matrix composites with hybrid fillers. Compos. Struct. 2015, 124, 292–299. [Google Scholar] [CrossRef]
- Sumfleth, J.; Adroher, X.C.; Schulte, K. Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black. J. Mater. Sci. 2009, 44, 3241–3247. [Google Scholar] [CrossRef]
- Szeluga, U.; Kumanek, B.; Trzebicka, B. Synergy in hybrid polymer/nanocarbon composites. A Rev. Compos. Part A Appl. Sci. Manuf. 2015, 73, 204–231. [Google Scholar] [CrossRef]
- Griffiths, D.J.; Inglefield, C. Introduction to Electrodynamics; Cambridge University Press: Cambridge, UK, 2005; Volume 73. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. In Nanoscience and Technology: A Collection of Reviews from Nature Journals; World Scientific: Singapore, 2009; pp. 11–19. [Google Scholar] [CrossRef]
- Feng, C.; Jiang, L. Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites. Compos. Part A Appl. Sci. Manuf. 2013, 47, 143–149. [Google Scholar] [CrossRef]
- Yan, K.Y.; Xue, Q.Z.; Zheng, Q.B.; Hao, L.Z. The interface effect of the effective electrical conductivity of carbon nanotube composites. Nanotechnology 2007, 18, 255705. [Google Scholar] [CrossRef]
- Simmons, J.G. Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film. J. Appl. Phys. 1963, 34, 1793–1803. [Google Scholar] [CrossRef]
- Gao, L.; Li, Z. Effective medium approximation for two-component nonlinear composites withshape distribution. J. Phys. Condens. Matter 2003, 15, 4397. [Google Scholar] [CrossRef]
- Deng, F.; Zheng, Q.S. An analytical model of effective electrical conductivity of carbon nanotube composites. Appl. Phys. Lett. 2008, 92, 071902. [Google Scholar] [CrossRef]
- Rebeque, P.V.; Silva, M.J.; Cena, C.R.; Nagashima, H.N.; Malmonge, J.A.; Kanda, D.H.F. Analysis of the electrical conduction in percolative nanocomposites based on castor-oil polyurethane with carbon black and activated carbon nanopowder. Polym. Compos. 2019, 40, 7–15. [Google Scholar] [CrossRef]
- Pal, G.; Kumar, S. Multiscale modeling of effective electrical conductivity of short carbon fiber-carbon nanotube-polymer matrix hybrid composites. Mater. Des. 2016, 89, 129–136. [Google Scholar] [CrossRef]
- Motaghi, A.; Hrymak, A.; Motlagh, G.H. Electrical conductivity and percolation threshold of hybrid carbon/polymer composites. J. Appl. Polym. Sci. 2015, 132, 41744. [Google Scholar] [CrossRef]
- Bystrický, R.; Škrátek, M.; Rusnák, J.; Precner, M.; Ťapajna, M.; Hnatko, M.; Šajgalík, P. Electrical and magnetic properties of silicon carbide composites with titanium and niobium carbide as sintering aids. Ceram. Int. 2023, 49, 5319–5326. [Google Scholar] [CrossRef]
- Song, Y.S.; Youn, J.R. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 2005, 43, 1378–1385. [Google Scholar] [CrossRef]
- Golosova, A.A.; Adelsberger, J.; Sepe, A.; Niedermeier, M.A.; Lindner, P.; Funari, S.S.; Jordan, R.; Papadakis, C.M. Dispersions of polymer-modified carbon nanotubes: A small-angle scattering investigation. J. Phys. Chem. C 2012, 116, 15765–15774. [Google Scholar] [CrossRef]
- Li, J.; Ma, P.C.; Chow, W.S.; To, C.K.; Tang, B.Z.; Kim, J.K. Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv. Funct. Mater. 2007, 17, 3207–3215. [Google Scholar] [CrossRef]
- Martin, C.A.; Sandler, J.K.W.; Shaffer, M.S.P.; Schwarz, M.K.; Bauhofer, W.; Schulte, K.; Windle, A.H. Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Compos. Sci. Technol. 2004, 64, 2309–2316. [Google Scholar] [CrossRef]
- Mahesh, P.; Shah, A.; Swamynathan, K.; Singh, D.P.; Douali, R.; Kumar, S. Carbon dot-dispersed hexabutyloxytriphenylene discotic mesogens: Structural, morphological and charge transport behavior. J. Mater. Chem. C 2020, 8, 9252–9261. [Google Scholar] [CrossRef]
- Iqbal, A.; Urbanska, M.; Dąbrowski, R.S.; Kumar, S.; Dhar, R. Impact of carbon quantum dots on self-assembly and dielectric relaxation modes of a room temperature tri-component fluorinated antiferroelectric liquid crystal mixture. Soft Matter 2023, 19, 9293–9307. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.K.; Dhar, R.; Dabrowski, R. Enhancement of dielectric and electro-optical characteristics of liquid crystalline material 4′-octyl-4-cyano-biphenyl with dispersed functionalized and nonfunctionalized multiwalled carbon nanotubes. Phys. Rev. E 2023, 107, 044704. [Google Scholar] [CrossRef]
- Ji, X.; Lu, Z.; Wang, J.; Ye, N.; Zhang, H.; Zhou, L.; Li, J.; Lu, Y. Construction of micro-nano hybrid structure based on carbon nanotube whisker and alumina for thermally conductive yet electrically insulating silicone rubber composites. Compos. Sci. Technol. 2024, 249, 110495. [Google Scholar] [CrossRef]
- Verma, R.; Mishra, M.; Dhar, R.; Dabrowski, R. Enhancement of electrical conductivity, director relaxation frequency and slope of electro-optical characteristics in the composites of single-walled carbon nanotubes and a strongly polar nematic liquid crystal. Liq. Cryst. 2017, 44, 544–556. [Google Scholar] [CrossRef]
- Tripathi, P.; Mishra, M.; Kumar, S.; Dabrowski, R.; Dhar, R. Dependence of physical parameters on the size of silver nano particles forming composites with a nematic liquid crystalline material. J. Mol. Liq. 2018, 268, 403–409. [Google Scholar] [CrossRef]
- Yaduvanshi, P.; Mishra, A.; Kumar, S.; Dhar, R. Enhancement in the thermodynamic, electrical and optical properties of hexabutoxytriphenylene due to copper nanoparticles. J. Mol. Liq. 2015, 208, 160–164. [Google Scholar] [CrossRef]
- Lal, A.; Verma, H.; Chirra, S.; Dhar, R.; Dabrowski, R.; Pandey, K.L. Gold nanorod-induced effects in a mesogenic compound 4-(trans-4-n-Hexylcyclohexyl) isothiocyanatobenzene. ACS Omega 2023, 8, 29012–29024. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Luo, L.; Chen, Y.; Li, J.; Dai, Y.; Xie, Y.; Ma, Y.; Zhang, J.; Zhang, Y. Noble-metal-free Bi-OZIS nanohybrids for sacrificial-agent-free photocatalytic water splitting: With long-lived photogenerated electrons. Sep. Purif. Technol. 2025, 357, 130047. [Google Scholar] [CrossRef]
- Kundalwal, S.I.; Meguid, S.A. Micromechanics modelling of the effective thermoelastic response of nano-tailored composites. Eur. J. Mech.-A/Solids 2015, 53, 241–253. [Google Scholar] [CrossRef]
- Hassanzadeh-Aghdam, M.K. Evaluating the effective creep properties of graphene-reinforced polymer nanocomposites by a homogenization approach. Compos. Sci. Technol. 2021, 209, 108791. [Google Scholar] [CrossRef]
- Tsai, J.L.; Tzeng, S.H.; Chiu, Y.T. Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Compos. Part B Eng. 2010, 41, 106–115. [Google Scholar] [CrossRef]
- Hassanzadeh-Aghdam, M.K.; Mahmoodi, M.J.; Ansari, R. Creep performance of CNT polymer nanocomposites-An emphasis on viscoelastic interphase and CNT agglomeration. Compos. Part B Eng. 2019, 168, 274–281. [Google Scholar] [CrossRef]
CB | ||||||
SiC | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umer, U.; Abidi, M.H.; Almutairi, Z.; Aboudaif, M.K. A Multi-Phase Analytical Model for Effective Electrical Conductivity of Polymer Matrix Composites Containing Micro-SiC Whiskers and Nano-Carbon Black Hybrids. Polymers 2025, 17, 128. https://doi.org/10.3390/polym17020128
Umer U, Abidi MH, Almutairi Z, Aboudaif MK. A Multi-Phase Analytical Model for Effective Electrical Conductivity of Polymer Matrix Composites Containing Micro-SiC Whiskers and Nano-Carbon Black Hybrids. Polymers. 2025; 17(2):128. https://doi.org/10.3390/polym17020128
Chicago/Turabian StyleUmer, Usama, Mustufa Haider Abidi, Zeyad Almutairi, and Mohamed K. Aboudaif. 2025. "A Multi-Phase Analytical Model for Effective Electrical Conductivity of Polymer Matrix Composites Containing Micro-SiC Whiskers and Nano-Carbon Black Hybrids" Polymers 17, no. 2: 128. https://doi.org/10.3390/polym17020128
APA StyleUmer, U., Abidi, M. H., Almutairi, Z., & Aboudaif, M. K. (2025). A Multi-Phase Analytical Model for Effective Electrical Conductivity of Polymer Matrix Composites Containing Micro-SiC Whiskers and Nano-Carbon Black Hybrids. Polymers, 17(2), 128. https://doi.org/10.3390/polym17020128