A Micro Insight of Water Permeation in Polyurethane: Navigating for Water Transport
Abstract
:1. Introduction
2. Simulation Method
2.1. Force Field and Simulation Details
2.2. Model Construction
2.3. Penetration Simulation
3. Results and Discussion
3.1. The Effect of Water Pressure
3.2. The Effect of Channel Width
3.3. Motion and Structural Characteristics of Water Molecules in Confined Spaces
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Chen, J.; Gan, Z.; Qiu, L.; Zhang, K.; Yang, R.; Ma, x.; Liu, Z. Experimental study of moisture uptake of polyurethane foam subjected to a heat sink below 30 K. Cryogenics 2014, 59, 1–6. [Google Scholar] [CrossRef]
- Yi, Y.; Sun, Y.; Wang, L.; Xiao, P. Impacts of moisture absorption on electrical properties of rigid polyurethane foam for composite post insulator of UHVDC transmission line. Int. J. Electr. Power Energy Syst. 2021, 131, 107098. [Google Scholar] [CrossRef]
- Cong, L.; Yang, F.; Guo, G.; Ren, M.; Shi, J.; Tan, L. The use of polyurethane for asphalt pavement engineering applications: A state-of-the-art review. Constr. Build. Mater. 2019, 225, 1012–1025. [Google Scholar] [CrossRef]
- Huang, Z.; Su, Q.; Huang, J.; Dong, M.; Li, D.; Liu, T. Polyurethane grouting materials with different compositions for the treatment of mud pumping in ballastless track subgrade beds: Properties and application effect. Railw. Eng. Sci. 2022, 30, 204–220. [Google Scholar] [CrossRef]
- Li, S.; Wang, P.; Yuan, C.; Li, J.; Ma, P.; Zhi, B.; Zhou, H.; Tian, Y. Adaptability of polyurethane/water glass grouting reinforcement to subsea tunnels. Constr. Build. Mater. 2021, 311, 125354. [Google Scholar] [CrossRef]
- Ke, Q.; Guo, C.; Ma, H.; Wang, F. Corrosion resistance of polyurethane grouting material in landfill site. Environ. Geotech. 2023, 10, 419–429. [Google Scholar] [CrossRef]
- Wang, Z.; Du, M.; Fang, H.; Zhang, C.; Li, M.; Shi, M. Influence of different corrosion environments on mechanical properties of a roadbed rehabilitation polyurethane grouting material under uniaxial compression. Constr. Build. Mater. 2021, 301, 124092. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, B.; Qian, Z.; Yu, J.; Shi, T.; Fan, Y.; Zhou, Y.; Ning, Y.; Zhou, X. State-of-the art on preparation, performance, and ecological applications of planting concrete. Case Stud. Constr. Mater. 2024, 20, e03131. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Liu, Y.; Cui, Y.; Zhao, M.; Peng, S.; Wang, H.; Song, Z.; Zhang, Q.; Shi, D.; et al. Effects of polyol types on underwater curing properties of polyurethane. Polymers 2025, 17, 5. [Google Scholar] [CrossRef]
- Hong, B.; Xian, G.; Li, H. Effects of water or alkali solution immersion on the water uptake and physicomechanical properties of polyurethane. Polym. Eng. Sci. 2018, 58, 2276–2287. [Google Scholar] [CrossRef]
- Huacuja-Sánchez, J.E.; Mülle, K.; Possart, W. Water diffusion in a crosslinked polyether-based polyurethane adhesive. Int. J. Adhes. Adhes. 2016, 66, 167–175. [Google Scholar] [CrossRef]
- Xu, Y.; Tian, C.; Bao, L.; Wei, K.; Liu, Y.; Yu, B.; Zhou, F. Study on hygroscopic mechanism and atomic-scale hygroscopic pathways of polyurethane foams. J. Appl. Polym. Sci. 2023, 140, 1–18. [Google Scholar] [CrossRef]
- Goldschmidt, F.; Diebels, S. Modelling and numerical investigations of the mechanical behavior of polyurethane under the influence of moisture. Arch. Appl. Mech. 2015, 85, 1035–1042. [Google Scholar] [CrossRef]
- Yu, X.; Yuan, Y.; Deng, Z. Experimental investigation on the water stability of castable high-capacity polyurethane bearing. Constr. Build. Mater. 2023, 398, 132485. [Google Scholar] [CrossRef]
- Bratasyuk, N.A.; Ostanin, S.A.; Mokeev, M.V.; Zuev, V.V. Water transport in epoxy/polyurethane interpenetrating networks. Polym. Adv. Technol. 2022, 33, 3173–3191. [Google Scholar] [CrossRef]
- Yu, Y.; Hearon, K.; Wilson, T.S.; Maitland, D.J. The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams. Smart Mater. Struct. 2011, 20, 085010. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, F.; Sharif, F.; Sarabi, A.A.; Kasiriha, S.M.; Rahmanian, M.; Akbarinezhad, E. Evaluating water transport through high solid polyurethane coating using the EIS method. J. Coat. Technol. Res. 2010, 7, 209–217. [Google Scholar] [CrossRef]
- Ding, X.; Hu, J.; Tao, X.; Wang, Z.; Wang, B. Free volume and water vapor transport properties of temperature-sensitive polyurethanes. J. Polym. Sci. Part B-Polym. Phys. 2005, 43, 1865–1872. [Google Scholar] [CrossRef]
- Mondal, P.; Khakhar, D.V. Simulation of the percolation of water into rigid polyurethane foams at applied hydraulic pressures. Polym. Eng. Sci. 2006, 46, 970–983. [Google Scholar] [CrossRef]
- Barszczewska, I.; Jaszcz, K.; Chladek, G.; Grabowska, P.; Okseniuk, A.; Szpot, M.; Zawadzka, M.; Sokolowska, A.; Tarkiewicz, A. Characterization of changes in structural, physicochemical and mechanical properties of rigid polyurethane building insulation after thermal aging in air and seawater. Polym. Bull. 2021, 79, 3061–3083. [Google Scholar] [CrossRef]
- Braun, J.; Klein, M.O.; Bernarding, J.; Leitner, M.B.; Mika, H.D. Non-destructive, three-dimensional monitoring of water absorption in polyurethane foams using magnetic resonance imaging. Polym. Test. 2003, 22, 761–767. [Google Scholar] [CrossRef]
- Kim, T.W.; Kim, S.K.; Kim, J.H.; Lee, J.M. Effects of environmental conditions on the mechanical and degradation behavior of polyurethane foam subjected to various deformation histories. J. Mater. Eng. Perform. 2019, 29, 5063–5075. [Google Scholar] [CrossRef]
- Idolor, O.; Guha, R.D.; Berkowitz, K.; Geiger, C.; Davenport, M.; Grace, L. Polymer-water interactions and damage detection in polymer matrix composites. Compos. Part B Eng. 2021, 211, 108637. [Google Scholar] [CrossRef]
- Huo, Z.; Mohamed, M.; Nicholas, J.R.; Wang, X.; Chandrashekhara, K. Experimentation and simulation of moisture diffusion in foam-cored polyurethane sandwich structure. J. Sandw. Struct. Mater. 2016, 18, 30–49. [Google Scholar] [CrossRef]
- Starkova, O.; Buschhorn, S.T.; Mannov, E.; Schulte, K.; Aniskevich, A. Water transport in epoxy/MWCNT composites. Eur. Polym. J. 2013, 49, 2138–2148. [Google Scholar] [CrossRef]
- Zhu, S.; Lempesis, N.; in ‘t Veld, P.J.; Rutledge, G.C. Molecular simulation of thermoplastic polyurethanes under large tensile deformation. Macromolecules 2018, 51, 1850–1864. [Google Scholar] [CrossRef]
- Zhu, S.; Lempesis, N.; in ‘t Veld, P.J.; Rutledge, G.C. Molecular simulation of thermoplastic polyurethanes under large compressive deformation. Macromolecules 2018, 51, 9306–9316. [Google Scholar] [CrossRef]
- Jang, C.W.; Kang, J.H.; Palmieri, F.L.; Hudson, T.B.; Brandenburg, C.J.; Lawson, J.W. Molecular dynamic investigation of the structural and mechanical properties of off-stoichiometric epoxy resins. ACS Appl. Polym. Mater. 2021, 3, 2950–2959. [Google Scholar] [CrossRef]
- Chen, M.; Wu, B.; Zhou, L.; Zhu, Y.; Wu, H.A. Micromechanical properties of pyrolytic carbon with interlayer crosslink. Carbon 2020, 159, 549–5607. [Google Scholar] [CrossRef]
- Chowdhury, S.C.; Elder, R.M.; Sirk, T.W.; Gillespie, J.W. Epoxy resin thermo-mechanics and failure modes: Effects of cure and cross-linker length. Compos. Part B Eng. 2020, 186, 107814. [Google Scholar] [CrossRef]
- Pathirannahalage, S.P.K.; Meftahi, N.; Elbourne, A.; Weiss, A.C.G.; McConville, C.F.; Padua, A.; Winkler, D.A.; Gomes, M.C.; Greaves, T.L.; Le, T.C.; et al. Systematic comparison of the structural and dynamic properties of commonly used water models for molecular dynamics simulations. J. Chem. Inf. Model. 2021, 61, 4521–4536. [Google Scholar] [CrossRef] [PubMed]
- Kinnaman, L.J.; Roller, R.M.; Miller, C.S. Comparing classical water models using molecular dynamics to find bulk properties. J. Chem. Educ. 2018, 95, 888–894. [Google Scholar] [CrossRef]
- Song, Y.; Wei, M.; Xu, F.; Wang, Y. Transport mechanism of water molecules passing through polyamide/COF mixed matrix membranes. Phys. Chem. Chem. Phys. 2019, 21, 26591–26597. [Google Scholar] [CrossRef]
- Mani, S.; Khabaz, F.; Godbole, R.V.; Hedden, R.C.; Khare, R. Structure and hydrogen bonding of water in polyacrylate gels: Effects of polymer hydrophilicity and water concentration. J. Phys. Chem. B 2015, 119, 15381–15393. [Google Scholar] [CrossRef]
- Aryal, D.; Ganesan, V. Reversal of salt concentration dependencies of salt and water diffusivities in polymer electrolyte membranes. ACS Macro Lett. 2018, 7, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Song, J.; Tian, Q.; Song, N.; Liang, S.; Tian, C.; Qiang, X.; Lei, Y.; Chen, K.; Almásy, L. Understanding water absorption effect on molecular dynamics, microstructures and relaxation behavior of segmented polyurethane elastomers. Polym. Degrad. Stab. 2023, 214, 110415. [Google Scholar] [CrossRef]
- Afsharhashemkhani, S.; Jamal-Omidi, M. Investigating the effect of chemical structures on water sorption and diffusion in amine-cured epoxy resins by molecular dynamics simulations. Comput. Mater. Sci. 2024, 235, 112809. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.; Wu, Q.; Zhan, G.; Li, S. Effect of chemical structure on the water sorption of amine-cured epoxy resins. Corros. Sci. 2009, 51, 3000–3006. [Google Scholar] [CrossRef]
- Zhou, Y.; Choi, P. Molecular dynamics study of water diffusion in an amphiphilic block copolymer with large difference in the blocks’ glass transition temperatures. Front. Chem. Sci. Eng. 2017, 11, 440–447. [Google Scholar] [CrossRef]
- Wang, L.; Dumont, R.S.; James, M.D. Molecular dynamic simulations of pressure-driven water transport through polyamide nanofiltration membranes at different membrane densities. RSC Adv. 2016, 6, 63586–63596. [Google Scholar] [CrossRef]
- Ding, M.; Szymczy, A.; Ghoufi, A. On the structure and rejection of ions by a polyamide membrane in pressure-driven molecular dynamics simulations. Desalination 2015, 368, 76–80. [Google Scholar] [CrossRef]
- Zhou, D.; Choi, P. Molecular dynamics study of water diffusivity at low concentrations in non-swollen and swollen polyurethanes. Polymer 2012, 53, 3253–3260. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, K.; Wu, Y.; Wang, C.; Fang, H.; Xu, Z.; Liang, J. Molecular dynamics simulation of water permeation mechanism in polymer grouting material. Mater. Today Commun. 2024, 40, 109933. [Google Scholar] [CrossRef]
- Zhang, P.; Hou, D.; Liu, Q.; Liu, Z. Water and chloride ions migration in porous cementitious materials: An experimental and molecular dynamics investigation. Cem. Concr. Res. 2017, 102, 161–174. [Google Scholar] [CrossRef]
- Liang, X.; Ma, C.; Jiao, S. Study on confined water in flexible graphene/GO nanochannels. J. Phys. Chem. B 2024, 128, 5472–5480. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Xue, H.; Lu, S.; Greenwell, H.C.; Xu, Y.; He, T.; Erastova, V. Molecular dynamics of quantitative evaluation of confined fluid behavior in nanopores media and the influencing mechanism: Pore size and pore geometry. Phys. Fluids 2024, 36, 092027. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Maxwell, D.S.; TiradoRives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Shrivastav, G.; Agarwal, M. Stress-strain relationships in hydroxyl substituted polyethylene. J. Phys. Chem. B 2016, 120, 7598–7605. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; TiradoRives, J. The OPLS potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 1988, 110, 1657–1666. [Google Scholar] [CrossRef]
- Long, J.; Xi, M.; Yang, P.; Huang, Z. Mechanisms of metal wettability transition and fabrication of durable superwetting/superhydrophilic metal surfaces. Appl. Surf. Sci. 2024, 654, 159497. [Google Scholar] [CrossRef]
- Zhu, F.; Tajkhorshid, E.; Schulten, K. Pressure-induced water transport in membrane channels studied by molecular dynamics. Biophys. J. 2002, 83, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Hou, H.; Wang, K.; Li, M.; Liaw, P.K.; Zhao, Y. Coalescence of Al0.3CoCrFeNi polycrystalline high-entropy alloy in hot-pressed sintering: A molecular dynamics and phase-field study. npj Comput. Mater. 2023, 9, 185. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Hang, Z.; Wu, Y.; Zhang, C.; Wu, Y. A Micro Insight of Water Permeation in Polyurethane: Navigating for Water Transport. Polymers 2025, 17, 129. https://doi.org/10.3390/polym17020129
Chen K, Hang Z, Wu Y, Zhang C, Wu Y. A Micro Insight of Water Permeation in Polyurethane: Navigating for Water Transport. Polymers. 2025; 17(2):129. https://doi.org/10.3390/polym17020129
Chicago/Turabian StyleChen, Kai, Zhenyuan Hang, Yongshen Wu, Chao Zhang, and Yingfeng Wu. 2025. "A Micro Insight of Water Permeation in Polyurethane: Navigating for Water Transport" Polymers 17, no. 2: 129. https://doi.org/10.3390/polym17020129
APA StyleChen, K., Hang, Z., Wu, Y., Zhang, C., & Wu, Y. (2025). A Micro Insight of Water Permeation in Polyurethane: Navigating for Water Transport. Polymers, 17(2), 129. https://doi.org/10.3390/polym17020129