Ternary Epoxy Nanocomposites with Synergistic Effects: Preparation, Properties Evaluation and Structure Analysis
Abstract
:1. Introduction
2. Experimental
2.1. Materials
- Epoxy resin (Epidian 52 purchased from Sarzyna Co., Nowa Sarzyna, Poland), which has an epoxy number in the range of 0.510–0.550 mol/100 g and a viscosity between 400–800 mPa·s at 25 °C;
- Triethylene tetramine (trade name Z1, from Sarzyna Co., Nowa Sarzyna, Poland), which was used as a curing agent;
- Polyurethane prepolymer (Desmocap 12), produced by Bayer AG, Leverkusen, Germany;
- Carbon nanotubes, pyrolitically stripped platelets measuring D × L 100 nm × 20–200 µm, manufactured by Sigma Aldrich Co., St. Louis, MO, USA;
- Nanomer I.28E, nanoclay modified with 25–30 wt% trimethyl stearyl ammonium, produced by Nanocor Inc. Copenhagen, Denmark.
2.2. Preparation of Samples
2.2.1. Epoxy-Based Composites with One Modifier
2.2.2. Hybrid Epoxy-Based Composites
2.3. Evaluation of Mechanical and Thermal Properties
- Three-point Bending: The test was carried out on samples 10 cm long, 1 cm wide and 0.5 cm thick using a Zwick Roell machine, according to ISO-178-2019 [43]. The deformation rate was fixed at 5 mm/min.
- Charpy impact strength: The test was conducted with a Zwick Roell, on samples with the dimensions as described above and 1 mm of notch length, according to ISO-179-1:2023 [44]. The distance between the spans was 6 cm.
- Critical stress intensity factor (KC): Samples with dimensions and notch lengths identical to the samples used for strength were used for the test, which was carried out on a Zwick Roell device by means of ISO 13586:2018 [45]. The deformation rate was fixed at 5 mm/min. The parameter KC was calculated as follows:
- Thermogravimetric Analysis: The test was performed using a Q500 thermogravimetric analyzer (TA Instruments, New Castle, DE, USA) in a nitrogen atmosphere, with a heating rate of 10 °C/min. and a temperature profile of 25–800 °C.
- Differential scanning calorimetry (DSC): The test was performed on a 1 Star System calorimeter (Mettler Toledo Warszawa, Poland) under a nitrogen atmosphere and with a scanning rate of 10 °C/min.
2.4. Evaluation of Structure and Morphology Analysis
3. Results and Discussion
3.1. Mechanical Properties
3.2. Evaluation of Thermal Properties
3.3. Structure and Morphology Analysis
4. Conclusions
- This work confirmed the successful preparation of epoxy hybrid composites with improved mechanical properties: impact strength and brittle fracture energy were significantly increased compared to pure resin and binary systems. Indeed, the following synergistic effects have been obtained:
- ⁻
- The impact strengths of epoxy hybrid composites containing 1 wt% CNT and 5 wt% or 7.5 wt% of polyurethane and 0.5 wt% Nanomer and 1 wt% CNT increased by approximately 140%, 155%, and 70%, respectively;
- ⁻
- The fracture energy for hybrid nanocomposites modified with PUR/CNT and Nanomer/CNT systems increased by approximately 80% and 50%, respectively;
- ⁻
- The significantly improved mechanical and thermal properties of epoxy hybrids can be attributed to the uniform dispersion of modifiers in the matrix and the interfacial interactions between the ingredients. It is essential to create as many interactions as possible between the matrix and the modifiers, and within the latter, to eliminate agglomerates in order to generate the optimal mechanical properties of the hybrids produced.
- The addition of polyurethane and nanomodifiers increased the thermal stability of epoxy composites. The addition of flexible polyurethane chains increased the glass transition temperature as well as the softening point and the temperature range of use of the epoxy nanocomposites containing nanofillers.
- Interactions between the epoxy matrix and the added modifiers through the O-H groups of the epoxy resin with PUR and CNT were confirmed.
- Hybrid epoxy composites with improved performance properties can be safely used in harsh environments or used as advanced composite materials in the aerospace and construction industries.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Szeluga, U.; Kumanek, B.; Trzebicka, B. Synergy in hybrid polymer/nanocarbon composites. A review. Compos. Part A Appl. Sci. Manuf. 2015, 73, 204–231. [Google Scholar] [CrossRef]
- Safdari, M.; Al-Haik, M.S. A review on polymeric nanocomposites: Effect of hybridization and synergy on electrical properties. In Carbon-Based Polymer Nanocomposites for Environmental and Energy Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 113–146. [Google Scholar]
- Kumar, A.; Sharma, K.; Dixit, A.R. A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J. Mater. Sci. 2019, 54, 5992–6026. [Google Scholar] [CrossRef]
- Paszkiewicz, S.; Pypeć, K.; Irska, I.; Piesowicz, E. Functional polymer hybrid nanocomposites based on polyolefins: A review. Processes 2020, 8, 1475. [Google Scholar] [CrossRef]
- Sanusi, O.M.; Benelfellah, A.; Hocine, N.A. Clays and carbon nanotubes as hybrid nanofillers in thermoplastic-based nanocomposites—A review. Appl. Clay Sci. 2020, 185, 105408. [Google Scholar] [CrossRef]
- Sinha, A.K.; Narang, H.K.; Bhattacharya, S. Mechanical properties of hybrid polymer composites: A review. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 431. [Google Scholar] [CrossRef]
- Rajeshkumar, G.; Seshadri, S.A.; Ramakrishnan, S.; Sanjay, M.R.; Siengchin, S.; Nagaraja, K.C. A comprehensive review on natural fiber/nano-clay reinforced hybrid polymeric composites: Materials and technologies. Polym. Compos. 2021, 42, 3687–3701. [Google Scholar] [CrossRef]
- Jyoti, J.; Singh, B.P. A review on 3D graphene–carbon nanotube hybrid polymer nanocomposites. J. Mater. Sci. 2021, 56, 17411–17456. [Google Scholar] [CrossRef]
- Uthale, S.A.; Dhamal, N.A.; Shinde, D.K.; Kelkar, A.D. Polymeric hybrid nanocomposites processing and finite element modeling: An overview. Sci. Prog. 2021, 104, 1–44. [Google Scholar] [CrossRef]
- Mittal, G.; Dhand, V.; Rhee, K.Y.; Park, S.J.; Lee, W.R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25. [Google Scholar] [CrossRef]
- Shukla, M.K.; Sharma, K. Effect of carbon nanofillers on the mechanical and interfacial properties of epoxy based nanocomposites: A review. Polym. Sci. Ser. A 2019, 61, 439–460. [Google Scholar] [CrossRef]
- Singh, N.P.; Gupta, V.K.; Singh, A.P. Graphene and carbon nanotube reinforced epoxy nanocomposites: A review. Polymers 2019, 180, 121724. [Google Scholar] [CrossRef]
- Sasidharan, S.; Anand, A. Epoxy-based hybrid structural composites with nanofillers: A review. Ind. Eng. Chem. Res. 2020, 59, 12617–12631. [Google Scholar] [CrossRef]
- Upadhyay, A.K.; Goyat, M.S.; Kumar, A. A review on the effect of oxide nanoparticles, carbon nanotubes, and their hybrid structure on the toughening of epoxy nanocomposites. J. Mater. Sci. 2020, 57, 13202–13232. [Google Scholar] [CrossRef]
- Białkowska, A.; Bakar, M.; Kucharczyk, W.; Zarzyka, I. Hybrid epoxy nanocomposites: Improvement in mechanical properties and toughening mechanisms—A review. Polymers 2023, 15, 1398. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sharma, K.; Dixit, A.R. A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Lett. 2021, 31, 149–165. [Google Scholar] [CrossRef]
- Osman, A.; Elhakeem, A.; Kaytbay, S.; Ahmed, A. A comprehensive review on the thermal, electrical, and mechanical properties of graphene-based multi-functional epoxy composites. Adv. Compos. Mater. 2022, 5, 547–605. [Google Scholar] [CrossRef]
- Chen, Z.; Luo, J.; Huang, Z.; Cai, C.; Tusiime, R.; Li, Z.; Yu, J. Synergistic toughen epoxy resin by incorporation of polyetherimide and amino groups grafted MWCNTs. Compos. Commun. 2020, 21, 100377. [Google Scholar] [CrossRef]
- Ma, H.; Aravand, M.A.; Falzon, B.G. Synergistic enhancement of fracture toughness in multiphase epoxy matrices modified by thermoplastic and carbon nanotubes. Compos. Sci. Technol. 2020, 201, 108523. [Google Scholar] [CrossRef]
- Zeng, S.; Shen, M.; Xue, Y.; Zheng, Y.; Zhang, K.; Han, Y.; Yang, L. Controllable mechanical properties of epoxy composites by incorporating self-assembled carbon nanotube–montmorillonite. Compos. B Eng. 2019, 164, 368–376. [Google Scholar] [CrossRef]
- Zheng, T.; Nan, H.; Shang, C.; Qiao, Y.; Wang, X.; Shen, J. Improving interfacial and mechanical properties of epoxy resin composites by chemical grafting modification of poly-ether-ether-ketone microparticles with carbon nanotubes. Polym. Compos. 2024, 45, 13603–13613. [Google Scholar] [CrossRef]
- Li, P.; Sheng, Q.; Chen, H.; Hou, Y.; Bai, Y.; Yang, D.; Yu, L. Mechanical and tribological performances study of PEEK/CNT reinforced EP coatings via molecular dynamics simulation. Chem. Phys. Lett. 2024, 856, 141608. [Google Scholar] [CrossRef]
- Yao, J.; Shi, P.; Gao, Y.; Niu, Y. Evolution of phase structure and fracture toughness induced by carbon nanotubes in thermoplastic-toughened epoxy nanocomposites. J. Reinf. Plast. Compos. 2025, 44, 45–55. [Google Scholar] [CrossRef]
- Li, S.; Yao, Y. Synergistic improvement of epoxy composites with multi-walled carbon nanotubes and hyperbranched polymers. Compos. B Eng. 2019, 165, 293–300. [Google Scholar] [CrossRef]
- Ahmadi, M.; Zabihi, O.; Masoomi, M.; Naebe, M. Synergistic effect of MWCNTs functionalization on interfacial and mechanical properties of multi-scale UHMWPE fibre reinforced epoxy composites. Compos. Sci. Technol. 2016, 134, 1–11. [Google Scholar] [CrossRef]
- Walker, I.; Montano, M.D.; Lankone, R.S.; Fairbrother, D.H.; Ferguson, P.L. Influence of CNT loading and environmental stressors on leaching of polymer-associated chemicals from epoxy and polycarbonate nanocomposites. Environ. Chem. 2021, 18, 131–141. [Google Scholar] [CrossRef]
- Bo, Y.; Guo, A.; Zhao, H.; Liu, D. Enhancing thixotropic properties of epoxy resin and mechanical properties of epoxy resin thermosets by polyethyleneimine functionalized carbon nanotubes. Prog. Org. Coat. 2024, 196, 108721. [Google Scholar] [CrossRef]
- Qi, Z.; Tan, Y.; Zhang, Z.; Gao, L.; Zhang, C.; Tian, J. Synergistic effect of functionalized graphene oxide and carbon nanotube hybrids on mechanical properties of epoxy composites. RSC Adv. 2018, 8, 38689–38700. [Google Scholar] [CrossRef]
- Chatterjee, S.; Nafezarefi, F.; Tai, N.H.; Schlagenhauf, L.; Nüesch, F.A.; Chu, B.T.T. Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 2012, 50, 5380–5386. [Google Scholar] [CrossRef]
- Ghaleb, Z.A.; Mariatti, M.; Ariff, Z.M. Synergy effects of graphene and multiwalled carbon nanotubes hybrid system on properties of epoxy nanocomposites. J. Reinf. Plast. Compos. 2017, 36, 685–695. [Google Scholar] [CrossRef]
- Dyachkova, T.P.; Khan, Y.A.; Burakova, E.A.; Galunin, E.V.; Shigabaeva, G.N.; Stolbov, D.N.; Tkachev, A.G. Characteristics of epoxy composites containing carbon nanotubes/graphene mixtures. Polymers 2023, 15, 1476. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Pircheraghi, G.; Monemian, S.A.; Manas-Zloczower, I. Epoxy composites with carbon nanotubes and graphene nanoplatelets—Dispersion and synergy effects. Carbon 2014, 78, 268–278. [Google Scholar] [CrossRef]
- Singh, N.P.; Gupta, V.K.; Singh, A.P.; Sapra, B. Synergistic effects of graphene nanoplatelets and NH2-MWCNTs on cryogenic mechanical properties of epoxy nanocomposites. Polym. Test. 2021, 94, 107032. [Google Scholar] [CrossRef]
- Shukla, M.K.; Sharma, K. Effect of functionalized graphene/CNT ratio on the synergetic enhancement of mechanical and thermal properties of epoxy hybrid composite. Mater. Res. Express 2019, 6, 085318. [Google Scholar] [CrossRef]
- Tangthana-Umrung, K.; Zhang, X.; Gresil, M. Synergistic toughening on hybrid epoxy nanocomposites by introducing engineering thermoplastic and carbon-based nanomaterials. Polymer 2022, 245, 124703. [Google Scholar] [CrossRef]
- Jia, L.; Qi, P.; Shi, K.; Liu, X.; Ma, W.; Lin, S.; Yang, X. High performance epoxy-based composites for cryogenic use: A approach based on synergetic strengthening effects of epoxy grafted polyurethane and NH2-MWCNTs. Compos. Sci. Technol. 2019, 184, 107865. [Google Scholar] [CrossRef]
- Doley, S.; Sarmah, A.; Sarkar, C.; Dolui, S.K. In situ development of bio-based polyurethane-blend-epoxy hybrid materials and their nanocomposites with modified graphene oxide via non-isocyanate route. Polym. Int. 2018, 67, 1062–1069. [Google Scholar] [CrossRef]
- Bahramnia, H.; Semnani, H.M.; Habibolahzadeh, A.; Abdoos, H. Epoxy/polyurethane hybrid nanocomposite coatings reinforced with MWCNTs and SiO2 nanoparticles: Processing, mechanical properties and wear behavior. Surf. Coat. Technol. 2021, 415, 127121. [Google Scholar] [CrossRef]
- Zewde, B.; Pitliya, P.; Karim, A.; Raghavan, D. Synergistic effect of functionalized carbon nanotubes and micron-sized rubber particles on the mechanical properties of epoxy resin. Macromol. Mater. Eng. 2016, 301, 542–548. [Google Scholar] [CrossRef]
- Lim, Y.J.; Carolan, D.; Taylor, A.C. Simultaneously tough and conductive rubber–graphene–epoxy nanocomposites. J. Mater. Sci. 2016, 51, 8631–8644. [Google Scholar] [CrossRef]
- Mehrabi-Kooshki, M.; Jalali-Arani, A. Preparation of binary and hybrid epoxy nanocomposites containing graphene oxide and rubber nanoparticles: Fracture toughness and mechanical properties. J. Appl. Polym. Sci. 2019, 136, 46988. [Google Scholar] [CrossRef]
- Jen, Y.M.; Chang, H.H.; Lu, C.M.; Liang, S.Y. Temperature-dependent synergistic effect of multi-walled carbon nanotubes and graphene nanoplatelets on the tensile quasi-static and fatigue properties of epoxy nanocomposites. Polymers 2020, 13, 84. [Google Scholar] [CrossRef]
- ISO-178-2019; Oznaczanie Właściwości Zginających Tworzyw Sztucznych. Polski Komitet Normalizacyjny: Warszawa, Poland, 2019.
- ISO-179-1:2023; Plastics—Determination of Charpy Impact Properties. International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 13586:2018; Plastics—Determination of Fracture Toughness (GIC and KIC)—Linear Elastic Fracture Mechanics (LEFM) Approach. International Organization for Standardization: Geneva, Switzerland, 2018.
- Gharieh, A.; Seyed Dorraji, M.S. A systematic study on the synergistic effects of MWCNTs and core–shell particles on the physicomechanical properties of epoxy resin. Sci. Rep. 2021, 11, 20789. [Google Scholar] [CrossRef]
- Białkowska, A.; Suroń, P.; Kucharczyk, W.; Hanulikova, B.; Bakar, M. Synergistic Toughening and Strengthening of an Epoxy Resin Modified by the Simultaneous Use of Two Different Modifiers. Bull. Pol. Acad. Sci. 2024, 72, e149176. [Google Scholar] [CrossRef]
- Żurowski, W.; Zepchło, J.; Krzyzak, A.; Gevorkyan, E.; Rucki, M.; Siek, E.; Białkowska, A. Wear Resistance of the Glass-Fiber Reinforced Polymer Composite with the Addition of Quartz Filler. Materials 2021, 14, 3825. [Google Scholar] [CrossRef] [PubMed]
- Żurowski, W.; Zepchlo, J.; Cep, R.; Cepova, L.; Rucki, M.; Krzysiak, Z.; Caban, J.; Samociuk, W. The Effect of Powder and Emulsion Binders on the Tribological Properties of Particulate Filled Glass Fiber Reinforced Polymer Composites. Polymers 2023, 15, 245. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, A.; Sbarufatti, C.; Jiménez-Suárez, A.; Hamouda, A.M.S.; Rovatti, L.; Ureña, A. Synergistic effects of double-walled carbon nanotubes and nanoclays on mechanical, electrical and piezoresistive properties of epoxy based nanocomposites. Compos. Sci. Technol. 2020, 200, 108459. [Google Scholar] [CrossRef]
- Zhang, M.; Zhai, Z.; Li, M.; Cheng, T.; Wang, C.; Jiang, D.; Guo, Z. Epoxy nanocomposites with carbon nanotubes and montmorillonite: Mechanical properties and electrical insulation. J. Compos. Mater. 2016, 50, 3363–3372. [Google Scholar] [CrossRef]
- Harani, H.; Fellahi, S.; Bakar, M. Toughening of epoxy resin using synthesized polyurethane prepolymer based on hydroxyl-terminated polyesters. J. Appl. Polym. Sci. 1998, 70, 2603–2618. [Google Scholar] [CrossRef]
- Yi, X.F.; Mishra, A.K.; Kim, N.H.; Ku, B.C.; Lee, J.H. Synergistic effects of oxidized CNTs and reactive oligomer on the fracture toughness and mechanical properties of epoxy. Compos. Part A Appl. Sci. Manuf. 2013, 49, 58–67. [Google Scholar] [CrossRef]
- Moon, S.Y.; Kim, W.S. High mechanical properties of super aligned carbon nanocomposite by polyurethane based crosslinking molecules. Compos. Sci. Technol. 2018, 161, 100–106. [Google Scholar] [CrossRef]
- Kinloch, A.J.; Young, R.J. Fracture Behaviour of Polymers; Applied Science Publishers Limited: London, UK, 1983. [Google Scholar]
- Singh, P.; Sharma, S.; Kumar, K.; Lal, S.; Iyer, G.; Kumar, A. Synergetic Effect of TiO2 Toward Mechanically and Thermally Stable Hybrid Epoxy Nanocomposites: A Review. Polym.-Plast. Technol. Mater. 2024, 1–28. [Google Scholar] [CrossRef]
- Akbari, B.; Bagheri, R. Deformation mechanism of epoxy/clay nanocomposite. Eur. Polym. J. 2007, 43, 782–788. [Google Scholar] [CrossRef]
- Bezy, N.A.; Fathima, A.L. Effect of TiO2 nanoparticles on mechanical properties of epoxy-resin system. Int. J. Eng. Res. Gen. Sci. 2015, 3, 143–151. [Google Scholar]
- Ondrušová, D.; Labaj, I.; Pajtášová, M.; Vršková, J.; Božeková, S.; Feriancová, A.; Skalková, P. Targeted modification of the composition of polymer systems for industrial applications. Bull. Pol. Acad. Sci. Tech. Sci. 2021, 69, e136721. [Google Scholar] [CrossRef]
- Szymańska, J.; Bakar, M.; Kostrzewa, M.; Lavorgna, M. Preparation and characterization of reactive liquid rubbers toughened epoxy-clay hybrid nanocomposites. J. Polym. Eng. 2016, 36, 43–52. [Google Scholar] [CrossRef]
- Nanda, T.; Sharma, G.; Mehta, R.; Shelly, D.; Singh, K. Mechanisms for enhanced impact strength of epoxy based nanocomposites reinforced with silicate platelets. Mater. Res. Express 2019, 6, 065061. [Google Scholar] [CrossRef]
PUR Content (wt%) | KC MPa.m0.5 | Brittle Fracture Energy (kJ/m2) | Nanomer Content (wt%) | KC MPa.m0.5 | Brittle Fracture Energy (kJ/m2) |
---|---|---|---|---|---|
0/0 | 2.8 | 4.0 | 0/0 | 2.5 | 4.0 |
0 | 3.2 | 4.8 | 0 | 3.5 | 4.8 |
3.75% | 3.3 | 6.2 | 0.5 | 3.3 | 5.5 |
5% | 2.9 | 6.4 | 1 | 2.2 | 2.3 |
7.50% | 3.2 | 7.2 | 2 | 2.3 | 2.4 |
10% | 1.8 | 2.7 | |||
a | b |
Nanomer Content (wt%) | Flexural Strength (MPa) | Flexural Energy to Break (kJ/m2) | Polyurethane Content (wt%) | Flexural Strength (MPa) | Flexural Energy to Break (kJ/m2) |
---|---|---|---|---|---|
0/0 | 73.0 | 17.5 | 0/0 | 73.0 | 17.5 |
0 | 106.0 | 14.5 | 0 | 70.0 | 14.5 |
0,5 | 94.9 | 15. 8 | 3.75 | 71.0 | 14.1 |
1 | 74.7 | 6.3 | 5 | 67.9 | 10.6 |
2 | 68.4 | 4.4 | 7.5 | 71.7 | 18.6 |
10 | 42.0 | 5.9 | |||
a | b |
Sample | m0 [mg] | Tp [°C] | Tg1 [°C] | Tp1 [°C] | Tg2 [°C] |
---|---|---|---|---|---|
Pure epoxy matrix | 10.17 | 56 | 44 | ---- | 43 |
1% CNT | 9.65 | --- | 82 | 92 | 82 |
0.5% Nanomer | 10.24 | 58 | 47 | --- | 50 |
0.5% Nanomer + 1% CNT | 10.45 | 57 | 79 | --- | 77 |
1% Nanomer + 1% CNT | 10.11 | 91 | 83 | --- | 85 |
5% PUR | 9.86 | 48 | 45 | 55 | 46 |
7.5% PUR | 10.39 | 121 | 68 | 82 | 78 |
10% PUR + 1% CNT | 10.19 | 56 | 53 | 78 | 63 |
7.5% PUR + 1%CNT | 10.58 | --- | 50 | --- | 54 |
5% PUR + 1%CNT | 9.98 | 67 | 48 | 52 | 54 |
Sample | Thermal Stability TST [°C] | Peak 1 | Peak 2 | mT [%] | ||
---|---|---|---|---|---|---|
T1 [°C] | Δm1 [%] | T2 [°C] | Δm2 [%] | |||
Pure Epidian 52 | 192 | 199 | 6.73 | 357 | 90.74 | 93.52 |
1% CNT | 340 | 163 | 1.29 | 363 | 90.27 | 91.55 |
0.5% Nanomer | 194 | 202 | 12.41 | 360 | 80.42 | 92.83 |
0.5% Nanomer + 1% CNT | 272 | 222 | 5.75 | 359 | 85.86 | 91.61 |
7.5% PUR | 340 | 151 | 1.23 | 364 | 91.95 | 93.18 |
7.5% PUR + 1% CNT | 208 | 231 | 9.29 | 363 | 84.88 | 94.17 |
5% PUR + 1% CNT | 201 | 226 | 9.35 | 363 | 85.15 | 94.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suroń, P.; Białkowska, A.; Bakar, M.; Hanulikova, B.; Masař, M.; Kroisová, D. Ternary Epoxy Nanocomposites with Synergistic Effects: Preparation, Properties Evaluation and Structure Analysis. Polymers 2025, 17, 158. https://doi.org/10.3390/polym17020158
Suroń P, Białkowska A, Bakar M, Hanulikova B, Masař M, Kroisová D. Ternary Epoxy Nanocomposites with Synergistic Effects: Preparation, Properties Evaluation and Structure Analysis. Polymers. 2025; 17(2):158. https://doi.org/10.3390/polym17020158
Chicago/Turabian StyleSuroń, Patryk, Anita Białkowska, Mohamed Bakar, Barbora Hanulikova, Milan Masař, and Dora Kroisová. 2025. "Ternary Epoxy Nanocomposites with Synergistic Effects: Preparation, Properties Evaluation and Structure Analysis" Polymers 17, no. 2: 158. https://doi.org/10.3390/polym17020158
APA StyleSuroń, P., Białkowska, A., Bakar, M., Hanulikova, B., Masař, M., & Kroisová, D. (2025). Ternary Epoxy Nanocomposites with Synergistic Effects: Preparation, Properties Evaluation and Structure Analysis. Polymers, 17(2), 158. https://doi.org/10.3390/polym17020158