Characterization of Fatigue Properties of Fiber-Reinforced Polymer Composites Based on a Multiscale Approach
Abstract
:1. Introduction
2. Methodology
2.1. Multiscale Approach for Fatigue Life Prediction
2.2. Characterization Method of Constituent Material Properties
2.2.1. Parameters for Characterization Method
2.2.2. Implicit Dependency of Laminates on Constituent Properties
2.2.3. Determination of Constituent Properties via a Reverse-Engineering Approach
2.3. Temperature-Dependent Constituent Properties
3. Static and Fatigue Tests for a Reverse-Engineering Approach
3.1. Manufacturing Process of Laminate Specimens
3.2. Static Test of Laminates
3.3. Fatigue Test of Laminates
4. Determination of Constituent Material Properties
4.1. Back Engineering Determination of Fiber Properties
4.2. Back Engineering Determination of Matrix Properties
5. Verification Tests
6. Parametric Study
6.1. SN Curve of BX Laminate at RT for R = 0.1, R = 10, and R = −1
6.2. SN Curves of Double–Double Laminates Under Multiaxial Pressure Loads
7. Summary
- A reverse-engineering method was developed to determine the material properties of fiber-reinforced polymer composites.
- Static and fatigue tests were conducted on UDL and BX laminates at angles of 0°, 30°, and 60°, and results were validated using 45° BX laminates, confirming that fatigue life could be predicted with tests at only three specific angles.
- The elastic modulus values obtained were consistent with known data, while lower strength values were attributed to micro-defects introduced during the manufacturing process.
- Temperature changes significantly affected composite performance. At LT, strength and fatigue life decreased, while at HT, strength was reduced, and the SN curve became more gradual. The temperature-dependent constituent properties were functionally represented, enabling analysis across various temperature conditions.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Review of a Micro-Mechanics of Fatigue (MMFatigue)
References
- Xie, Z.; Jin, Q.; Su, G.; Lu, W. A Review of Hydrogen Storage and Transportation: Progresses and Challenges. Energies 2024, 17, 4070. [Google Scholar] [CrossRef]
- Liu, P.F.; Chu, J.K.; Hou, S.J.; Xu, P.; Zheng, J.Y. Numerical Simulation and Optimal Design for Composite High-Pressure Hydrogen Storage Vessel: A Review. Renew. Sustain. Energy Rev. 2012, 16, 1817–1827. [Google Scholar] [CrossRef]
- Degrieck, J.; Van Paepegem, W. Fatigue Damage Modeling of Fibre-Reinforced Composite Materials: Review. Appl. Mech. Rev. 2001, 54, 279–300. [Google Scholar] [CrossRef]
- Xian, G.; Zhou, P.; Li, C.; Dong, S.; Du, H.; Tian, J.; Guo, R.; Peng, Z.; Zhang, Z.; He, T. Mechanical properties evaluation of glass fiber reinforced thermoplastic composite plate under combined bending loading and water immersion. Constr. Build. Mater. 2024, 440, 137470. [Google Scholar] [CrossRef]
- Guo, R.; Xian, G.; Li, C.; He, T.; Dong, B. Effect of fiber hybrid mode on the tension–tension fatigue performance for the pultruded carbon/glass fiber reinforced polymer composite rod. Eng. Fract. Mech. 2021, 260, 108208. [Google Scholar] [CrossRef]
- Chafiq, J.; Oucht, I.; Ait El Fqih, M. Investigations of tensile behavior of basalt/glass/carbon/hybrid fiber composite. Mater. Today Proc. 2022, 52, 53–59. [Google Scholar] [CrossRef]
- Arora, S.; Chitkara, R.; Dhangar, A.S.; Dubey, D.; Kumar, R.; Gupta, A. A review of fatigue behavior of FRP composites. Mater. Today Proc. 2022, 64, 1272–1275. [Google Scholar] [CrossRef]
- Talreja, R. Fatigue of composite materials. In Modern Trends in Composite Laminates Mechanics; Springer: Vienna, Austria, 2003; pp. 281–294. [Google Scholar] [CrossRef]
- Hashin, Z.; Rotem, A. A Fatigue Failure Criterion for Fiber Reinforced Materials. J. Compos. Mater. 1973, 7, 448–464. [Google Scholar] [CrossRef]
- Ellyin, F.; El-Kadi, H. A Fatigue Failure Criterion for Fiber Reinforced Composite Laminae. Compos. Struct. 1990, 15, 61–74. [Google Scholar] [CrossRef]
- Sayyidmousavi, A.; Bougherara, H.; Fawaz, Z. A Multiscale Approach for Fatigue Life Prediction of Polymer Matrix Composite Laminates. J. Reinf. Plast. Compos. 2015, 34, 1099–1109. [Google Scholar] [CrossRef]
- Paley, M.; Aboudi, J. Micromechanical Analysis of Composites by the Generalized Cells Model. Mech. Mater. 1992, 14, 127–139. [Google Scholar] [CrossRef]
- Brunbauer, J.; Gaier, C.; Pinter, G. Computational Fatigue Life Prediction of Continuously Fibre Reinforced Multiaxial Composites. Compos. Part B Eng. 2015, 80, 269–277. [Google Scholar] [CrossRef]
- Kumar, R.; Zafar, S.; Pathak, H.; Subramani, M.; Li, C.; Huang, S.-J. Effect of Stress Ratio and Loading Inclination on the Fatigue Life of Carbon-Fiber-Reinforced Polymer Composites: Multiscale Analysis Approach. J. Compos. Sci. 2023, 7, 406. [Google Scholar] [CrossRef]
- Ha, D.; Kim, J.H.; Kim, T.; Joo, Y.S.; Yun, G.J. Multiscale Fatigue Damage Model for CFRP Laminates Considering the Effect of Progressive Interface Debonding. Mech. Adv. Mater. Struct. 2024, 31, 2321–2333. [Google Scholar] [CrossRef]
- Lee, H.K.; Pyo, S.H. 3D-Damage Model for Fiber-Reinforced Brittle Composites with Microcracks and Imperfect Interfaces. J. Eng. Mech. 2009, 135, 1108–1118. [Google Scholar] [CrossRef]
- Shokrieh, M.M.; Lessard, L.B. Progressive Fatigue Damage Modeling of Composite Materials, Part II: Material Characterization and Model Verification. J. Compos. Mater. 2000, 34, 1081–1116. [Google Scholar] [CrossRef]
- Huang, Y.; Jin, K.; Xu, L.; Mustafa, G.; Han, Y.; Ha, S. A Micromechanical Methodology for Fatigue Life Prediction of Polymeric Matrix Composites. In Proceedings of the 18th International Conference on Composite Materials, Jeju Island, Republic of Korea, 21–26 August 2011. [Google Scholar]
- Ha, S.K.; Jin, K.K.; Huang, Y. Micro-Mechanics of Failure (MMF) for Continuous Fiber Reinforced Composites. J. Compos. Mater. 2008, 42, 1873–1895. [Google Scholar] [CrossRef]
- Jin, K.; Huang, Y.; Lee, Y.H.; Ha, S.K. Distribution of Micro Stresses and Interfacial Tractions in Unidirectional Composites. J. Compos. Mater. 2008, 42, 1825–1849. [Google Scholar] [CrossRef]
- Tsai, S.W. Introduction to Composite Materials; Routledge: London, UK, 2018. [Google Scholar]
- DNV GL. DNVGL-ST-0376: Rotor Blades for Wind Turbines; DNV GL: Høvik, Norway, 2015. [Google Scholar]
- DNV GL. DNVGL-ST-F119: Thermoplastic Composite Pipes, Edition August 2018; DNV GL: Høvik, Norway, 2018. [Google Scholar]
- Huang, Y.; Cimini, C.A.; Ha, S.K. A Micromechanical Unit Cell Model with an Octagonal Fiber for Continuous Fiber Reinforced Composites. J. Compos. Mater. 2020, 54, 4495–4513. [Google Scholar] [CrossRef]
- Basquin, O.H. The Exponential Law of Endurance Tests. Proc. Am. Soc. Test. Mater. 1910, 10, 625–630. [Google Scholar]
- Kaddour, A.S.; Hinton, M.J.; Smith, P.A.; Li, S. Mechanical Properties and Details of Composite Laminates for the Test Cases Used in the Third World-Wide Failure Exercise. J. Compos. Mater. 2013, 47, 2427–2442. [Google Scholar] [CrossRef]
- Sápi, Z.; Butler, R. Properties of cryogenic and low temperature composite materials—A review. Cryogenics 2020, 111, 103190. [Google Scholar] [CrossRef]
- Ansari, M.d.T.A.; Singh, K.K.; Azam, M.S. Fatigue Damage Analysis of Fiber-Reinforced Polymer Composites—A Review. J. Reinf. Plast. Compos. 2018, 37, 636–654. [Google Scholar] [CrossRef]
- ASTM D3039/D3039M-17; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- Zbončak, R.; Votrubec, V.; Švec, M. The Alternative Procedures of Fiber Volume Ratio Determination of Long-Fiber Carbon–Epoxy Composites. Manuf. Technol. 2018, 18, 160–164. [Google Scholar] [CrossRef]
- Toray Carbon Fibers America, Inc. T700S Data Sheet; CFA-005, Rev. 6. 2018. Available online: https://www.toraycma.com/wp-content/uploads/T300-Technical-Data-Sheet-1.pdf (accessed on 15 September 2024).
- Aditya Birla Chemicals (Thailand) Ltd. Comparative Test Results of Recyclable Epoxy Systems for Composite Pressure Vessel; Map Ta Phut: Rayong, Thailand, 2022. [Google Scholar]
- Deng, S.; Hou, M.; Ye, L. Temperature-Dependent Elastic Moduli of Epoxies Measured by DMA and Their Correlations to Mechanical Testing Data. Polym. Test. 2007, 26, 803–813. [Google Scholar] [CrossRef]
- ASTM D3479/D3479M-19; Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2019.
- Cormier, L.; Joncas, S.; Nijssen, R.P.L. Effects of low temperature on the mechanical properties of glass fibre-epoxy composites: Static tension, compression, R = 0.1 and R = −1 fatigue of ±45° laminates. Wind Energy 2016, 19, 1023–1041. [Google Scholar] [CrossRef]
- Huang, Y.; Ha, S.K. A New Constant Life Diagram Model for the Longitudinal Fatigue of Unidirectional Composites. J. Mech. Sci. Technol. 2020, 34, 3207–3216. [Google Scholar] [CrossRef]
- Behera, A.; Thawre, M.M.; Ballal, A.; Manjunatha, C.M.; Krishnakumar, D.; Chandankhede, S. A Modified Piecewise Linear Constant Life Diagram for Fatigue Life Prediction of Carbon Fiber/Polymer Multidirectional Laminates. Polymers 2023, 44, 1360–1370. [Google Scholar] [CrossRef]
- Tsai, S.W. Double-Double: New Family of Composite Laminates. AIAA J. 2021, 59, 4293–4305. [Google Scholar] [CrossRef]
Model | Sayyidmousavi [11] | Brunbauer [13] | Kumar [14] | Yun [15] | Ha [18] |
---|---|---|---|---|---|
Issue date | July/2015 | October/2015 | September/2023 | June/2024 | August/2011 |
Various biaxial angle | YES | NO | YES | YES | YES |
Multiscale approach | YES | NO | YES | YES | YES |
Various stress ratio | NO | YES | YES | NO | YES |
Rain-flow counting | YES | YES | YES | NO | YES |
Group | Symbols | Definition | Parameters |
---|---|---|---|
Elastic moduli of fiber | Ef1 | Longitudinal elastic modulus of fiber | DV |
Ef2 | Transverse elastic modulus of fiber | 15 GPa 1 | |
Gf12 | In-plane shear modulus of fiber | 15 GPa 1 | |
Gf23 | Out-of-plane shear modulus of fiber | 7 GPa 1 | |
vf12 | In-plane Poisson’s ratio of fiber | 0.2 1 | |
vf23 | Out-of-plane Poisson’s ratio of fiber | 0.2 1 | |
Strength of fiber | Tf | Tensile strength of fiber | DV |
Cf | Compressive strength of fiber | 70% of Tf 2 | |
Fatigue properties of fiber | bf | Slope parameter of SN curve of fiber | DV |
mf | Magnitude coefficient of SN curve of fiber | DV | |
Elastic moduli of matrix | Em | Elastic modulus of matrix | DV |
vm | Poisson’s ratio of matrix | 0.35 2 | |
Strength of matrix | Tm | Tensile strength of matrix | DV |
Cm | Compressive strength of matrix | DV | |
Fatigue properties of matrix | bm | Slope parameter of SN curve of matrix | DV |
mm | Magnitude coefficient of SN curve of matrix | DV | |
Nonlinearity of matrix | α | Shear stress reduction ratio | DV |
Specimen condition | Vf | Fiber volume fraction | IV |
Biaxial angle | IV |
Step Number | Implicit Function (f(x)) | n | DVs (x) |
---|---|---|---|
Step 1 | 1 | Ef1 | |
Step 2 | 1 | Em | |
Step 3 | 3 | Tf, mf, bf | |
Step 4 | 5 | Tm, Cm, mf, bf, α |
Laminates | Lay Up | Volume Fraction |
---|---|---|
UDL | [0°]s | 60% |
BX30 | [+30°/−30°]s | 52% |
BX60 | [+60°/−60°]s | 52% |
Properties | Unit | Temperature | UDL | BX30 | BX60 |
---|---|---|---|---|---|
Elastic Modulus | GPa | LT | 137.9 1 | 36.8 1 | 8.3 1 |
RT | 137.8 2 (3.9) | 33.6 2 (0.5) | 7.6 2 (0.2) | ||
HT | 137.1 1 | 26.7 1 | 4.8 1 | ||
Strength | MPa | LT | 2566.0 (6.8) | 213.7 (2.1) | 35.3 (0.6) |
RT | 2644.6 (24.3) | 233.6 (2.3) | 39.1 (1.9) | ||
HT | 2477.5 (11.7) | 144.4 (3.1) | 23.0 (0.9) |
Group | Properties | Unit | LT | RT | RT (TDS) | HT | ap | bp | cp |
---|---|---|---|---|---|---|---|---|---|
Carbon Fiber (T700) | Ef1 | GPa | 228.46 | 227.37 | 230 | 226.39 | +3.49 × 10−6 | −1.65 × 10−2 | 227.37 |
Tf | MPa | 4251.5 | 4367.8 | 4900 | 4104.6 | −4.94 × 10−2 | −1.42 | 4367.8 | |
bf | MPa | 10,525.4 | 9304.0 | - | 6280.5 | −2.53 × 10−1 | −3.52 × 101 | 9304.0 | |
mf | - | 6.77 | 7.66 | - | 8.1 | −5.75 × 10−5 | +9.95 × 10−3 | 7.7 | |
Epoxy resin (Recyclamine®) | Em | GPa | 4.03 | 3.11 | 2.84 | 2.03 | −3.08 × 10−5 | −1.62 × 10−2 | 3.11 |
Tm | MPa | 37.6 | 47.7 | 72.5 | 25.0 | −4.26 × 10−3 | −1.22 × 10−1 | 47.7 | |
Cm | MPa | 58.5 | 81.0 | - | 35.1 | −8.90 × 10−3 | −2.32 × 10−1 | 81.0 | |
bm | MPa | 107.1 | 117.2 | - | 108.0 | −2.48 × 10−3 | −5.11 × 10−3 | 117.2 | |
mm | - | 5.9 | 6.7 | - | 4.9 | −3.41 × 10−4 | −1.04 × 10−2 | 6.7 | |
Nonlinearity of matrix | α | - | 0.48 | 0.64 | - | 0.37 | −5.57 × 10−5 | −1.16 × 10−3 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Xia, Y.; Ha, S.K. Characterization of Fatigue Properties of Fiber-Reinforced Polymer Composites Based on a Multiscale Approach. Polymers 2025, 17, 157. https://doi.org/10.3390/polym17020157
Han H, Xia Y, Ha SK. Characterization of Fatigue Properties of Fiber-Reinforced Polymer Composites Based on a Multiscale Approach. Polymers. 2025; 17(2):157. https://doi.org/10.3390/polym17020157
Chicago/Turabian StyleHan, Hyeonseok, Yuen Xia, and Sung Kyu Ha. 2025. "Characterization of Fatigue Properties of Fiber-Reinforced Polymer Composites Based on a Multiscale Approach" Polymers 17, no. 2: 157. https://doi.org/10.3390/polym17020157
APA StyleHan, H., Xia, Y., & Ha, S. K. (2025). Characterization of Fatigue Properties of Fiber-Reinforced Polymer Composites Based on a Multiscale Approach. Polymers, 17(2), 157. https://doi.org/10.3390/polym17020157