Superhydrophobic Coatings Based on PMMA-Siloxane-Silica and Modified Silica Nanoparticles Deposited on AA2024-T3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Material
2.2. Sample Preparation
2.3. Synthesis and Deposition of the Coating
2.3.1. Synthesis of the Nanoparticles and Their Modification
particle-Si−O−Si(OR)2-(alkyl or perfluoroalkyl chain) + H2O
2.3.2. Synthesis of the Hybrid Sol–Gel Coating
2.3.3. Coatings Deposition
- (a)
- The NPs dispersed in tetrahydrofuran (THF) to ensure their uniform distribution. Then, the solution was sprayed directly on the AA2024-T3 surface from a distance of 10 cm using hand spray;
- (b)
- The TMM solution was deposited to the AA2024-T3 surface using a dip-coater. The alloy sheets were attached to the dip-coater holder and dipped into a glass beaker with the TMM solution for 3 s. The dip-in and pull-out rates were 14 mm/min. The coating was deposited on the alloy surface only once;
- (c)
- Protocol (b) was followed by hand spraying modified silica nanoparticles dispersed and 5 times diluted (with THF) onto TMM coating.
2.4. Synthesis Coating Characterisation
2.4.1. Scanning Electron Microscope
2.4.2. Transmission Electron Microscope
2.4.3. Water Contact Angle Measurements
2.4.4. Measuring Corrosion Properties
2.4.5. Adhesion Testing
3. Results
3.1. Synthesis of Silica Nanoparticles
3.1.1. Surface Analysis of Synthesised SiO2, SiO2 + AS, and SiO2 + FAS
3.1.2. The Surface Appearance of SiO2, SiO2 + AS, and SiO2 + FAS Deposited on the AA2024-T3 Surface
3.1.3. Water Contact Angles of SiO2, SiO2 + AS and SiO2 + FAS Deposited on AA2024-T3
3.1.4. Adhesion of the NPs on the AA2024-T3 Surface
3.2. Synthesis of Hybrid Sol–Gel Coating
3.2.1. Surface Characterisation of the Coating
3.2.2. Water Contact Angles of the Coated Aluminium Alloy AA2024-T3
3.2.3. Electrochemical Corrosion Testing
3.2.4. Adhesion of the TMM, TMM + SiO2 + AS and TMM + SiO2 + FAS
4. Conclusions
- Nanosized silica SiO2 nanoparticles were efficiently synthesised with a size of 25 nm in diameter, which we confirmed by TEM analysis;
- The nanoparticles were successfully surface-modified with AS and FAS molecules (the diameter of NP increased for a few nm). With FAS modification, a more homogeneous distribution of the nanoparticles was achieved compared to AS modification;
- The contact angle measurements proved that FAS with WCA > 150° shows lower wettability than AS with WCA of 134°. The difference is related to the polarity of the alkyl (C−H) and perfluoro alkyl C−F chain in AS and FAS molecules.
- When deposited at the AA2024-T3 by spraying, the film of SiO2 nanoparticles did not achieve good adhesion and uniform distribution;
- When the AA2024-T3 was first coated with the TMM hybrid sol–gel coating and then surface-modified using SiO2 + AS and SiO2 + FAS nanoparticles, the corrosion resistance of AA2024-T3 in 0.1 M NaCl was further enhanced and slightly outperformed the unmodified TMM coating due to the superhydrophobic properties of the coating (trapped air) preventing contact of the surface with the corrosion medium;
- The TMM + SiO2 + AS and TMM + SiO2 + FAS coatings were corrosion-resistant up to 2 months of exposure to the corrosion medium;
- Cross-cut tests verified that the unmodified TMM coatings and those modified with nanoparticles exhibit high adhesion to the substrate.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, X.; Verho, T.; Ras, R.H.A. Moving Superhydrophobic Surfaces toward Real-World Applications. Science 2016, 352, 142–143. [Google Scholar] [CrossRef] [PubMed]
- Vazirinasab, E.; Jafari, R.; Momen, G. Application of Superhydrophobic Coatings as a Corrosion Barrier: A Review. Surf. Coat. Technol. 2018, 341, 40–56. [Google Scholar] [CrossRef]
- Nakajima, A.; Hashimoto, K.; Watanabe, T.; Takai, K.; Yamauchi, G.; Fujishima, A. Transparent Superhydrophobic Thin Films with Self-Cleaning Properties. Langmuir 2000, 16, 7044–7047. [Google Scholar] [CrossRef]
- Jose, A.; Gizdavic-Nikolaidis, M.; Swift, S. Antimicrobial Coatings: Reviewing Options for Healthcare Applications. Appl. Microbiol. 2023, 3, 145–174. [Google Scholar] [CrossRef]
- Rodič, P.; Kapun, B.; Milošev, I. Superhydrophobic Aluminium Surface to Enhance Corrosion Resistance and Obtain Self-Cleaning and Anti-Icing Ability. Molecules 2022, 27, 1099. [Google Scholar] [CrossRef]
- Lomga, J.; Varshney, P.; Nanda, D.; Satapathy, M.; Mohapatra, S.S.; Kumar, A. Fabrication of Durable and Regenerable Superhydrophobic Coatings with Excellent Self-Cleaning and Anti-Fogging Properties for Aluminium Surfaces. J. Alloys Compd. 2017, 702, 161–170. [Google Scholar] [CrossRef]
- Latthe, S.S.; Sutar, R.S.; Kodag, V.S.; Bhosale, A.K.; Kumar, A.M.; Kumar Sadasivuni, K.; Xing, R.; Liu, S. Self-Cleaning Superhydrophobic Coatings: Potential Industrial Applications. Prog. Org. Coat. 2019, 128, 52–58. [Google Scholar] [CrossRef]
- Rodič, P.; Kovač, N.; Kralj, S.; Jereb, S.; Golobič, I.; Može, M.; Milošev, I. Anti-Corrosion and Anti-Icing Properties of Superhydrophobic Laser-Textured Aluminum Surfaces. Surf. Coat. Technol. 2024, 494, 131325. [Google Scholar] [CrossRef]
- Kreder, M.J.; Alvarenga, J.; Kim, P.; Aizenberg, J. Design of Anti-Icing Surfaces: Smooth, Textured or Slippery? Nat. Rev. Mater. 2016, 1, 15003. [Google Scholar] [CrossRef]
- Rananavare, A.P.; Jain, R.; Lee, J. Recent Developments in Superhydrophobic Textiles: A Status Review. J. Coat. Technol. Res. 2024. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, H.; Shao, Y.; Zhang, H.; Zhu, J. Recent Progresses of Superhydrophobic Coatings in Different Application Fields: An Overview. Coatings 2021, 11, 116. [Google Scholar] [CrossRef]
- Farag, A.A.; Mohamed, E.A.; Toghan, A. The New Trends in Corrosion Control Using Superhydrophobic Surfaces: A Review. Corros. Rev. 2023, 41, 21–37. [Google Scholar] [CrossRef]
- Barati Darband, G.; Aliofkhazraei, M.; Khorsand, S.; Sokhanvar, S.; Kaboli, A. Science and Engineering of Superhydrophobic Surfaces: Review of Corrosion Resistance, Chemical and Mechanical Stability. Arab. J. Chem. 2020, 13, 1763–1802. [Google Scholar] [CrossRef]
- Huda, Z.; Taib, N.I.; Zaharinie, T. Characterization of 2024-T3: An Aerospace Aluminum Alloy. Mater. Chem. Phys. 2009, 113, 515–517. [Google Scholar] [CrossRef]
- Abreu, C.M.; Cristóbal, M.J.; Freitas, P.; Nóvoa, X.R.; Pena, G.; Pérez, M.C.; Serra, C. Microstructure of the Passive Layer Formed on AA2024-T3 Aluminum Alloy Surface Implanted with Nitrogen. Surf. Interface Anal. 2008, 40, 290–293. [Google Scholar] [CrossRef]
- Rodič, P.; Milošev, I.; Frankel, G.S. Corrosion of Synthetic Intermetallic Compounds and AA7075-T6 in Dilute Harrison’s Solution and Inhibition by Cerium(III) Salts. J. Electrochem. Soc. 2023, 170, 031503. [Google Scholar] [CrossRef]
- Birbilis, N.; Buchheit, R.G. Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys An Experimental Survey and Discussion. J. Electrochem. Soc. 2005, 152, B140–B151. [Google Scholar] [CrossRef]
- Cavanaugh, M.K.; Li, J.-C.; Birbilis, N.; Buchheit, R.G. Electrochemical Characterization of Intermetallic Phases Common to Aluminum Alloys as a Function of Solution Temperature. J. Electrochem. Soc. 2014, 161, C535–C543. [Google Scholar] [CrossRef]
- Birbilis, N.; Buchheit, R.G. Investigation and Discussion of Characteristics for Intermetallic Phases Common to Aluminum Alloys as a Function of Solution pH. J. Electrochem. Soc. 2008, 155, C117–C126. [Google Scholar] [CrossRef]
- Huang, Y.; Sarkar, D.K.; Grant Chen, X. Superhydrophobic Aluminum Alloy Surfaces Prepared by Chemical Etching Process and Their Corrosion Resistance Properties. Appl. Surf. Sci. 2015, 356, 1012–1024. [Google Scholar] [CrossRef]
- Liao, R.; Zuo, Z.; Guo, C.; Yuan, Y.; Zhuang, A. Fabrication of Superhydrophobic Surface on Aluminum by Continuous Chemical Etching and Its Anti-Icing Property. Appl. Surf. Sci. 2014, 317, 701–709. [Google Scholar] [CrossRef]
- Varshney, P.; Mohapatra, S.S.; Kumar, A. Superhydrophobic Coatings for Aluminium Surfaces Synthesized by Chemical Etching Process. Int. J. Smart Nano Mater. 2016, 7, 248–264. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Emelyanenko, A.M.; Modestov, A.D.; Domantovsky, A.G.; Emelyanenko, K.A. Synergistic Effect of Superhydrophobicity and Oxidized Layers on Corrosion Resistance of Aluminum Alloy Surface Textured by Nanosecond Laser Treatment. ACS Appl. Mater. Interfaces 2015, 7, 19500–19508. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Zhong, M.; Zhang, H.; Fan, P. Superhydrophilicity to Superhydrophobicity Transition of Picosecond Laser Microstructured Aluminum in Ambient Air. J. Colloid Interface Sci. 2015, 441, 1–9. [Google Scholar] [CrossRef]
- Volpe, A.; Gaudiuso, C.; Di Venere, L.; Licciulli, F.; Giordano, F.; Ancona, A. Direct Femtosecond Laser Fabrication of Superhydrophobic Aluminum Alloy Surfaces with Anti-Icing Properties. Coatings 2020, 10, 587. [Google Scholar] [CrossRef]
- Može, M.; Senegačnik, M.; Gregorčič, P.; Hočevar, M.; Zupančič, M.; Golobič, I. Laser-Engineered Microcavity Surfaces with a Nanoscale Superhydrophobic Coating for Extreme Boiling Performance. ACS Appl. Mater. Interfaces 2020, 12, 24419–24431. [Google Scholar] [CrossRef] [PubMed]
- Park, B.G.; Lee, W.; Kim, J.S.; Lee, K.B. Superhydrophobic Fabrication of Anodic Aluminum Oxide with Durable and Pitch-Controlled Nanostructure. Colloids Surf. Physicochem. Eng. Asp. 2010, 370, 15–19. [Google Scholar] [CrossRef]
- Saji, V.S. Superhydrophobic Surfaces and Coatings by Electrochemical Anodic Oxidation and Plasma Electrolytic Oxidation. Adv. Colloid Interface Sci. 2020, 283, 102245. [Google Scholar] [CrossRef]
- Li, W.; Zhan, Y.; Yu, S. Applications of Superhydrophobic Coatings in Anti-Icing: Theory, Mechanisms, Impact Factors, Challenges and Perspectives. Prog. Org. Coat. 2021, 152, 106117. [Google Scholar] [CrossRef]
- Shen, X.; Mao, T.; Li, C.; Mao, F.; Xue, Z.; Xu, G.; Amirfazli, A. Durable Superhydrophobic Coatings Based on CNTs-SiO2gel Hybrids for Anti-Corrosion and Thermal Insulation. Prog. Org. Coat. 2023, 181, 107602. [Google Scholar] [CrossRef]
- Wang, H.; Chen, E.; Jia, X.; Liang, L.; Wang, Q. Superhydrophobic Coatings Fabricated with Polytetrafluoroethylene and SiO2 Nanoparticles by Spraying Process on Carbon Steel Surfaces. Appl. Surf. Sci. 2015, 349, 724–732. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Li, X.-D.; Wang, N.; Liu, Y.-J.; Tian, F.; Wang, C.-X. Robust Superhydrophobic SiO2/Epoxy Composite Coating Prepared by One-Step Spraying Method for Corrosion Protection of Aluminum Alloy: Experimental and Theoretical Studies. Mater. Des. 2023, 228, 111833. [Google Scholar] [CrossRef]
- Alexander, S.; Eastoe, J.; Lord, A.M.; Guittard, F.; Barron, A.R. Branched Hydrocarbon Low Surface Energy Materials for Superhydrophobic Nanoparticle Derived Surfaces. ACS Appl. Mater. Interfaces 2016, 8, 660–666. [Google Scholar] [CrossRef]
- Kumar, A.; Gogoi, B. Development of Durable Self-Cleaning Superhydrophobic Coatings for Aluminium Surfaces via Chemical Etching Method. Tribol. Int. 2018, 122, 114–118. [Google Scholar] [CrossRef]
- Varshney, P.; Lomga, J.; Gupta, P.K.; Mohapatra, S.S.; Kumar, A. Durable and Regenerable Superhydrophobic Coatings for Aluminium Surfaces with Excellent Self-Cleaning and Anti-Fogging Properties. Tribol. Int. 2018, 119, 38–44. [Google Scholar] [CrossRef]
- Sun, R.; Zhao, J.; Li, Z.; Mo, J.; Pan, Y.; Luo, D. Preparation of Mechanically Durable Superhydrophobic Aluminum Surface by Sandblasting and Chemical Modification. Prog. Org. Coat. 2019, 133, 77–84. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Xu, P.; Chen, B. Robust and Transparent Superoleophobic Coatings from One-Step Spraying of SiO2@fluoroPOS. J. Sol-Gel Sci. Technol. 2020, 93, 79–90. [Google Scholar] [CrossRef]
- Cheng, Q.-Y.; An, X.-P.; Li, Y.-D.; Huang, C.-L.; Zeng, J.-B. Sustainable and Biodegradable Superhydrophobic Coating from Epoxidized Soybean Oil and ZnO Nanoparticles on Cellulosic Substrates for Efficient Oil/Water Separation. ACS Sustain. Chem. Eng. 2017, 5, 11440–11450. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, Y. Preparation of Superhydrophobic Composite Coating on 2024 Aluminum Alloy and Its Stability and Corrosion Resistance. Int. J. Electrochem. Sci. 2023, 18, 100088. [Google Scholar] [CrossRef]
- Du, Y.; Hu, L.; Dong, L.; Du, S.; Xu, D. Experimental Study on Anti-Icing of Robust TiO2/Polyurea Superhydrophobic Coating. Coatings 2023, 13, 1162. [Google Scholar] [CrossRef]
- Zhang, H.H.; Zhang, X.; Bian, H.; Zhang, L.; Chen, Y.; Yang, Y.; Zhang, Z. Superhydrophobic and Self-Healing Silane-Ceria Composite Coating Implanted with 1,5-Naphthalenediol Inhibitor for Corrosion Protection of AA2024-T3 Aluminum Alloy. Surf. Coat. Technol. 2024, 476, 130256. [Google Scholar] [CrossRef]
- Park, J.T.; Seo, J.A.; Ahn, S.H.; Kim, J.H.; Kang, S.W. Surface Modification of Silica Nanoparticles with Hydrophilic Polymers. J. Ind. Eng. Chem. 2010, 16, 517–522. [Google Scholar] [CrossRef]
- Jung, H.-S.; Moon, D.-S.; Lee, J.-K. Quantitative Analysis and Efficient Surface Modification of Silica Nanoparticles. J. Nanomater. 2012, 2012, 593471. [Google Scholar] [CrossRef]
- Ammar, S.; Ramesh, K.; Ma, I.A.W.; Farah, Z.; Vengadaesvaran, B.; Ramesh, S.; Arof, A.K. Studies on SiO2-Hybrid Polymeric Nanocomposite Coatings with Superior Corrosion Protection and Hydrophobicity. Surf. Coat. Technol. 2017, 324, 536–545. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Zhang, P.; Zhang, Z. Facile Approach in Fabricating Superhydrophobic SiO2/Polymer Nanocomposite Coating. Appl. Surf. Sci. 2012, 261, 628–632. [Google Scholar] [CrossRef]
- Ghodrati, M.; Mousavi-Kamazani, M.; Bahrami, Z. Synthesis of Superhydrophobic Coatings Based on Silica Nanostructure Modified with Organosilane Compounds by Sol–Gel Method for Glass Surfaces. Sci. Rep. 2023, 13, 548. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Li, J.; Wang, J.; Yang, X.; Li, Y.; Qi, D. A Robust Superhydrophobic and Oleophobic Coating with Short Chain Perfluoroalkyl Group and Flower-Shaped SiO2 Nanoparticles. Surf. Coat. Technol. 2022, 447, 128810. [Google Scholar] [CrossRef]
- Devaprakasam, D.; Sampath, S.; Biswas, S.K. Thermal Stability of Perfluoroalkyl Silane Self-Assembled on a Polycrystalline Aluminum Surface. Langmuir 2004, 20, 1329–1334. [Google Scholar] [CrossRef] [PubMed]
- Rodič, P.; Kapun, B.; Panjan, M.; Milošev, I. Easy and Fast Fabrication of Self-Cleaning and Anti-Icing Perfluoroalkyl Silane Film on Aluminium. Coatings 2020, 10, 234. [Google Scholar] [CrossRef]
- Liu, H.; Huang, J.; Chen, Z.; Chen, G.; Zhang, K.-Q.; Al-Deyab, S.S.; Lai, Y. Robust Translucent Superhydrophobic PDMS/PMMA Film by Facile One-Step Spray for Self-Cleaning and Efficient Emulsion Separation. Chem. Eng. J. 2017, 330, 26–35. [Google Scholar] [CrossRef]
- Gu, H.; Zhang, Q.; Gu, J.; Li, N.; Xiong, J. Facile Preparation of Superhydrophobic Silica Nanoparticles by Hydrothermal-Assisted Sol–Gel Process and Effects of Hydrothermal Time on Surface Modification. J. Sol-Gel Sci. Technol. 2018, 87, 478–485. [Google Scholar] [CrossRef]
- Harb, S.V.; Cerrutti, B.M.; Pulcinelli, S.H.; Santilli, C.V.; Hammer, P. Siloxane–PMMA Hybrid Anti-Corrosion Coatings Reinforced by Lignin. Surf. Coat. Technol. 2015, 275, 9–16. [Google Scholar] [CrossRef]
- Harb, S.V.; dos Santos, F.C.; Caetano, B.L.; Pulcinelli, S.H.; Santilli, C.V.; Hammer, P. Structural Properties of Cerium Doped Siloxane–PMMA Hybrid Coatings with High Anticorrosive Performance. RSC Adv. 2015, 5, 15414–15424. [Google Scholar] [CrossRef]
- Harb, S.V.; Trentin, A.; de Souza, T.A.C.; Magnani, M.; Pulcinelli, S.H.; Santilli, C.V.; Hammer, P. Effective Corrosion Protection by Eco-Friendly Self-Healing PMMA-Cerium Oxide Coatings. Chem. Eng. J. 2020, 383, 123219. [Google Scholar] [CrossRef]
- Judeinstein, P.; Sanchez, C. Hybrid Organic-Inorganic Materials: A Land of Multidisciplinarity. J. Mater. Chem. 1996, 6, 511–525. [Google Scholar] [CrossRef]
- Harb, S.V.; Trentin, A.; Torrico, R.F.O.; Pulcinelli, S.H.; Santilli, C.V.; Hammer, P. Organic-Inorganic Hybrid Coatings for Corrosion Protection of Metallic Surfaces. In New Technologies in Protective Coatings; Giudice, C., Canosa, G., Eds.; InTech: Houston, TX, USA, 2017; ISBN 978-953-51-3491-6. [Google Scholar]
- Ali, U.; Karim, K.J.B.A.; Buang, N.A. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of Hybrid Organic–Inorganic Nanocomposites. J. Mater. Chem. 2005, 15, 3559–3592. [Google Scholar] [CrossRef]
- Abdolah, Z.M.; van der Sybrand, Z.; Garcia, S.J. Routes to Extrinsic and Intrinsic Self-Healing Corrosion Protective Sol-Gel Coatings: A Review. Self-Heal. Mater. 2013, 1, 1–18. [Google Scholar] [CrossRef]
- Figueira, R.B. Hybrid Sol–Gel Coatings for Corrosion Mitigation: A Critical Review. Polymers 2020, 12, 689. [Google Scholar] [CrossRef] [PubMed]
- Rodič, P.; Mertelj, A.; Borovšak, M.; Benčan, A.; Mihailović, D.; Malič, B.; Milošev, I. Composition, Structure and Morphology of Hybrid Acrylate-Based Sol–Gel Coatings Containing Si and Zr Composed for Protective Applications. Surf. Coat. Technol. 2016, 286, 388–396. [Google Scholar] [CrossRef]
- Hamulić, D.; Rodič, P.; Poberžnik, M.; Jereb, M.; Kovač, J.; Milošev, I. The Effect of the Methyl and Ethyl Group of the Acrylate Precursor in Hybrid Silane Coatings Used for Corrosion Protection of Aluminium Alloy 7075-T6. Coatings 2020, 10, 172. [Google Scholar] [CrossRef]
- Rodič, P.; Iskra, J.; Milošev, I. A Hybrid Organic–Inorganic Sol–Gel Coating for Protecting Aluminium Alloy 7075-T6 against Corrosion in Harrison’s Solution. J. Sol-Gel Sci. Technol. 2014, 70, 90–103. [Google Scholar] [CrossRef]
- Rodič, P.; Lekka, M.; Andreatta, F.; Fedrizzi, L.; Milošev, I. The Effect of Copolymerisation on the Performance of Acrylate-Based Hybrid Sol-Gel Coating for Corrosion Protection of AA2024-T3. Prog. Org. Coat. 2020, 147, 105701. [Google Scholar] [CrossRef]
- Trentin, A.; Gasparini, A.d.L.; Faria, F.A.; Harb, S.V.; dos Santos, F.C.; Pulcinelli, S.H.; Santilli, C.V.; Hammer, P. Barrier Properties of High Performance PMMA-Silica Anticorrosion Coatings. Prog. Org. Coat. 2020, 138, 105398. [Google Scholar] [CrossRef]
- Milošev, I.; Hamulić, D.; Rodič, P.; Carrière, C.; Zanna, S.; Budasheva, H.; Korte, D.; Franko, M.; Mercier, D.; Seyeux, A.; et al. Siloxane Polyacrylic Sol-Gel Coatings with Alkly and Perfluoroalkyl Chains: Synthesis, Composition, Thermal Properties and Log-Term Corrosion Protection. Appl. Surf. Sci. 2022, 574, 151578. [Google Scholar] [CrossRef]
- Uvida, M.C.; Trentin, A.; Harb, S.V.; Pulcinelli, S.H.; Santilli, C.V.; Hammer, P. Nanostructured Poly(Methyl Methacrylate)–Silica Coatings for Corrosion Protection of Reinforcing Steel. ACS Appl. Nano Mater. 2022, 5, 2603–2615. [Google Scholar] [CrossRef]
- Pan, S.; Wang, N.; Xiong, D.; Deng, Y.; Shi, Y. Fabrication of Superhydrophobic Coating via Spraying Method and Its Applications in Anti-Icing and Anti-Corrosion. Appl. Surf. Sci. 2016, 389, 547–553. [Google Scholar] [CrossRef]
- Rodič, P.; Korošec, R.C.; Kapun, B.; Mertelj, A.; Milošev, I. Acrylate-Based Hybrid Sol-Gel Coating for Corrosion Protection of AA7075-T6 in Aircraft Applications: The Effect of Copolymerization Time. Polymers 2020, 12, 948. [Google Scholar] [CrossRef] [PubMed]
- Hamulić, D.; Medoš, G.; Korte, D.; Rodič, P.; Milošev, I. The Effect of Curing Temperature and Thickness of Polybutyl Methacrylate Siloxane Coatings on the Corrosion Protection of Structural Steel S355. Coatings 2023, 13, 675. [Google Scholar] [CrossRef]
- ASTM International. ASTM D7334-08(2022) Standard Guide for the Evaluation of the Performance of Protective Clothing and Equipment Against Chemical Agents; ASTM: West Conshohocken, PA, USA, 2022; Available online: https://www.astm.org/d7334-08r22.html (accessed on 9 January 2025).
- Milošev, I.; Bakarič, T.; Zanna, S.; Seyeux, A.; Rodič, P.; Poberžnik, M.; Chiter, F.; Cornette, P.; Costa, D.; Kokalj, A.; et al. Electrochemical, Surface-Analytical, and Computational DFT Study of Alkaline Etched Aluminum Modified by Carboxylic Acids for Corrosion Protection and Hydrophobicity. J. Electrochem. Soc. 2019, 166, C3131–C3146. [Google Scholar] [CrossRef]
- Poberžnik, M.; Chiter, F.; Milošev, I.; Marcus, P.; Costa, D.; Kokalj, A. DFT Study of n-Alkyl Carboxylic Acids on Oxidized Aluminum Surfaces: From Standalone Molecules to Self-Assembled-Monolayers. Appl. Surf. Sci. 2020, 525, 146156. [Google Scholar] [CrossRef]
- dos Santos, F.C.; Pulcinelli, S.H.; Santilli, C.V.; Hammer, P. Protective PMMA-Silica Coatings for Aluminum Alloys: Nanostructural Control of Elevated Thermal Stability and Anticorrosive Performance. Prog. Org. Coat. 2021, 152, 106129. [Google Scholar] [CrossRef]
- Cristoforetti, A.; Rossi, S.; Deflorian, F.; Fedel, M. On the Limits of the EIS Low-Frequency Impedance Modulus as a Tool to Describe the Protection Properties of Organic Coatings Exposed to Accelerated Aging Tests. Coatings 2023, 13, 598. [Google Scholar] [CrossRef]
- Poberžnik, M.; Costa, D.; Hemeryck, A.; Kokalj, A. Insight into the Bonding of Silanols to Oxidized Aluminum Surfaces. J. Phys. Chem. C 2018, 122, 9417–9431. [Google Scholar] [CrossRef]
- Poberžnik, M.; Kokalj, A. Implausibility of Bidentate Bonding of the Silanol Headgroup to Oxidized Aluminum Surfaces. Appl. Surf. Sci. 2019, 492, 909–918. [Google Scholar] [CrossRef]
O | Si | F | |
---|---|---|---|
SiO2 | 67.7 | 32.3 | / |
SiO2 + AS | 67.1 | 32.9 | / |
SiO2 + FAS | 54.2 | 32.8 | 13.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovač, N.; Kapun, B.; Može, M.; Golobič, I.; Kralj, S.; Milošev, I.; Rodič, P. Superhydrophobic Coatings Based on PMMA-Siloxane-Silica and Modified Silica Nanoparticles Deposited on AA2024-T3. Polymers 2025, 17, 195. https://doi.org/10.3390/polym17020195
Kovač N, Kapun B, Može M, Golobič I, Kralj S, Milošev I, Rodič P. Superhydrophobic Coatings Based on PMMA-Siloxane-Silica and Modified Silica Nanoparticles Deposited on AA2024-T3. Polymers. 2025; 17(2):195. https://doi.org/10.3390/polym17020195
Chicago/Turabian StyleKovač, Nina, Barbara Kapun, Matic Može, Iztok Golobič, Slavko Kralj, Ingrid Milošev, and Peter Rodič. 2025. "Superhydrophobic Coatings Based on PMMA-Siloxane-Silica and Modified Silica Nanoparticles Deposited on AA2024-T3" Polymers 17, no. 2: 195. https://doi.org/10.3390/polym17020195
APA StyleKovač, N., Kapun, B., Može, M., Golobič, I., Kralj, S., Milošev, I., & Rodič, P. (2025). Superhydrophobic Coatings Based on PMMA-Siloxane-Silica and Modified Silica Nanoparticles Deposited on AA2024-T3. Polymers, 17(2), 195. https://doi.org/10.3390/polym17020195