Alkali Metal Ion Insertion in Polypyrrole Polyoxometalates for Multifunctional Actuator–Sensor–Energy Storage Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Formation of PPyDBS with PTA
2.3. Linear Actuation Measurements
2.4. Characterizations
3. Results and Discussions
3.1. Polymerization and Characterization of PPyDBS-PT4 and PPyDBS-PT8
3.2. Linear Actuation Studies of PPyDBS-PT Samples
3.3. Cyclic Voltammetry
3.4. Energy Storage of PPyDBS-PT4 and PPyDBS-PT8
3.5. Sensor Calibration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bay, L.; Jacobsen, T.; Skaarup, S.; West, K. Mechanism of Actuation in Conducting Polymers: Osmotic Expansion. J. Phys. Chem. B 2001, 105, 8492–8497. [Google Scholar] [CrossRef]
- Jager, E.W.H.; Inganas, O.; Lundstrom, I. Microrobots for Micrometer-Size Objects in Aqueous Media: Potential Tools for Single-Cell Manipulation. Science 2000, 288, 2335–2338. [Google Scholar] [CrossRef] [PubMed]
- Smela, E. Conjugated Polymer Actuators for Biomedical Applications. Adv. Mater. 2003, 15, 481–494. [Google Scholar] [CrossRef]
- Martinez, J.G.; Richter, K.; Persson, N.K.; Jager, E.W.H. Investigation of Electrically Conducting Yarns for Use in Textile Actuators. Smart Mater. Struct. 2018, 27, 074004. [Google Scholar] [CrossRef]
- Ortega-santos, A.B.; Mart, J.G.; Jager, E.W.H. Synchronous Cation-Driven and Anion-Driven Polypyrrole-Based Yarns toward In-Air Linear Actuators. Chem. Mater. 2024, 36, 9391–9405. [Google Scholar] [CrossRef] [PubMed]
- Bay, L.; West, K.; Sommer-Larsen, P.; Skaarup, S.; Benslimane, M. A Conducting Polymer Artificial Muscle with 12% Linear Strain. Adv. Mater. 2003, 15, 310–313. [Google Scholar] [CrossRef]
- Khuyen, N.Q.; Kiefer, R.; Zondaka, Z.; Anbarjafari, G.; Peikolainen, A.; Otero, T.F.; Tamm, T. Multifunctionality of Polypyrrole Polyethyleneoxide Composites: Concurrent Sensing, Actuation and. Polymers 2020, 12, 2060. [Google Scholar] [CrossRef] [PubMed]
- Zondaka, Z.; Harjo, M.; Khan, A.; Khanh, T.T.; Tamm, T.; Kiefer, R. Optimal Phosphotungstinate Concentration for Polypyrrole Linear Actuation and Energy Storage. Multifunct. Mater. 2018, 1, 14003. [Google Scholar] [CrossRef]
- Dubal, D.P.; Ballesteros, B.; Mohite, A.A.; Gómez-Romero, P. Functionalization of Polypyrrole Nanopipes with Redox-Active Polyoxometalates for High Energy Density Supercapacitors. ChemSusChem 2017, 10, 731–737. [Google Scholar] [CrossRef]
- Suppes, G.M.; Cameron, C.G.; Freund, M.S. A Polypyrrole/Phosphomolybdic Acid∣Poly(3,4-ethylenedioxythiophene)/Phosphotungstic Acid Asymmetric Supercapacitor. J. Electrochem. Soc. 2010, 157, A1030. [Google Scholar] [CrossRef]
- Cuentas-Gallegos, A.K.; Martínez-Rosales, R.; Baibarac, M.; Gómez-Romero, P.; Rincón, M.E. Electrochemical Supercapacitors Based on Novel Hybrid Materials Made of Carbon Nanotubes and Polyoxometalates. Electrochem. Commun. 2007, 9, 2088–2092. [Google Scholar] [CrossRef]
- Wang, D.; Liu, L.; Jiang, J.; Chen, L.; Zhao, J. Polyoxometalate-Based Composite Materials in Electrochemistry: State-of-the-Art Progress and Future Outlook. Nanoscale 2020, 12, 5705–5718. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zhou, Y.; Zhang, J.; Foroughi, J.; Peng, S.; Baughman, R.H.; Wang, Z.L.; Wang, C.H. Advanced Energy Harvesters and Energy Storage for Powering Wearable and Implantable Medical Devices. Adv. Mater. 2024, 36, 2404492. [Google Scholar] [CrossRef] [PubMed]
- Khanh, T.T.; Kesküla, A.; Zondaka, Z.; Harjo, M.; Kivilo, A.; Khorram, M.S.; Tamm, T.; Kiefer, R. Role of Polymerization Temperature on the Performance of Polypyrrole/dodecylbenzenesulphonate Linear Actuators. Synth. Met. 2019, 247, 53–58. [Google Scholar] [CrossRef]
- Otero, T.F.; Cortés, M.T. A Sensing Muscle. Sensors Actuators, B Chem. 2003, 96, 152–156. [Google Scholar] [CrossRef]
- Martinez, J.G.; Otero, T.F. Three Electrochemical Tools (Motor-Sensor-Battery) with Energy Recovery Work Simultaneously in a Trilayer Artificial Muscle. Electrochim. Acta 2019, 294, 126–133. [Google Scholar] [CrossRef]
- Martinez, J.G.; Otero, T.F.; Jager, E.W.H. Effect of the Electrolyte Concentration and Substrate on Conducting Polymer Actuators. Langmuir 2014, 30, 3894–3904. [Google Scholar] [CrossRef] [PubMed]
- Beheshtian, J.; Baei, M.T.; Bagheri, Z.; Peyghan, A.A. Carbon Nitride Nanotube as a Sensor for Alkali and Alkaline Earth Cations. Appl. Surf. Sci. 2013, 264, 699–706. [Google Scholar] [CrossRef]
- Merhebi, S.; Mohammad, M.; Mayyas, M.; Abbasi, R.; Zhang, C.; Cai, S.; Centurion, F.; Xie, W.; Cao, Z.; Tang, J.; et al. Post-Transition Metal/polymer Composites for the Separation and Sensing of Alkali Metal Ions. J. Mater. Chem. A 2021, 9, 19854–19864. [Google Scholar] [CrossRef]
- Le, Q.B.; Zondaka, Z.; Nguyen, N.T.; Kiefer, R. Ion-Selectivity of Polypyrrole Carbide-Derived Carbon Films in Aqueous Electrolytes. J. Appl. Polym. Sci. 2023, 140, e53522. [Google Scholar] [CrossRef]
- Skaarup, S.; Jafeen, M.J.M.; Careem, M.A. Determination of Membrane Hydration Numbers of Alkali Metal Ions by Insertion in a Conducting Polymer. Solid State Ion. 2010, 181, 1245–1250. [Google Scholar] [CrossRef]
- Zondaka, Z.; Kesküla, A.; Tamm, T.; Kiefer, R. Polypyrrole Linear Actuation Tuned by Phosphotungstic Acid. Sens. Actuators B Chem. 2017, 247, 742–748. [Google Scholar] [CrossRef]
- Valero, L.; Otero, T.F.; Martinez, J.G.; Martínez, J.G. Exchanged Cations and Water during Reactions in Polypyrrole Macroions from Artificial Muscles. ChemPhysChem 2014, 15, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Otero, T.F.; Boyano, I. Comparative Study of Conducting Polymers by the ESCR Model. J. Phys. Chem. B 2003, 107, 6730–6738. [Google Scholar] [CrossRef]
- Harjo, M.; Tamm, T.; Anbarjafari, G.; Kiefer, R. Hardware and Software Development for Isotonic Strain and Isometric Stress Measurements of Linear Ionic Actuators. Polymers 2019, 11, 1054. [Google Scholar] [CrossRef]
- Kaempgen, M.; Chan, C.K.; Ma, J.; Cui, Y.; Gruner, G. Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes. Nano Lett. 2009, 9, 1872–1876. [Google Scholar] [CrossRef]
- Tran, C.B.; Otero, T.F.; Travas-Sejdic, J.; Bao Le, Q.; Kiefer, R. A Comparison of Poly (3,4-Ethylenedioxythiophene) Polymerized Potentiostatically and Galvanostatically. Synth. Met. 2023, 299, 117466. [Google Scholar] [CrossRef]
- Kim, Y.; Shanmugam, S. Polyoxometalate-Reduced Graphene Oxide Hybrid Catalyst: Synthesis, Structure, and Electrochemical Properties. ACS Appl. Mater. Interfaces 2013, 5, 12197–12204. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, S.; Ritchie, C.; Streb, C. Polyoxometalate—Conductive Polymer Composites for Energy Conversion, Energy Storage and Nanostructured Sensors. Dalt. Trans. 2015, 44, 7092–7104. [Google Scholar] [CrossRef]
- Tanaka, Y.; Hasegawa, T.; Shimamura, T.; Ukeda, H.; Ueda, T. Potentiometric Evaluation of Anti-oxidant Capacity Using Polyoxometalate-Immobilized Electrodes. J. Electroanal. Chem. 2018, 828, 102–107. [Google Scholar] [CrossRef]
- Anandan Vannathan, A.; Chandewar, P.R.; Shee, D.; Sankar Mal, S. Asymmetric Polyoxometalate-Polypyrrole Composite Electrode Material for Electrochemical Energy Storage Supercapacitors. J. Electroanal. Chem. 2022, 904, 115856. [Google Scholar] [CrossRef]
- Genovese, M.; Lian, K. Polyoxometalate Modified Inorganic-Organic Nanocomposite Materials for Energy Storage Applications: A Review. Curr. Opin. Solid State Mater. Sci. 2015, 19, 126–137. [Google Scholar] [CrossRef]
- Gade, V.K.; Shirale, D.J.; Gaikwad, P.D.; Kakde, P.; Savale, P.A.; Kharat, H.J. Synthesis and Characterization of Ppy-PVS, Ppy-pTS, and Ppy- DBS Composite Films. Int. J. Polym. Mater. Polym. Biomater. 2007, 56, 107–114. [Google Scholar] [CrossRef]
- Cherevan, A.S.; Nandan, S.P.; Roger, I.; Liu, R.; Streb, C.; Eder, D. Polyoxometalates on Functional Substrates: Concepts, Synergies, and Future Perspectives. Adv. Sci. 2020, 7, 1903511. [Google Scholar] [CrossRef]
- Lim, H.K.; Lee, S.O.; Song, K.J.; Kim, S.G.; Kim, K.H. Synthesis and Properties of Soluble Polypyrrole Doped with Dodecylbenzenesulfonate and Combined with Polymeric Additive Poly (ethylene Glycol). J. Appl. Polym. Sci. 2005, 97, 1170–1175. [Google Scholar] [CrossRef]
- Haspulat Taymaz, B.; Kamiş, H.; Yoldaş, Ö. Photocatalytic Degradation of Malachite Green Dye Using Zero Valent Iron Doped Polypyrrole. Environ. Eng. Res. 2022, 27, 200638. [Google Scholar] [CrossRef]
- Maruthamuthu, S.; Chandrasekaran, J.; Manoharan, D.; Magesh, R. Conductivity and Dielectric Analysis of Nanocolloidal Polypyrrole Particles Functionalized with Higher Weight Percentage of Poly(styrene Sulfonate) Using the Dispersion Polymerization Method. J. Polym. Eng. 2017, 37, 481–492. [Google Scholar] [CrossRef]
- Otero, T.F.; Cheng, S.A.; Alonso, D.; Huerta, F. Hybrid Materials polypyrrole/PW12O403-. 2. Physical, Spectroscopic and Electrochemical Characterization. J. Phys. Chem. B 2000, 104, 10528–10533. [Google Scholar] [CrossRef]
- Najafi-Ashtiani, H.; Bahari, A.; Gholipour, S.; Hoseinzadeh, S. Structural, Optical and Electrical Properties of WO3–Ag Nanocomposites for the Electro-Optical Devices. Appl. Phys. A Mater. Sci. Process. 2018, 124, 24. [Google Scholar] [CrossRef]
- Zuend, A.; Marcolli, C.; Luo, B.P.; Peter, T. A Thermodynamic Model of Mixed Organic-Inorganic Aerosols to Predict Activity Coefficients. Atmos. Chem. Phys. 2008, 8, 4559–4593. [Google Scholar] [CrossRef]
- Varma, S.; Rempe, S.B. Coordination Numbers of Alkali Metal Ions in Aqueous Solutions. Biophys. Chem. 2006, 124, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Skaarup, S.; Bay, L.; Vidanapathirana, K.; Thybo, S.; Tofte, P.; West, K. Simultaneous Anion and Cation Mobility in Polypyrrole. Solid State Ion. 2003, 159, 143–147. [Google Scholar] [CrossRef]
- Zondaka, Z.; Valner, R.; Tamm, T.; Aabloo, A.; Kiefer, R. Carbide-Derived Carbon in Polypyrrole Changing the Elastic Modulus with a Huge Impact on Actuation. RSC Adv. 2016, 6, 26380–26385. [Google Scholar] [CrossRef]
- Sung, H.; So, H.; Paik, W.K. Polypyrrole Doped with Heteropolytungstate Anions. Electrochim. Acta 1994, 39, 645–650. [Google Scholar] [CrossRef]
- Baughman, R.H. Conducting Polymer Artificial Muscles. Synth. Met. 1996, 78, 339–353. [Google Scholar] [CrossRef]
- Fleischmann, S.; Mitchell, J.B.; Wang, R.; Zhan, C.; Jiang, D.E.; Presser, V.; Augustyn, V. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chem. Rev. 2020, 120, 6738–6782. [Google Scholar] [CrossRef] [PubMed]
- Bonastre, J.; Molina, J.; Galván, J.C.; Cases, F. Characterization of Polypyrrole/phosphotungstate Membranes by Electrochemical Impedance Spectroscopy. Synth. Met. 2014, 187, 37–45. [Google Scholar] [CrossRef]
- Martinez, J.G.; Otero, T.F. Structural Electrochemistry. Chronopotentiometric Responses from Rising Compacted Polypyrrole Electrodes: Experiments and Model. RSC Adv. 2014, 4, 29139–29145. [Google Scholar] [CrossRef]
- Chen, Y.; Han, M.; Tang, Y.; Bao, J.; Li, S.; Lan, Y.; Dai, Z. Polypyrrole-Polyoxometalate/reduced Graphene Oxide Ternary Nanohybrids for Flexible, All-Solid-State Supercapacitors. Chem. Commun. 2015, 51, 12377–12380. [Google Scholar] [CrossRef] [PubMed]
- Anees, M.; Puniyanikkottil, P.; Rajendra Chandewar, D.S.; Mal, S.S. Synergistic Enhancement of Supercapacitor Performance: Vanadium-Substituted Phosphotungstic and Molybdic Acid Combined with Polypyrrole Using Pyridinium and Ammonium Ionic Containing Organic Cation Linkers with Improved Conductivity. Energy Technol. 2024, 12, 2400708. [Google Scholar] [CrossRef]
- Cheng, D.; Li, K.; Zang, H.; Chen, J. Recent Advances on Polyoxometalate-Based Ion-Conducting Electrolytes for Energy-Related Devices. Energy Environ. Mater. 2023, 6, e12341. [Google Scholar] [CrossRef]
- Otero, T.F.; Martinez, J.G. Physical and Chemical Awareness from Sensing Polymeric Artificial Muscles. Experiments and Modeling. Prog. Polym. Sci. 2015, 44, 62–78. [Google Scholar] [CrossRef]
- Jafeen, M.J.M.; Careem, M.A.; Skaarup, S. Speed and Strain of Polypyrrole Actuators: Dependence on Cation Hydration Number. Ionics 2010, 16, 1–6. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Zeng, X.; Deng, T.; Wang, J. Membranes for Separation of Alkali/alkaline Earth Metal Ions: A Review. Sep. Purif. Technol. 2022, 278, 119640. [Google Scholar] [CrossRef]
- Novák, P.; Müller, K.; Santhanam, K.S.V.; Haas, O. Electrochemically Active Polymers for Rechargeable Batteries. Chem. Rev. 1997, 97, 207–281. [Google Scholar] [CrossRef]
- Cheng, Y.; Hao, Z.; Hao, C.; Deng, Y.; Li, X.; Li, K.; Zhao, Y. A Review of Modification of Carbon Electrode Material in Capacitive Deionization. RSC Adv. 2019, 9, 24401–24419. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X.; Apostol, P.; Liu, X.; Robeyns, K.; Gence, L.; Morari, C.; Gohy, J.F.; Vlad, A. High Performance Li-, Na-, and K-Ion Storage in Electrically Conducting Coordination Polymers. Energy Environ. Sci. 2022, 15, 3923–3932. [Google Scholar] [CrossRef]
Electrolytes Cation | r (Å) [40] | N [40] | [41] | NPPy [21] |
---|---|---|---|---|
Li+ | 0.76 | 0.58 | 4 | 5.3–5.5 |
Na+ | 1.02 | 0.22 | 5 | 4.3–4.5 |
K+ | 1.38 | 0 | 6 | 2.0–2.2 |
PPyDBS-PT4 Applied Aqueous Electrolytes | ε (%) | Q (C cm−3) | σe (S cm−1) | Y (MPa) | |
---|---|---|---|---|---|
Before | After | ||||
LiCl | 6.6 ± 0.4 | 149.2 ± 12.2 | 13.5 ± 0.9 | 4.8 ± 0.3 | 1.4 ± 0.1 |
NaCl | 4.7 ± 0.3 | 137.6 ± 11.1 | 10.3 ± 0.6 | 4.4 ± 0.4 | 1.1 ± 0.1 |
KCl | 2.4 ± 0.2 | 114.5 ± 9.4 | 7.4 ± 0.4 | 5.0 ± 0.4 | 4.2 ± 0.3 |
PPyDBS-PT8 Applied Aqueous Electrolytes | ε (%) | Q (C cm−3) | σe (S cm−1) | Y (MPa) | |
---|---|---|---|---|---|
Before | After | ||||
LiCl | 2.6 ± 0.2 | 41.2 ± 2.8 | 7.2 ± 0.5 | 18.5 ± 1.3 | 11.3 ± 0.8 |
NaCl | 2.3 ± 0.1 | 36.4 ± 2.2 | 6.2 ± 0.4 | 17.2 ± 1.2 | 11.5 ± 0.7 |
KCl | 1.8 ± 0.1 | 32.6 ± 2.1 | 3.8 ± 0.3 | 20.4 ± 1.4 | 18.5 ± 1.4 |
Electrolytes | Ue (J g−1) | Eox (V) | ε (%) |
---|---|---|---|
* PPyDBS-PT4 | |||
LiCl | 0.60 ± 0.050 | ||
NaCl | 0.41 ± 0.037 | ||
KCl | 0.16 ± 0.015 | ||
** PPyDBS-PT8 | |||
LiCl | 0.85 ± 0.079 | ||
NaCl | 0.52 ± 0.048 | ||
KCl | 0.44 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiefer, R.; Nguyen, N.T.; Le, Q.B. Alkali Metal Ion Insertion in Polypyrrole Polyoxometalates for Multifunctional Actuator–Sensor–Energy Storage Devices. Polymers 2025, 17, 262. https://doi.org/10.3390/polym17030262
Kiefer R, Nguyen NT, Le QB. Alkali Metal Ion Insertion in Polypyrrole Polyoxometalates for Multifunctional Actuator–Sensor–Energy Storage Devices. Polymers. 2025; 17(3):262. https://doi.org/10.3390/polym17030262
Chicago/Turabian StyleKiefer, Rudolf, Ngoc Tuan Nguyen, and Quoc Bao Le. 2025. "Alkali Metal Ion Insertion in Polypyrrole Polyoxometalates for Multifunctional Actuator–Sensor–Energy Storage Devices" Polymers 17, no. 3: 262. https://doi.org/10.3390/polym17030262
APA StyleKiefer, R., Nguyen, N. T., & Le, Q. B. (2025). Alkali Metal Ion Insertion in Polypyrrole Polyoxometalates for Multifunctional Actuator–Sensor–Energy Storage Devices. Polymers, 17(3), 262. https://doi.org/10.3390/polym17030262