Turning Discarded Oyster Shells into Sustainable Passive Radiative Cooling Films
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Sample Preparation
2.3. Sample Characterization
2.4. Experimental Setup
2.5. Calculation of Net Cooling Power
3. Results and Discussion
3.1. Preparation of Discarded Oyster-Shell-Derived CaCO3 Film
3.2. Simulating the Optical Properties of PU/D-CaCO3 Film Through the Finite-Difference Time-Domain Method
3.3. Optical Properties of the PU/D-CaCO3 Films
3.4. Outdoor Field Tests
3.5. Cooling Power Calculation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- U.S. Energy Information Administration. Annual Energy Outlook 2022 Narrative; U.S. Department of Energy: Washington, DC, USA, 2022. Available online: www.eia.gov (accessed on 3 March 2022).
- Raman, A.P.; Anoma, M.A.; Zhu, L.; Rephaeli, E.; Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Chen, Y. Emerging materials and strategies for passive daytime radiative cooling. Small 2023, 19, 2206145. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Pang, D.; Chen, X.; Yan, H.; Yang, Y. Passive daytime radiative cooling: Fundamentals, material designs, and applications. EcoMat 2022, 4, e12153. [Google Scholar] [CrossRef]
- Sun, Y.; Ji, Y.; Javed, M.; Li, X.; Fan, Z.; Wang, Y.; Cai, Z.; Xu, B. Preparation of passive daytime cooling fabric with the synergistic effect of radiative cooling and evaporative cooling. Adv. Mater. Technol. 2022, 7, 2100803. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Q.; Song, Y.; Zhu, B.; Zhu, J. Fundamentals, materials, and applications for daytime radiative cooling. Adv. Mater. Technol. 2020, 5, 1901007. [Google Scholar] [CrossRef]
- Yu, X.; Chan, J.; Chen, C. Review of radiative cooling materials: Performance evaluation and design approaches. Nano Energy 2021, 88, 106259. [Google Scholar] [CrossRef]
- Wang, W.; Zou, Q.; Wang, N.; Hong, B.; Zhang, W.; Wang, G.P. Janus Multilayer for Radiative Cooling and Heating in Double-Side Photonic Thermal System. ACS Appl. Mater. Interfaces 2021, 13, 42813–42821. [Google Scholar] [CrossRef]
- Shi, N.N.; Tsai, C.-C.; Camino, F.; Bernard, G.D.; Yu, N.; Wehner, R. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 2015, 349, 298–301. [Google Scholar] [CrossRef]
- Zou, C.; Ren, G.; Hossain, M.; Nirantar, S.; Withayachumnankul, W.; Ahmed, T.; Bhaskaran, M.; Sriram, S.; Gu, M.; Fumeaux, C. Metal-Loaded Dielectric Resonator Metasurfaces for Radiative Cooling. Adv. Opt. Mater. 2017, 5, 1700460. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, X.; Wang, Z.; Li, J.; Mu, Y.; Zhou, S.; Chen, F.; Minus, M.L.; Xiao, G.; Zheng, Y. Subambient daytime cooling enabled by hierarchically architected all-inorganic metapaper with enhanced thermal dissipation. Nano Energy 2022, 96, 107085. [Google Scholar] [CrossRef]
- Yao, P.; Chen, Z.; Liu, T.; Liao, X.; Yang, Z.; Li, J.; Jiang, Y.; Xu, N.; Li, W.; Zhu, B.; et al. Spider-Silk-Inspired Nanocomposite Polymers for Durable Daytime Radiative Cooling. Adv. Mater. 2022, 34, e2208236. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Ma, Y.; David, S.N.; Zhao, D.; Lou, R.; Tan, G.; Yang, R.; Yin, X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 2017, 355, 1062–1066. [Google Scholar] [CrossRef] [PubMed]
- Mandal, J.; Yang, Y.; Yu, N.; Raman, A.P. Paints as a Scalable and Effective Radiative Cooling Technology for Buildings. Joule 2020, 4, 1350–1356. [Google Scholar] [CrossRef]
- Mandal, J.; Fu, Y.; Overvig, A.C.; Jia, M.; Sun, K.; Shi, N.N.; Zhou, H.; Xiao, X.; Yu, N.; Yang, Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018, 362, 315–319. [Google Scholar] [CrossRef]
- Wang, T.; Wu, Y.; Shi, L.; Hu, X.; Chen, M.; Wu, L. A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 2021, 12, 365. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Chen, F.; Tian, Y.; Caratenuto, A.; Mu, Y.; Cui, S.; Minus, M.; Zheng, Y. Eco-friendly passive radiative cooling using recycled packaging plastics. Mater. Today Sustain. 2023, 23, 100448. [Google Scholar] [CrossRef]
- Sun, H.; Hou, C.; Ji, T.; Zhou, X.; Ren, Z.; Song, Y. Processing bulk wood into a light-permeable passive radiative cooling material for energy-efficient building. Compos. B Eng. 2023, 250, 110426. [Google Scholar] [CrossRef]
- Shi, C.; Kim, S.-H.; Warren, N.; Guo, N.; Zhang, X.; Wang, Y.; Willemsen, A.; López-Pernía, C.; Liu, Y.; Kingon, A.I.; et al. Hierarchically micro-and nanostructured polymer via crystallinity alteration for sustainable environmental cooling. Langmuir 2024, 40, 20195. [Google Scholar] [CrossRef]
- Tian, Y.; Shao, H.; Liu, X.; Chen, F.; Li, Y.; Tang, C.; Zheng, Y. Superhydrophobic and recyclable cellulose-fiber-based composites for high-efficiency passive radiative cooling. ACS Appl. Mater. Interfaces 2021, 13, 22521–22530. [Google Scholar] [CrossRef]
- Naka, K.; Chujo, Y. Control of crystal nucleation and growth of calcium carbonate by synthetic substrates. Chem. Mater. 2001, 13, 3245–3259. [Google Scholar] [CrossRef]
- Kato, T.; Sugawara, A.; Hosoda, N. Calcium carbonate-organic hybrid materials. Adv. Mater. 2002, 14, 869. [Google Scholar] [CrossRef]
- Hossain, F.M.; Murch, G.E.; Belova, I.V.; Turner, B.D. Electronic, optical and bonding properties of CaCO3 calcite. Solid State Commun. 2009, 149, 1201–1203. [Google Scholar] [CrossRef]
- Lee, J.; Kim, B.; Noh, J.; Lee, C.; Kwon, I.; Kwon, B.-O.; Ryu, J.; Park, J.; Hong, S.; Lee, S.; et al. The first national scale evaluation of organic carbon stocks and sequestration rates of coastal sediments along the West Sea, South Sea, and East Sea of South Korea. Sci. Total. Environ. 2021, 793, 148568. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Cai, Y.; Jing, B.; Liu, P. Structure and mechanical properties of thermoplastic polyurethane, based on hyperbranched polyesters. J. Appl. Polym. Sci. 2006, 102, 5266–5273. [Google Scholar] [CrossRef]
- Park, C.; Park, C.; Park, S.; Lee, J.; Choi, J.; Kim, Y.S.; Yoo, Y. Passive daytime radiative cooling by thermoplastic polyurethane wrapping films with controlled hierarchical porous structures. ChemSusChem 2022, 15, e202201842. [Google Scholar] [CrossRef]
- Xiang, B.; Zhang, R.; Luo, Y.; Zhang, S.; Xu, L.; Min, H.; Tang, S.; Meng, X. 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 2021, 81, 105600. [Google Scholar] [CrossRef]
- Nie, X.; Yoo, Y.; Hewakuruppu, H.; Sullivan, J.; Krishna, A.; Lee, J. Cool white polymer coatings based on glass bubbles for buildings. Sci. Rep. 2020, 10, 6661. [Google Scholar] [CrossRef]
- Zhou, K.; Li, W.; Patel, B.B.; Tao, R.; Chang, Y.; Fan, S.; Diao, Y.; Cai, L. Three-dimensional printable nanoporous polymer matrix composites for daytime radiative cooling. Nano Lett. 2021, 21, 1493–1499. [Google Scholar] [CrossRef]
- Feng, S.; Zhou, Y.; He, M.; Wang, R.; Shi, S.; Liu, C.; Zhang, T.; Bu, X.; Huang, Y. 3D sustainable polysiloxane/ZnO hybrid membrane with enhanced reflectivity and flame retardancy for daytime radiative cooling. Opt. Mater. 2022, 129, 112472. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, C.; Wang, Y.; Li, N.; Xiong, J. Polyurethane-SiO2 tandem composite fibrous membrane for passive daytime radiative cooling. Sol. Energy Mater. Sol. Cells 2025, 279, 113244. [Google Scholar] [CrossRef]
- Tsai, M.-T.; Chang, S.-W.; Chen, Y.-J.; Chen, H.-L.; Lan, P.-H.; Chen, D.-C.; Ko, F.-H.; Lo, Y.-C.; Wang, H.-C.; Wan, D. Scalable, flame-resistant, superhydrophobic ceramic metafibers for sustainable all-day radiative cooling. Nano Today 2023, 48, 101745. [Google Scholar] [CrossRef]
Sample | Average Absorptivity (0.3–2.5 µm) | Average Emissivity (8–13 µm) |
---|---|---|
PU/D-CaCO3 | 0.22 | 0.96 |
White Paint | 0.29 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, D.K.; Kwon, D.; Yu, J.; Park, J.G.; Yoo, Y. Turning Discarded Oyster Shells into Sustainable Passive Radiative Cooling Films. Polymers 2025, 17, 275. https://doi.org/10.3390/polym17030275
Lee J, Kim DK, Kwon D, Yu J, Park JG, Yoo Y. Turning Discarded Oyster Shells into Sustainable Passive Radiative Cooling Films. Polymers. 2025; 17(3):275. https://doi.org/10.3390/polym17030275
Chicago/Turabian StyleLee, Junghwan, Dae Kyom Kim, Daeyul Kwon, Jeehoon Yu, Jeong Gyu Park, and Youngjae Yoo. 2025. "Turning Discarded Oyster Shells into Sustainable Passive Radiative Cooling Films" Polymers 17, no. 3: 275. https://doi.org/10.3390/polym17030275
APA StyleLee, J., Kim, D. K., Kwon, D., Yu, J., Park, J. G., & Yoo, Y. (2025). Turning Discarded Oyster Shells into Sustainable Passive Radiative Cooling Films. Polymers, 17(3), 275. https://doi.org/10.3390/polym17030275