Glass Fiber-Reinforced Polypropylene Composites with High Solar Reflectance for Thermal Insulation Applications
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
3. Results
3.1. Cross-Sectional Morphology of Solvent-Treated PP Composites
3.2. Solar Reflectance
3.3. Reflective Thermal Insulation Ability
3.4. Mechanical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chetan, V.; Nagaraj, K.; Kulkarni, P.S.; Modi, S.K.; Kempaiah, U. Review of passive cooling methods for buildings. J. Phys. Conf. Ser. 2020, 1473, 012054. [Google Scholar] [CrossRef]
- Liang, J.; Wu, J.; Guo, J.; Li, H.; Zhou, X.; Liang, S.; Qiu, C.-W.; Tao, G. Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl. Sci. Rev. 2023, 10, 208. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Zhang, K.; Nguyen, Q.; Tasdizen, T. The effects of passive design on indoor thermal comfort and energy savings for residential buildings in hot climates: A systematic review. Urban Clim. 2023, 49, 101466. [Google Scholar] [CrossRef]
- Auger, J.C.; Stout, B. Dependent light scattering in white paint films: Clarification and application of the theoretical concepts. J. Coat. Technol. Res. 2012, 9, 287–295. [Google Scholar] [CrossRef]
- Dong, S.; Quek, J.Y.; Van Herk, A.M.; Jana, S. Polymer-encapsulated TiO2 for the improvement of NIR reflectance and total solar reflectance of cool coatings. Ind. Eng. Chem. Res. 2020, 59, 17901–17910. [Google Scholar] [CrossRef]
- Kokado, K. Network polymers derived from the integration of flexible organic polymers and rigid metal–organic frameworks. J. Polym. 2017, 49, 345–353. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, H.; Zhang, S.; Zhang, F.; Jin, J. Polymers of intrinsic microporosity/metal–organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation. J. Mater. Chem. A 2017, 5, 10968–10977. [Google Scholar] [CrossRef]
- Yu, S.; Chen, J.; Gomard, G.; Hölscher, H.; Lemmer, U. Recent progress in light-Scattering porous polymers and their applications. Adv. Opt. Mater. 2023, 11, 2203134. [Google Scholar] [CrossRef]
- Tao, Y.; Mao, Z.; Yang, Z.; Zhang, J. Preparation and characterization of polymer matrix passive cooling materials with thermal insulation and solar reflection properties based on porous structure. Energy Build. 2020, 225, 110361. [Google Scholar] [CrossRef]
- Feng, C.; Yang, P.; Liu, H.; Mao, M.; Liu, Y.; Xue, T.; Fu, J.; Cheng, T.; Hu, X.; Fan, H.J. Bilayer porous polymer for efficient passive building cooling. Nano Energy 2021, 85, 105971. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, P.; Li, Y.; Yang, X.; Zhao, Y.; Wang, Z. Highly solar-reflective structures for daytime radiative cooling under high humidity. ACS Appl. Mater. Interfaces 2020, 12, 51409–51417. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Wang, L.; Dou, S.; Zhao, H.; Huang, M.; Xu, Z.; Zhang, X.; Xu, X.; Zhang, A.; Yue, H. Flexible daytime radiative cooling enhanced by enabling three-phase composites with scattering interfaces between silica microspheres and hierarchical porous coatings. ACS Appl. Mater. Interfaces 2021, 13, 19282–19290. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Pian, S.; Su, M.; Wang, Z.; Wu, M.; Liu, X.; Chen, M.; Xiang, Y.; Wu, J.; Zhang, M. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 2021, 373, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Mandal, J.; Fu, Y.; Overvig, A.C.; Jia, M.; Sun, K.; Shi, N.N.; Zhou, H.; Xiao, X.; Yu, N.; Yang, Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018, 362, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Sun, H.; Mao, Z.; Tao, Y.; Zhang, J. Facile fabrication of EVA cellular material with hydrophobic surface, high solar reflectance and low thermal conductivity via chemical foaming. Microporous Mesoporous Mater. 2021, 328, 111460. [Google Scholar] [CrossRef]
- Vámos, C.; Rácz, I.; Bárány, T.; Menyhárd, A.; Marosfői, B.B. Novel, solvent-based method for the production of polymer sheets with a superhydrophobic surface. Polym. Eng. Sci. 2023, 63, 1289–1302. [Google Scholar] [CrossRef]
- Vámos, C.; Varga, L.J.; Marosfői, B.; Bárány, T. Role of extruded sheet morphology in phase separation and final morphology of superhydrophobic polypropylene. Period. Polytech. Mech. Eng. 2022, 66, 260–271. [Google Scholar] [CrossRef]
- Vámos, C.; Bárány, T.; Marosfői, B.B. Porous polypropylene produced by phase separation for high solar reflectivity and passive cooling. J. Therm. Anal. Calorim. 2024, 149, 10851–10863. [Google Scholar] [CrossRef]
- Dong, S.; Qi, X.; Tian, J.; Zhou, P.; Li, C.; Xian, G. Durability of glass fiber reinforced thermoplastic polypropylene composite bars under the coupling effect of seawater and sea sand concrete environment and sustained bending. Polym. Compos. 2024, 45, 3194–3209. [Google Scholar] [CrossRef]
- Zhang, Z.; Ji, Q.; Guo, Z.; Li, C.; Guo, R.; Tian, J.; Zhang, Z.; He, T.; Xian, G. Design, preparation, and mechanical properties of glass fiber reinforced thermoplastic self-anchor plate cable exposed in alkaline solution environment. Polym. Compos. 2024, 43, 11687–11700. [Google Scholar] [CrossRef]
- Xian, G.; Zhou, P.; Li, C.; Dong, S.; Du, H.; Tian, J.; Guo, R.; Peng, Z.; Zhang, Z.; He, T. Mechanical properties evaluation of glass fiber reinforced thermoplastic composite plate under combined bending loading and water immersion. Constr. Build. Mater. 2024, 440, 137470. [Google Scholar] [CrossRef]
- MohammadKarimi, S.; Neitzel, B.; Lang, M.; Puch, F. Investigation of the fiber length and the mechanical properties of waste recycled from continuous glass fiber-reinforced polypropylene. Recycling 2023, 8, 82. [Google Scholar] [CrossRef]
- Sam-Daliri, O.; Ghabezi, P.; Steinbach, J.; Flanagan, T.; Finnegan, W.; Mitchell, S.; Harrison, N. Experimental study on mechanical properties of material extrusion additive manufactured parts from recycled glass fibre-reinforced polypropylene composite. Compos. Sci. Technol. 2023, 241, 110125. [Google Scholar] [CrossRef]
- Gee, D.; Melia, T. Thermal properties of melt and solution crystallized isotactic polypropylene. Macromol. Chem. Phys. 1970, 132, 195–201. [Google Scholar] [CrossRef]
- ISO 1172: 1999; Textile-Glass-Reinforced Plastics—Prepregs, Moulding Compounds and Laminates—Determination of the Textile-Glass and Mineral-Filler Content Using Calcination Methods. ISO: Geneva, Switzerland, 2023.
- ASTM G173-23; Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. ASTM: West Conshohocken, PA, USA, 2023.
- Karger-Kocsis, J.; Bárány, T. Polypropylene Handbook; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Seo, Y.; Kim, J.; Kim, K.U.; Kim, Y.C. Study of the crystallization behaviors of polypropylene and maleic anhydride grafted polypropylene. Polym. J. 2000, 41, 2639–2646. [Google Scholar] [CrossRef]
- Wang, J.; Geng, C.; Luo, F.; Liu, Y.; Wang, K.; Fu, Q.; He, B. Shear induced fiber orientation, fiber breakage and matrix molecular orientation in long glass fiber reinforced polypropylene composites. Mater. Sci. Eng. A 2011, 528, 3169–3176. [Google Scholar] [CrossRef]
- Hulst, H.C.; van de Hulst, H.C. Light Scattering by Small Particles; Courier Corporation: New York, NY, USA, 1981. [Google Scholar]
- Molnár, J.; Sepsi, Ö.; Erdei, G.; Lenk, S.; Ujhelyi, F.; Menyhárd, A. Modeling of light scattering and haze in semicrystalline polymers. J. Polym. Sci. 2020, 58, 1787–1795. [Google Scholar] [CrossRef]
- Fu, S.-Y.; Lauke, B.; Mäder, E.; Yue, C.-Y.; Hu, X. Tensile properties of short-glass-fiber-and short-carbon-fiber-reinforced polypropylene composites. Compos.-A Appl. Sci. Manuf. 2000, 31, 1117–1125. [Google Scholar] [CrossRef]
- Várdai, R.; Lummerstorfer, T.; Pretschuh, C.; Jerabek, M.; Gahleitner, M.; Faludi, G.; Móczó, J.; Pukánszky, B. Comparative study of fiber reinforced PP composites: Effect of fiber type, coupling and failure mechanisms. Compos.-A Appl. Sci. Manuf. 2020, 133, 105895. [Google Scholar] [CrossRef]
Designation | GF Content (wt%) | MAPP Content (wt%) | NA Content (ppm) |
---|---|---|---|
PP | - | - | - |
NA PP | - | - | 500 |
PP/GF 20 | 20 | - | - |
PP/GF 30 | 30 | - | - |
PP/GF 40 | 40 | - | - |
PP/MAPP 2 | - | 2.5 | - |
PP/MAPP 3 | - | 4.3 | - |
PP/MAPP 4 | - | 6.7 | - |
GFPP 20 | 20 | 2.0 | - |
GFPP 30 | 30 | 3.0 | - |
GFPP 40 | 40 | 4.0 | - |
NA GFPP 30 | 30 | 3.0 | 500 |
TSR (%) | ||||||
---|---|---|---|---|---|---|
Immersion Time (s) | PP | NA PP | GFPP 20 | GFPP 30 | GFPP 40 | NA GFPP 30 |
0 * | 11.6 ± 0.6 | 12.4 ± 0.9 | 18.8 ± 1.4 | 22.7 ± 1.8 | 32.7 ± 2.2 | 28.7 ± 0.8 |
60 | 80.8 ± 1.2 | 90.1 ± 0.3 | 83.5 ± 1.6 | 89.9 ± 0.3 | 88.5 ± 0.8 | 93.0 ± 0.6 |
120 | 83.6 ± 0.8 | 92.3 ± 0.8 | 86.1 ± 1.3 | 90.7 ± 1.2 | 90.1 ± 0.8 | 93.4 ± 0.8 |
180 | 86.1 ± 1.4 | 93.2 ± 0.8 | 90.4 ± 0.6 | 92.4 ± 0.3 | 91.9 ± 1.5 | 92.3 ± 1.4 |
Designation | Nominal Fiber Diameter (μm) | Nominal Fiber Length (μm) | Actual Glass Fiber Content (wt %) | |
---|---|---|---|---|
Before Extrusion | After Extrusion | |||
GFPP 20 | 10 | 3000 | 1008 ± 278 | 21.1 ± 0.79 |
GFPP 30 | 800 ± 234 | 31.1 ± 1.10 | ||
GFPP 40 | 746 ± 199 | 40.7 ± 0.51 | ||
NA GFPP 30 | 812 ± 178 | 30.5 ± 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vámos, C.; Bárány, T. Glass Fiber-Reinforced Polypropylene Composites with High Solar Reflectance for Thermal Insulation Applications. Polymers 2025, 17, 274. https://doi.org/10.3390/polym17030274
Vámos C, Bárány T. Glass Fiber-Reinforced Polypropylene Composites with High Solar Reflectance for Thermal Insulation Applications. Polymers. 2025; 17(3):274. https://doi.org/10.3390/polym17030274
Chicago/Turabian StyleVámos, Csenge, and Tamás Bárány. 2025. "Glass Fiber-Reinforced Polypropylene Composites with High Solar Reflectance for Thermal Insulation Applications" Polymers 17, no. 3: 274. https://doi.org/10.3390/polym17030274
APA StyleVámos, C., & Bárány, T. (2025). Glass Fiber-Reinforced Polypropylene Composites with High Solar Reflectance for Thermal Insulation Applications. Polymers, 17(3), 274. https://doi.org/10.3390/polym17030274