Hydrophobic Ti3C2Tx/TEMPO Oxidized Cellulose Nanofibers Composite Aerogel for Efficient Oil-Water Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Ti3C2Tx
2.3. Preparation of Hydrophobic Ti3C2Tx/TOCNF Composite Aerogels
2.4. Performance Testing and Characterization
3. Results
3.1. The Microstructure of Ti3C2Tx
3.2. The Morphological Analysis of Ti3C2Tx/TOCNF Composite Aerogels
3.3. The Chemical Structure Analysis of Ti3C2Tx/TOCNF Composite Aerogels
3.4. The Phase Structure Analysis of Ti3C2Tx/TOCNF Composite Aerogels
3.5. The Thermal Stability Analysis of Ti3C2Tx/TOCNF Composite Aerogels
3.6. The Water Contact Angle Analysis of Ti3C2Tx/TOCNF Composite Aerogels
3.7. The Application of Hydrophobic Ti3C2Tx/TOCNF Composite Aerogels in Oil-Water Separation
3.7.1. Adsorption Capacity Analysis
3.7.2. Selective Oil Adsorption Analysis
3.7.3. Recyclability Performance Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, R.K.; Dunderdale, G.J.; England, M.W.; Hozumi, A. Oil/Water Separation Techniques: A Review of Recent Progresses and Future Directions. J. Mater. Chem. A 2017, 5, 16025–16058. [Google Scholar] [CrossRef]
- Yang, K.; Wang, S.; Du, B.; Zhou, S. An Environmentally Friendly Superhydrophobic Wood Sponge with Photo/Electrothermal Effects Prepared from Natural Wood for All-Weather High-Viscosity Oil–Water Separation. Polymers 2024, 16, 3256. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Zhao, H.Y.; Zhu, H.W.; Huang, J.; Shi, L.A.; Yu, S.H. Advanced Sorbents for Oil-Spill Cleanup: Recent Advances and Future Perspectives. Adv. Mater. 2016, 28, 10459. [Google Scholar] [CrossRef] [PubMed]
- Duman, O.; Diker, C.Ö.; Tunç, S. Development of Highly Hydrophobic and Superoleophilic Fluoro Organothiol-Coated Carbonized Melamine Sponge/rGO Composite Absorbent Material for the Efficient and Selective Absorption of Oily Substances from Aqueous Environments. J. Environ. Chem. Eng. 2021, 9, 105093. [Google Scholar] [CrossRef]
- Duman, O.; Uğurlu, H.; Diker, C.Ö.; Tunç, S. Fabrication of Highly Hydrophobic or Superhydrophobic Electrospun PVA and Agar/PVA Membrane Materials for Efficient and Selective Oil/Water Separation. J. Environ. Chem. Eng. 2022, 10, 107405. [Google Scholar] [CrossRef]
- Xue, J.; Zhu, L.; Zhu, X.; Li, H.; Ma, C.; Yu, S.; Sun, D.; Xia, F.; Xue, Q. Tetradecylamine-MXene Functionalized Melamine Sponge for Effective Oil/Water Separation and Selective Oil Adsorption. Sep. Purif. Technol. 2021, 259, 118106. [Google Scholar] [CrossRef]
- Bi, B.; Guan, Y.; Li, W.Y. MXene/Graphene Modified Cellulose Aerogel for Photo-Electro-Assisted All-Weather Cleanup of High-Viscous Crude Oil from Spill. J. Hazard. Mater. 2023, 460, 132353. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.Y.; Jing, X.; Xie, H.; Huang, H.X.; Turng, L.S. Magnetically Driven Superhydrophobic Silica Sponge Decorated with Hierarchical Cobalt Nanoparticles for Selective Oil Absorption and Oil/Water Separation. Chem. Eng. J. 2017, 337, 541–551. [Google Scholar] [CrossRef]
- Gao, L.; Sun, X.; Sun, B.; Che, D.; Li, S.; Liu, Z. Preparation and Thermal Properties of Palmitic Acid/Expanded Graphite/Carbon Fiber Composite Phase Change Materials for Thermal Energy Storage. J. Therm. Anal. Calorim. 2020, 141, 25–35. [Google Scholar] [CrossRef]
- Yuan, D.; Zhang, T.; Guo, Q.; Qiu, F.; Yang, D.; Ou, Z. Recyclable Biomass carbon@SiO2@MnO2 Aerogel with Hierarchical Structures for Fast and Selective Oil-Water Separation. Chem. Eng. J. 2018, 351, 622–630. [Google Scholar] [CrossRef]
- Zhang, C.; Cai, T.; Ge-Zhang, S.; Mu, P.; Liu, Y.; Cui, J. Wood Sponge for Oil–Water Separation. Polymers 2024, 16, 2362. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, X.; Wang, W.; Zhou, P.; Zhang, R.; Chen, H.; Liu, G. Superhydrophobic Polyimide/Cattail-Derived Active Carbon Composite Aerogels for Effective Oil/Water Separation. Sep. Purif. Technol. 2023, 308, 122994. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, H.; Wu, Z.; Li, Y.; Liu, H.; Ma, Z.; He, P.; Liu, Q.; Tao, F. Bio-Carbon Coil Aerogels from Tea Waste: A Sustainable Solution for Efficient Oil-Water Separation. Sep. Purif. Technol. 2024, 342, 127006. [Google Scholar] [CrossRef]
- Chen, B.; Hu, Y. Hierarchical Aerogels Based on Cellulose Nanofibers and Long-Chain Polymers for Enhancing Oil–Water Separation Efficiency. Mater. Today Nano 2024, 26, 100469. [Google Scholar] [CrossRef]
- Zhao, B.; Ren, L.; Du, Y.; Wang, J. Eco-Friendly Separation Layers Based on Waste Peanut Shell for Gravity-Driven Water-in-Oil Emulsion Separation. J. Clean. Prod. 2020, 255, 120184. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Q.; Peng, F.; Hao, X. Preparation and Performance of Oil-Water Separation Membrane Based on Copy Paper. J. For. Eng. 2023, 8, 96–103. [Google Scholar] [CrossRef]
- Duman, O.; Diker, C.; Uğurlu, H.; Tunç, S. Highly Hydrophobic and Superoleophilic Agar/PVA Aerogels for Selective Removal of Oily Substances from Water. Carbohydr. Polym. 2022, 286, 119275. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Hu, Y.; Yang, X.; Shang, Q.; Huang, Q.; Hu, L.; Jia, P.; Zhou, Y. Fabrication, Functionalization and Applications of Cellulose Based Aerogels: A Review. Int. J. Biol. Macromol. 2025, 284, 138114. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Zhang, T.; Xiao, S.; He, H.; Yang, J.; Qin, Z. Preparation and Adsorption Performance of Functionalization Cellulose-Based Composite Aerogel. Int. J. Biol. Macromol. 2022, 211, 1–14. [Google Scholar] [CrossRef]
- Iqbal, D.; Zhao, Y.; Zhao, R.; Russell, S.J.; Ning, X. A Review on Nanocellulose and Superhydrophobic Features for Advanced Water Treatment. Polymers 2022, 14, 2343. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qi, J.; Zhang, M.; Xu, T.; Zheng, C.; Yuan, Z.; Si, C. Cellulose-Based Aerogels, Films, and Fibers for Advanced Biomedical Applications. Chem. Eng. J. 2024, 497, 154434. [Google Scholar] [CrossRef]
- Wang, L.; Lou, Y.; Tong, Z. Molecular Dynamics Mechanism of Metal Salt Hydrate-Based Deep Eutectic Solvent to Dissolve Cellulose at Room Temperature. J. For. Eng. 2022, 7, 64–71. [Google Scholar] [CrossRef]
- Tang, R.; Hu, Y.; Yan, J.; Xu, S.; Wang, Y.; Yan, J.; Liao, D.; Zhang, H.; Tong, Z. Multifunctional Carboxylated Cellulose Nanofibers/Exfoliated Bentonite/Ti3C2 Aerogel for Efficient Oil Adsorption and Recovery: The Dual Effect of Exfoliated Bentonite and MXene. Chem. Eng. J. 2023, 473, 145412. [Google Scholar] [CrossRef]
- Yang, R.; Cao, Q.; Hong, S. Review of Oil-Water Separation Materials Based on Cellulose. J. For. Eng. 2020, 5, 13–20. [Google Scholar] [CrossRef]
- Ghidiu, M.; Lukatskaya, M.R.; Zhao, M.-Q.; Gogotsi, Y.; Barsoum, M.W. Conductive Two-Dimensional Titanium Carbide ‘Clay’ with High Volumetric Capacitance. Nature 2014, 516, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Sun, M.; Liu, C.; Fu, L.; Lv, Y.; Feng, Y.; Huang, P.; Yang, F.; Song, P.; Liu, M. Lightweight, Amphipathic and Fire-Resistant prGO/MXene Spherical Beads for Rapid Elimination of Hazardous Chemicals. J. Hazard. Mater. 2021, 423, 127069. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, J.; Yu, F.; Li, Y.; Zhang, Y.; Peng, X.; He, D.; Zhao, S.; Zheng, W.; Shang, J.; et al. A Thermoplastic Polyurethane-Based Composite Aerogel with Low Shrinkage and High Specific Surface Area Enhanced by Activated Carbon for Highly Efficient Oil/Water Separation. J. Environ. Chem. Eng. 2023, 11, 111077. [Google Scholar] [CrossRef]
- Geng, H. A Facile Approach to Light Weight, High Porosity Cellulose Aerogels. Int. J. Biol. Macromol. 2018, 118, 921–931. [Google Scholar] [CrossRef]
- Jang, J.; Kim, D.; Park, J.; Lim, H.; Choi, H.; Jung, S.; Lee, D.; Kwon, G.; Wang, C.; Cho, I.; et al. Strategically Designed Uniform MOF-Derived Nanoporous Carbon Aerogel for Efficient Solar-Driven Desalination by Control of Hydrophilicity and Thermal Conductivity. Small 2024, 21, 2409014. [Google Scholar] [CrossRef]
- Lu, J.; Feng, Q.; Wang, J.; Li, J.; Tan, S.; Xu, Z. Efficient Solar-Driven Crude Oil Cleanup via Graphene/Cellulose Aerogel with Radial and Centrosymmetric Design. J. Hazard. Mater. 2024, 477, 135418. [Google Scholar] [CrossRef] [PubMed]
- Rejeb, Z.B.; Abidli, A.; Zaoui, A.; Fashandi, M.; Selka, A.; Naguib, H.E.; Park, C.B. One-Pot Synthesis of Rationally-Designed Flexible, Robust, and Hydrophobic Ambient-Dried Molecularly-Bridged Silica Aerogels with Efficient and Versatile Oil/Water Separation Applications. Adv. Compos. HYBRID Mater. 2024, 7, 188. [Google Scholar] [CrossRef]
- Wang, N.N.; Wang, H.; Wang, Y.Y.; Wei, Y.H.; Yeoh, G.H. Robust, Lightweight, Hydrophobic and Fire Retarded Polyimide/MXene Aerogels for Effective Oil/Water Separation. ACS Appl. Mater. Interfaces 2019, 11, 40512–40523. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Lv, X.; Peng, H.; Zhou, Y.; Li, H.; Li, Z.; Wang, Y.; Bu, X. Biomimetic Artificial Nacre-like Microfiber of Co/C Modified Cellulose Nanofiber/Ti3C2Tx MXene with Efficient Microwave Absorption. Chem. Eng. J. 2024, 491, 151726. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Liu, A.; Chen, X.; Xu, W.; Duan, X.; Shi, J.; Li, X. Preparation and Properties of Oriented and Hydrophobic Aerogels from Corn Stover. Ind. Crops Prod. 2023, 205, 117414. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, Y.; Jiang, J.; Wang, L.; Song, M.; Bi, R.; Zhu, P.; Jiang, F. Multifunctional Superelastic Cellulose Nanofibrils Aerogel by Dual Ice-Templating Assembly. Adv. Funct. Mater. 2021, 31, 2106269. [Google Scholar] [CrossRef]
- Luo, H.; Xie, J.; Wang, J.; Yao, F.; Yang, Z.; Wan, Y. Step-by-Step Self-Assembly of 2D Few-Layer Reduced Graphene Oxide into 3D Architecture of Bacterial Cellulose for a Robust, Ultralight, and Recyclable All-Carbon Absorbent. Carbon 2018, 139, 824–832. [Google Scholar] [CrossRef]
- Zhan, Z.; Song, Q.; Zhou, Z.; Lu, C. Ultrastrong and Conductive MXene/Cellulose Nanofiber Films Enhanced by Hierarchical Nano-Architecture and Interfacial Interaction for Flexible Electromagnetic Interference Shielding. J. Mater. Chem. C 2019, 7, 9820–9829. [Google Scholar] [CrossRef]
- Wang, G.; Xu, Y.; Zhang, R.; Gai, S.; Zhao, Y.; Yang, F.; Cheng, K. Fire-Resistant MXene Composite Aerogels for Effective Oil/Water Separation. J. Environ. Chem. Eng. 2023, 11, 109127. [Google Scholar] [CrossRef]
- Jian, Y.; Tang, W.; Xu, T.; Hess, D.W.; Chai, X.; Zhang, L.; Xu, K.; Guo, Z.; Wan, H.; Xie, L. Imparting Durable Superhydrophobic/Oleophobic Properties to Wood Surfaces by Means of PFDMS@MTCS Vapor Deposition. Prog. Org. Coat. 2023, 185, 107926. [Google Scholar] [CrossRef]
- Qu, J.; Teng, D.; Zhang, X.; Yang, Q.; Li, P.; Cao, Y. Preparation and Regulation of Two-Dimensional Ti3C2Tx MXene for Enhanced Adsorption–Photocatalytic Degradation of Organic Dyes in Wastewater. Ceram. Int. 2022, 48, 14451–14459. [Google Scholar] [CrossRef]
- Sinha, A.; Ma, K.; Zhao, H. 2D Ti3C2Tx Flakes Prepared by in-Situ HF Etchant for Simultaneous Screening of Carbamate Pesticides. J. Colloid Interface Sci. 2021, 590, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Bharathi, S.; Kumaran, S.; Saravanan, P.; Suresh, G.; Reshma, S.; Sundararajan, G.; Lakshmipathy, R. Harnessing the Potential of Marine Bacteria: Production, Kinetics, and Characterization of Bacterial Nanocellulose. Biocatal. Agric. Biotechnol. 2024, 58, 103156. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, J.; Yin, H.; Guo, J.; Lv, S.; Li, Y. MXene/Cellulose Hydrogel Composites: Preparation and Adsorption Properties of Pb2+. Polymers 2024, 16, 189. [Google Scholar] [CrossRef]
- Zhou, K.; Yin, L.; Gong, K.; Wu, Q. 3D Vascular-Structured Flame-Retardant Cellulose-Based Photothermal Aerogel for Solar-Driven Interfacial Evaporation and Wastewater Purification. Chem. Eng. J. 2023, 464, 142616. [Google Scholar] [CrossRef]
- Long, X.; Zhao, G.-Q.; Zheng, Y.; Hu, J.; Zuo, Y.; Luo, W.; Jiao, F. A Precise Pyromellitic Acid Grafting Prepared Multifunctional MXene Membranes for Efficient Oil-in-Water Emulsion Separation and Heavy Metal Ions Removal. Chem. Eng. J. 2023, 472, 144904. [Google Scholar] [CrossRef]
- Li, C.; Guo, J.; Xu, P.; Hu, W.; Lv, J.; Shi, B.; Zhang, Z.; Li, R. Facile Preparation of Superior Compressibility and Hydrophobic Reduced Graphene Oxide@cellulose Nanocrystals/EPDM Composites for Highly Efficient Oil/Organic Solvent Adsorption and Enhanced Electromagnetic Interference Shielding. Sep. Purif. Technol. 2023, 307, 122775. [Google Scholar] [CrossRef]
- Yang, C.; Yang, K.; Guo, H.; Sun, H.; Xiang, N.; Wang, C. Reusable Superhydrophobic Fluorinated Cellulose-Graphene Composite Aerogels for Selective Oil Absorption. Surf. Interfaces 2024, 54, 105260. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Pham, N.A.T.; Duong, T.H.T.; Nguyen, T.V.; Pham, L.H.; Ly, P.H.; Nguyen, D.M.; Thuy, N.T.N.; Hoang, D. High-Performance Hydrophobic Aerogel Based on Nanocellulose, Graphene Oxide, Polyvinyl Alcohol, and Hexadecyltrimethoxysilane: Structure, Properties, and Applicability. J. Environ. Chem. Eng. 2024, 12, 113215. [Google Scholar] [CrossRef]
- Liu, R.; Wang, J.; Du, Y.; Liao, J.; Zhang, X. Phase-Separation Induced Synthesis of Superhydrophobic Silica Aerogel Powders and Granules. J. Solid State Chem. 2019, 279, 120971. [Google Scholar] [CrossRef]
- Du, C.; Chen, Y.; He, S.; Ruan, C.; Liu, X.; He, C.; Jin, X.; Chen, Q.; Ma, Y.; Chen, G. Insight into Ultra-Flexible & Robust Silica Aerogels Based on Diene Synthesis Reaction: Preparation and Oil/Water Separation. Appl. Surf. Sci. 2022, 606, 154902. [Google Scholar] [CrossRef]
- Han, L.; Wang, Y.-F.; Zhou, X.-H.; Zhu, L.; Shan, X.-Y.; Cui, W.-Q.; Gao, Y.; Lyu, L.-H. Highly Compressible and Lightweight Al2O3/PCNF@ANF Aerogels for Effective Oil Adsorption and Separation. FIBERS Polym. 2024, 25, 2375–2387. [Google Scholar] [CrossRef]
Adsorbent Material | Types of Adsorbed Liquids | Adsorption Capacity (g/g) | References |
---|---|---|---|
Graphene oxide@cellulose nanocrystals/EPDM composites | dichloromethane | 15.6 | [46] |
Cellulose-graphene composite aerogels | dichloromethane | 36.7 | [47] |
High-performance hydrophobic aerogel based on nanocellulose, graphene oxide, polyvinyl alcohol, and hexadecyltrimethoxysilane | dichloromethane | 24.5 | [48] |
Superhydrophobic silica aerogel | dichloromethane | 17 | [49] |
Insight into ultra-flexible & robust silica aerogels based on diene synthesis reaction | dichloromethane | 15 | [50] |
Highly compressible and lightweight Al2O3/PCNF@ANF aerogels | dichloromethane | 71.8 | [51] |
Hydrophobic Ti3C2Tx/TOCNF composite aerogel | dichloromethane | 98.92 | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Zhang, J.; Wang, S.; Li, X.; Miao, Y.; Zhou, J.; Liu, Z. Hydrophobic Ti3C2Tx/TEMPO Oxidized Cellulose Nanofibers Composite Aerogel for Efficient Oil-Water Separation. Polymers 2025, 17, 273. https://doi.org/10.3390/polym17030273
Guo Y, Zhang J, Wang S, Li X, Miao Y, Zhou J, Liu Z. Hydrophobic Ti3C2Tx/TEMPO Oxidized Cellulose Nanofibers Composite Aerogel for Efficient Oil-Water Separation. Polymers. 2025; 17(3):273. https://doi.org/10.3390/polym17030273
Chicago/Turabian StyleGuo, Yaqing, Juncheng Zhang, Siyuan Wang, Xiyue Li, Yuanyuan Miao, Jing Zhou, and Zhenbo Liu. 2025. "Hydrophobic Ti3C2Tx/TEMPO Oxidized Cellulose Nanofibers Composite Aerogel for Efficient Oil-Water Separation" Polymers 17, no. 3: 273. https://doi.org/10.3390/polym17030273
APA StyleGuo, Y., Zhang, J., Wang, S., Li, X., Miao, Y., Zhou, J., & Liu, Z. (2025). Hydrophobic Ti3C2Tx/TEMPO Oxidized Cellulose Nanofibers Composite Aerogel for Efficient Oil-Water Separation. Polymers, 17(3), 273. https://doi.org/10.3390/polym17030273