Three-Dimensional-Printed Photopolymer Resin Materials: A Narrative Review on Their Production Techniques and Applications in Dentistry
Abstract
:1. Introduction
2. Production Techniques of the 3D-Printed Photopolymer Resins
2.1. Vat Photopolymerization
2.2. Material Jetting
3. Applications of 3D-Printed Photopolymer Resins in Dentistry
3.1. Applications of 3D-Printed Resins in Prosthodontics
3.2. Applications of 3D-Printed Resins in Orthodontics
3.3. Applications of 3D-Printed Resins in Maxillofacial Surgery
3.4. Applications of 3D-Printed Resins in Pediatric Dentistry
3.5. Applications of 3D-Printed Resins in Conservative Dentistry
3.6. Applications of 3D-Printed Resins in Endodontics
3.7. Applications of 3D-Printed Resins in Periodontology
4. Future Directions and Challenges in 3D-Printed Resin Materials for Dentistry
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASTM | American Society for Testing and Materials |
CAD–CAM | Computer-Aided Design–Computer-Aided Manufacturing |
CLIP | Continuous Liquid Interface Production |
DLP | Digital Light Processing |
mSLA | Masked Stereolithography |
PEEK | Polyetherretherketone |
PMMA | Polymethylmethacrylate |
SLA | Stereolithography |
STL | Standard Tessellation Language |
UV | Ultraviolet |
References
- Alyami, M.H. The applications of 3D-printing technology in prosthodontics: A review of the current literature. Cureus 2024, 16, e68501. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Chen, C.; Xu, X.; Wang, J.; Hou, X.; Li, K.; Lu, X.; Shi, H.; Lee, E.S.; Jiang, H.B. A review of 3D printing in dentistry: Technologies, affecting factors, and applications. Scanning 2021, 1, 9950131. [Google Scholar] [CrossRef]
- Huang, G.; Wu, L.; Hu, J.; Zhou, X.; He, F.; Wan, L.; Pan, S.T. Main applications and recent research progresses of additive manufacturing in dentistry. Biomed. Res. Int. 2022, 2021, 171–197. [Google Scholar] [CrossRef] [PubMed]
- Balhaddad, A.A.; Garcia, I.M.; Mokeem, L.; Alsahafi, R.; Majeed-Saidan, A.; Albagami, H.H.; Khan, A.S.; Ahmad, S.; Collares, F.M.; Della Bona, A.; et al. Three-dimensional (3D) printing in dental practice: Applications, areas of interest, and level of evidence. Clin. Oral. Investig. 2023, 27, 2465–2481. [Google Scholar] [CrossRef] [PubMed]
- Hegedus, T.; Kreuter, P.; Kismarczi-Antalffy, A.A.; Demeter, T.; Banyai, D.; Vegh, A.; Geczi, Z.; Hermann, P.; Payer, M.; Zsembery, A.; et al. User Experience and Sustainability of 3D Printing in Dentistry. Int. J. Environ. Res. Public Health 2022, 19, 1921. [Google Scholar] [CrossRef]
- Vasamsetty, P.; Pss, T.; Kukkala, D.; Singamshetty, M.; Gajula, S. 3D Printing in Dentistry—Exploring the New Horizons. Mater. Today Proc. 2020, 26, 838–841. [Google Scholar] [CrossRef]
- Daher, R.; Krejci, I.; Ardu, S. Time-and cost-effective 3-dimensional-printing workflow to rehabilitate worn dentitions: A clinical report. J. Prosthet. Dent. 2024, 131, 996–999. [Google Scholar] [CrossRef] [PubMed]
- Daher, R.; Ardu, S.; di Bella, E.; Krejci, I.; Duc, O. Efficiency of 3D printed composite resin restorations compared with subtractive materials: Evaluation of fatigue behavior, cost, and time of production. J. Prosthet. Dent. 2024, 131, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Luu, D.; Kan, E.; Kim, S.W.; Lee, J.D.; Lee, S.J. Comparison of accuracy in digital and conventional cross-mounting. J. Prosthet. Dent. 2024, 132, 784–791. [Google Scholar] [CrossRef]
- Palantza, E.; Sykaras, N.; Zoidis, P.; Kourtis, S. In vitro comparison of accuracy between conventional and digital impression using elastomeric materials and two intra-oral scanning devices. J. Esthet. Restor. Dent. 2024, 36, 1179–1198. [Google Scholar] [CrossRef]
- Flügge, T.; van der Meer, W.J.; Gonzalez, B.G.; Vach, K.; Wismeijer, D.; Wang, P. The accuracy of different dental impression techniques for implant-supported dental prostheses: A systematic review and meta-analysis. Clin. Oral. Implant. Res. 2018, 29 (Suppl. S16), 374–392. [Google Scholar] [CrossRef] [PubMed]
- Wulfman, C.; Naveau, A.; Rignon-Bret, C. Digital scanning for complete-arch implant-supported restorations: A systematic review. J. Prosthet. Dent. 2020, 124, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wei, H.; Li, D. Additive manufacturing technologies in the oral implant clinic: A review of current applications and progress. Front. Bioeng. Biotechnol. 2023, 11, 1100155. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.; Radomski, K.; Lopez, D.; Liu, J.T.; Lee, J.D.; Lee, S.J. Materials and applications of 3D printing technology in dentistry: An overview. Dent. J. 2023, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Oberoi, G.; Nitsch, S.; Edelmayer, M.; Janjić, K.; Müller, A.S.; Agis, H. 3D Printing-encompassing the facets of dentistry. Front. Bioeng. Biotechnol. 2018, 6, 172. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Jiang, J.; Wang, Y.; Wang, S.; He, Y.; He, F. Additive manufacturing of dental ceramics in prosthodontics: The status quo and the future. J. Prosthodont. Res. 2024, 68, 380–399. [Google Scholar] [CrossRef] [PubMed]
- Bae, E.J.; Jeong, I.D.; Kim, W.C.; Kim, J.H. A comparative study of additive and subtractive manufacturing for dental restorations. J. Prosthet. Dent. 2017, 118, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Revilla-León, M.; Meyers, M.J.; Zandinejad, A.; Özcan, M. A review on chemical composition, mechanical properties, and manufacturing workflow of additively manufactured current polymers for interim dental restorations. J. Esthet. Restor. Dent. 2019, 31, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Ford, S.; Despeisse, M. Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. J. Clean. Prod. 2016, 137, 1573–1587. [Google Scholar] [CrossRef]
- Prakash, J.; Shenoy, M.; Alhasmi, A.; Al Saleh, A.A.; Shivakumar, G.C.; Shivakumar, S. Biocompatibility of 3D-Printed Dental Resins: A Systematic Review. Cureus 2024, 16, e51721. [Google Scholar] [CrossRef] [PubMed]
- Aktaş, N.; Ciftci, V. Current applications of three-dimensional (3D) printing in pediatric dentistry: A literature review. J. Clin. Pediatr. Dent. 2024, 48, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Dawood, A.; Marti Marti, B.; Sauret-Jackson, V.; Darwood, A. 3D printing in dentistry. Br. Dent. J. 2015, 219, 521–529. [Google Scholar] [CrossRef] [PubMed]
- ASTM International. ASTM Committee F42 on Additive Manufacturing Technologies; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Arefin, A.M.E.; Khatri, N.R.; Kulkarni, N.; Egan, P.F. Polymer 3D printing review: Materials, process, and design strategies for medical applications. Polymers 2021, 13, 1499. [Google Scholar] [CrossRef]
- Iftekar, S.F.; Aabid, A.; Amir, A.; Baig, M. Advancements and limitations in 3D printing materials and technologies: A critical review. Polymers 2023, 15, 2519. [Google Scholar] [CrossRef]
- Mora, S.; Pugno, N.M.; Misseroni, D. 3D printed architected lattice structures by material jetting. Mater. Today 2022, 59, 107–132. [Google Scholar] [CrossRef]
- Araújo, L.V.; de Siqueira, F.S.F.; de Macedo, R.F.C.; Gomes, F.S.; Castro, G.G.; Dibai, D.B.; Maia Filho, E.M.; Tavarez, R.R.J. Analysis of mechanical properties and printing orientation influence of composite resin for 3D printing compared to conventional resin. Materials 2024, 17, 5626. [Google Scholar] [CrossRef]
- Kirby, S.; Pesun, I.; Nowakowski, A.; França, R. Effect of different post-curing methods on the degree of conversion of 3D-printed resin for models in dentistry. Polymers 2024, 16, 549. [Google Scholar] [CrossRef]
- Caussin, E.; Moussally, C.; Le Goff, S.; Fasham, T.; Troizier-Cheyne, M.; Tapie, L.; Dursun, E.; Attal, J.P.; François, P. Vat photopolymerization 3D printing in dentistry: A comprehensive review of actual popular technologies. Materials 2024, 17, 950. [Google Scholar] [CrossRef]
- da Costa, L.P.G.; Zamalloa, S.I.D.; Alves, F.A.M.; Spigolon, R.; Mano, L.Y.; Costa, C.; Mazzo, A. 3D printers in dentistry: A review of additive manufacturing techniques and materials. Clin. Lab. Res. Dent. 2021, 1–10. [Google Scholar] [CrossRef]
- Singh, R.; Gupta, A.; Tripathi, O.; Srivastava, S.; Singh, B.; Awasthi, A.; Rajput, S.K.; Sonia, P.; Singhal, P.; Saxena, K.K. Powder bed fusion process in additive manufacturing: An overview. Mater. Today Proc. 2020, 26, 3058–3070. [Google Scholar] [CrossRef]
- Jung, S.; Kara, L.B.; Nie, Z.; Simpson, T.W.; Whitefoot, K.S. Is additive manufacturing an environmentally and economically preferred alternative for mass production? Environ. Sci. Technol. 2023, 57, 6373–6386. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, W.; Wu, F.; Kankala, R.K. Vat polymerization-based 3D printing of nanocomposites: A mini review. Front. Mater. 2023, 9, 1118943. [Google Scholar] [CrossRef]
- Stefaniak, A.B.; Bowers, L.N.; Knepp, A.K.; Luxton, T.P.; Peloquin, D.M.; Baumann, E.J.; Ham, J.E.; Wells, J.R.; Johnson, A.R.; LeBouf, R.F.; et al. Particle and vapor emissions from vat polymerization desktop-scale 3-dimensional printers. J. Occup. Environ. Hyg. 2019, 16, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.J. Additive manufacturing: Frameworks for chemical understanding and advancement in vat photopolymerization. MRS Bull. 2022, 47, 628–641. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Rahman, M.Z. Recent advances in additive manufacturing techniques: An in-depth review. In Comprehensive Materials Processing, 2nd ed.; Hashmi, S., Ed.; Elsevier: Oxford, UK, 2024; pp. 352–378. [Google Scholar]
- Shaukat, U.; Rossegger, E.; Schlögl, S. A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization. Polymers 2022, 14, 2449. [Google Scholar] [CrossRef]
- Fiedor, P.; Ortyl, J. A New Approach to micromachining: High-precision and innovative additive manufacturing solutions based on photopolymerization technology. Materials 2020, 13, 2951. [Google Scholar] [CrossRef]
- Stansbury, J.W.; Idacavage, M.J. 3D printing with polymers: Challenges among expanding options and opportunities. Dent. Mater. 2016, 32, 54–64. [Google Scholar] [CrossRef]
- Groth, C.; Kravitz, N.D.; Jones, P.E.; Graham, J.W.; Redmond, W.R. Three-dimensional printing technology. J. Clin. Orthod. 2014, 48, 475–485. [Google Scholar]
- Hassanpour, M.; Narongdej, P.; Alterman, N.; Moghtadernejad, S.; Barjasteh, E. Effects of post-processing parameters on 3D-printed dental appliances: A review. Polymers 2024, 16, 2795. [Google Scholar] [CrossRef]
- Mukhtarkhanov, M.; Perveen, A.; Talamona, D. Application of stereolithography based 3D printing technology in investment casting. Micromachines 2020, 11, 946. [Google Scholar] [CrossRef]
- Junk, S.; Bär, F. Design guidelines for additive manufacturing using masked stereolithography mSLA. Procedia CIRP 2023, 119, 1122–1127. [Google Scholar] [CrossRef]
- Hola, E.; Ortyl, J.; Jankowska, M.; Pilch, M.; Galek, M.; Morlet-Savary, F.; Graff, B.; Dietlin, C.; Lalevée, J. New bimolecular photoinitiating systems based on terphenyl derivatives as highly efficient photosensitizers for 3D printing application. Polym. Chem. 2020, 11, 922–935. [Google Scholar] [CrossRef]
- Garcia-Cardosa, M.; Granados-Ortiz, F.J.; Ortega-Casanova, J. A Review on Additive Manufacturing of Micromixing Devices. Micromachines 2021, 13, 73. [Google Scholar] [CrossRef] [PubMed]
- Kuang, X.; Zhao, Z.; Chen, K.; Fang, D.; Kang, G.; Qi, H.J. High-speed 3D printing of high-performance thermosetting polymers via two-stage curing. Macromol. Rapid Commun. 2018, 39, 1700809. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, A.; Jin, J. Photopolymerization in 3D printing. ACS Appl. Polym. Mater. 2019, 1, 593–611. [Google Scholar] [CrossRef]
- Tumbleston, J.R.; Shirvanyants, D.; Ermoshkin, N.; Janusziewicz, R.; Johnson, A.R.; Kelly, D.; Chen, K.; Pinschmidt, R.; Rolland, J.P.; Ermoshkin, A.; et al. Continuous liquid interface of 3D objects. Science 2015, 347, 1349–1352. [Google Scholar] [CrossRef] [PubMed]
- Kaijage, D.J.; Lee, B.J. Multiphysics simulation of continuous liquid interface production (CLIP) 3D printing technology. Int. J. Precis. Eng. Manuf-Green. Technol. 2024. [Google Scholar] [CrossRef]
- Tigmeanu, C.V.; Ardelean, L.C.; Rusu, L.C.; Negrutiu, M.L. Additive Manufactured Polymers in Dentistry, Current State-of-the-Art and Future Perspectives-A Review. Polymers 2022, 14, 3658. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, S.; Yadav, A.; Deshmukh, S. Review on mechanical characterization of 3D printed parts created using material jetting process. Mater. Today: Proc. 2022, 51, 1012–1016. [Google Scholar] [CrossRef]
- Pugalendhi, A.; Ranganathan, R.; Ganesan, S. Impact of process parameters on mechanical behaviour in multi-material jetting. Mater. Today Proc. 2021, 46, 9139–9144. [Google Scholar] [CrossRef]
- Kumar, K.; Kumar, G.S. An experimental and theoretical investigation of surface roughness of poly-jet printed parts. Virtual Phys. Prototyp. 2015, 10, 23–34. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies; Springer: Cham, Switzerland, 2021; Volume 17. [Google Scholar]
- Yang, H.; Lim, J.C.; Liu, Y.; Qi, X.; Yap, Y.L.; Dikshit, V.; Yeong, W.Y.; Wei, J. Performance evaluation of projet multi-material jetting 3D printer. Virtual Phys. Prototyp. 2017, 12, 95–103. [Google Scholar] [CrossRef]
- Kim, G.B.; Lee, S.; Kim, H.; Yang, D.H.; Kim, Y.H.; Kyung, Y.S.; Kim, C.S.; Choi, S.H.; Kim, B.J.; Ha, H.; et al. Three-dimensional printing: Basic principles and applications in medicine and radiology. Korean J. Radiol. 2016, 17, 182. [Google Scholar] [CrossRef] [PubMed]
- Short, D.B. Use of 3D printing by museums: Educational exhibits, artifact education, and artifact restoration. 3D Print. Add. Manuf. 2015, 2, 209–215. [Google Scholar] [CrossRef]
- Methani, M.M.; Revilla-León, M.; Zandinejad, A. The potential of additive manufacturing technologies and their processing parameters for the fabrication of all-ceramic crowns: A review. J. Esthet. Restor. Dent. 2020, 32, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Goodacre, B.J. 3D Printing of Complete Dentures: A Narrative Review. Int. J. Prosthodont. 2024, 37, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Eliades, T.; Panayi, N.; Papageorgiou, S.N. From biomimetics to smart materials and 3D technology: Applications in orthodontic bonding, debonding, and appliance design or fabrication. Jpn. Dent. Sci. Rev. 2023, 59, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J.; Fan, L.; Yu, H. Closing Post-orthodontic Spaces Between Anterior Teeth Using Sequential 3D-printed Direct Composite Injection Guides. Oper. Dent. 2022, 47, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, W.; Puchalska, W.; Ziemlewski, A.; Ordyniec-Kwaśnica, I. Guided Endodontics as a Personalized Tool for Complicated Clinical Cases. Int. J. Environ. Res. Public Health 2022, 19, 9958. [Google Scholar] [CrossRef]
- Rasperini, G.; Pilipchuk, S.P.; Flanagan, C.L.; Park, C.H.; Pagni, G.; Hollister, S.J.; Giannobile, W.V. 3D-printed Bioresorbable Scaffold for Periodontal Repair. J. Dent. Res. 2015, 94, 153S–157S. [Google Scholar] [CrossRef]
- Jurado, C.A.; Villalobos-Tinoco, J.; Lackey, M.A.; Rojas-Rueda, S.; Robles, M.; Tsujimoto, A. Three Dimensional-Printed Gingivectomy and Tooth Reduction Guides Prior Ceramic Restorations: A Case Report. Dent. J. 2024, 12, 245. [Google Scholar] [CrossRef]
- Kolling, M.; Backhaus, J.; Hofmann, N.; Keß, S.; Krastl, G.; Soliman, S.; König, S. Students’ perception of three-dimensionally printed teeth in endodontic training. Eur. J. Dent. Educ. 2022, 26, 653–661. [Google Scholar] [CrossRef]
- Cabrol, A.; Chuy, V.; Fron-Chabouis, H.; Naveau, A. Effectiveness of postprocessing on 3D printed resin biocompatibility in prosthodontics: A systematic review. J. Prosthet Dent Published online September 19. 2024. [Google Scholar] [CrossRef]
- Reymus, M.; Lümkemann, N.; Stawarczyk, B. 3D-printed material for temporary restorations: Impact of print layer thickness and post-curing method on degree of conversion. Int. J. Comput. Dent. 2019, 22, 231–237. [Google Scholar]
- Chen, H.; Cheng, D.-H.; Huang, S.-C.; Lin, Y.-M. Comparison of flexural properties and cytotoxicity of interim materials printed from mono-LCD and DLP 3D printers. J. Prosthet. Dent. 2021, 126, 703–708. [Google Scholar] [CrossRef]
- ISO 10477; Dentistry Polymer-Based Crown and Veneering Materials. International Organization for Standardization: Geneva, Switzerland, 2018; ISO Store Order: OP-467192 (Date: 2025-12-1). Available online: https://www.iso.org/home.html (accessed on 10 January 2025).
- Kwon, J.-S.; Kim, J.-Y.; Mangal, U.; Seo, J.-Y.; Lee, M.-J.; Jin, J.; Yu, J.-H.; Choi, S.-H. Durable oral biofilm resistance of 3D-printed dental base polymers containing zwitterionic materials. Int. J. Mol. Sci. 2021, 22, 417. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.M.; Fouda, S.M. Factors affecting flexural strength of 3D-printed resins: A systematic review. J. Prosthodont. 2023, 32, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yang, J.; Jia, Y.-G.; Lu, B.; Ren, L. A study of 3D-printable reinforced composite resin: PMMA modified with silver nanoparticles loaded cellulose nanocrystal. Materials 2018, 11, 2444. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.M.; Al-Harbi, F.A.; Akhtar, S.; Fouda, S.M. 3D-printable denture base resin containing SiO2 nanoparticles: An in vitro analysis of mechanical and surface properties. J. Prosthodont. 2022, 31, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Majeed, H.F.; Hamad, T.I.; Bairam, L.R. Enhancing 3D-printed denture base resins: A review of material innovations. Sci. Prog. 2024, 107, 368504241263484. [Google Scholar] [CrossRef]
- Mangal, U.; Seo, J.-Y.; Yu, J.; Kwon, J.-S.; Choi, S.-H. Incorporating aminated nanodiamonds to improve the mechanical properties of 3D-printed resin-based biomedical appliances. Nanomaterials 2020, 26, 827. [Google Scholar] [CrossRef]
- Aati, S.; Akram, Z.; Ngo, H.; Fawzy, A.S. Development of 3D printed resin reinforced with modified ZrO2 nanoparticles for long-term provisional dental restorations. Dent. Mater. 2021, 37, 360–374. [Google Scholar] [CrossRef] [PubMed]
- Morel, L.L.; Almeida, M.V.R.; Santos, K.M.D.; Praseres, M.F.; Gonçalves Girundi, A.L.; Alexandrino, L.D.; Silva, W.J.D. Reinforcement of 3D-printed resins for denture base by adding aramid fibers: Effect on mechanical, surface, and optical properties. J. Prosthodont. 2024. Advance online publication. [Google Scholar] [CrossRef] [PubMed]
- AlGhamdi, M.A.; Alatiyyah, F.M.; Almedarham, R.F.; Al Dawood, Z.H.; Alshaikhnasser, F.Y.; Alboryh, S.Y.; Khan, S.Q.; Abualsaud, R.; Gad, M.M. Impact of Nanoparticle Addition on the Surface and Color Properties of Three-Dimensional (3D) Printed Polymer-Based Provisional Restorations. Nanomaterials 2024, 14, 665. [Google Scholar] [CrossRef]
- ISO 10993–1:2018; Biological Evaluation of Medical Devices. Part 1: Evaluation and Testing Within a Risk Management Process. 5th ed. International Organization for Standardization: Geneva, Switzerland, 2018. Available online: https://www.iso.org/fr/standard/68936.html (accessed on 12 January 2022).
- Cantó-Navés, O.; Michels, K.; Figueras-Alvarez, O.; Fernández-Villar, S.; Cabratosa-Termes, J.; Roig, M. In Vitro Comparison of Internal and Marginal Adaptation between Printed and Milled Onlays. Materials 2023, 16, 6962. [Google Scholar] [CrossRef] [PubMed]
- Espinar, C.; Bona, A.D.; Pérez, M.M.; Tejada-Casado, M.; Pulgar, R. The Influence of Printing Angle on Color and Translucency of 3D Printed Resins for Dental Restorations. Dent. Mater. 2023, 39, 410–417. [Google Scholar] [CrossRef]
- Nam, N.E.; Hwangbo, N.K.; Kim, J.E. Effects of surface glazing on the mechanical and biological properties of 3D printed permanent dental resin materials. J. Prosthodont. Res. 2024, 68, 273–282. [Google Scholar] [CrossRef]
- Bauer, C.A.J.; Scheurer, M.; Bourauel, C.; Kretzer, J.P.; Roser, C.J.; Lux, C.J.; Hodecker, L.D. Precision of slot widths and torque transmission of in-office 3D printed brackets: An in vitro study. J. Orofac. Orthop. 2024, 85, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, S.N.; Polychronis, G.; Panayi, N.; Zinelis, S.; Eliades, T. New aesthetic in-house 3D-printed brackets: Proof of concept and fundamental mechanical properties. Prog. Orthod. 2022, 23, 6. [Google Scholar] [CrossRef]
- Aktaş, N.; Atabek, D. Fracture Resistance of Space Maintainers Produced Using 3D Printable Materials. Eur. J. Paediatr. Dent. 2024, 25, 266–270. [Google Scholar] [CrossRef]
- Aktaş, N.; Bankoglu Güngör, M. Effects of 3D-Printing Technology and Cement Type on the Fracture Resistance of Permanent Resin Crowns for Primary Teeth. Int. J. Prosthodont. 2024, 37, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Yanar, G.N.; İnal, C.B.; Aktaş, N.; Bankoğlu Güngör, M. A severely damaged premolar tooth restored with coronal pulpotomy and a 3D-printed endocrown. J. Clin. Pediatr. Dent. 2024, 48, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Aktaş, N.; Bankoğlu Güngör, M. Evaluation of Wear on Primary Tooth Enamel and Fracture Resistance of Esthetic Pediatric Crowns Manufactured from Different Materials. Medicina 2024, 60, 1678. [Google Scholar] [CrossRef] [PubMed]
- Aktaş, N.; Bal, C.; İnal, C.B.; Kaynak Öztürk, E.; Bankoğlu Güngör, M. Evaluation of the Fit of Additively and Subtractively Produced Resin-Based Crowns for Primary Teeth Using a Triple-Scan Protocol. Appl. Sci. 2025, 15, 178. [Google Scholar] [CrossRef]
- Borella, P.S.; Alvares, L.A.S.; Ribeiro, M.T.H.; Moura, G.F.; Soares, C.J.; Zancopé, K.; Mendonça, G.; Rodrigues, F.P.; das Neves, F.D. Physical and mechanical properties of four 3D-printed resins at two different thick layers: An in vitro comparative study. Dent. Mater. 2023, 39, 686. [Google Scholar] [CrossRef] [PubMed]
- Çakmak, G.; Donmez, M.B.; de Paula, M.S.; Akay, C.; Fonseca, M.; Kahveci, Ç.; Abou-Ayash, S.; Yilmaz, B. Surface Roughness, Optical Properties, and Microhardness of Additively and Subtractively Manufactured CAD-CAM Materials after Brushing and Coffee Thermal Cycling. J. Prosthodont. 2025, 34, 68–77. [Google Scholar] [CrossRef]
- Prause, E.; Malgaj, T.; Kocjan, A.; Beuer, F.; Hey, J.; Jevnikar, P.; Schmidt, F. Mechanical Properties of 3D-Printed and Milled Composite Resins for Definitive Restorations: An In Vitro Comparison of Initial Strength and Fatigue Behavior. J. Esthet. Restor. Dent. 2023, 36, 391–401. [Google Scholar] [CrossRef]
- Suksuphan, P.; Krajangta, N.; Didron, P.P.; Wasanapiarnpong, T.; Rakmanee, T. Marginal adaptation and fracture resistance of milled and 3D-printed CAD/CAM hybrid dental crown materials with various occlusal thicknesses. J. Prosthodont. Res. 2024, 68, 326–335. [Google Scholar] [CrossRef]
- Di Fiore, A.; Stellini, E.; Alageel, O.; Alhotan, A. Comparison of mechanical and surface properties of two 3D printed composite resins for definitive restoration. J. Prosthet. Dent. 2024, 132, 839.e1–e839.e7. [Google Scholar] [CrossRef]
- Abdelfattah, M.Y.; Al Humayyani, N.; Alwthinani, F.K.; Alzahrani, A.H.; Alotaibi, A.O.; Yousef, M.; Sayed Ahmed, A.; Ali, A. In vitro evaluation of the mechanical and optical properties of 3D printed vs CAD/CAM milled denture teeth materials. Saudi Dent. J. 2024, 36, 1227–1232. [Google Scholar] [CrossRef] [PubMed]
- Karaoglanoglu, S.; Aydın, N.; Oktay, E.A.; Ersöz, B. Comparison of the Surface Properties of 3D-Printed Permanent Restorative Resins and Resin-Based CAD/CAM Blocks. Oper. Dent. 2023, 48, 588–598. [Google Scholar] [CrossRef]
- Donmez, M.B.; Okutan, Y. Marginal gap and fracture resistance of implant-supported 3D-printed definitive composite crowns: An in vitro study. J. Dent. 2022, 124, 104216. [Google Scholar] [CrossRef] [PubMed]
- Kessler, A.; Reymus, M.; Hickel, R.; Kunzelmann, K.H. Three-body wear of 3D printed temporary materials. Dent. Mater. 2019, 35, 1805–1812. [Google Scholar] [CrossRef]
- Scherer, M.; Al-Haj Husain, N.; Barmak, A.B.; Kois, J.C.; Özcan, M.; Revilla-León, M. Influence of the layer thickness on the flexural strength of aged and nonaged additively manufactured interim dental material. J. Prosthodont. 2023, 32, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Park, G.S.; Kim, S.K.; Heo, S.J.; Koak, J.Y.; Seo, D.G. Effects of Printing Parameters on the Fit of Implant-Supported 3D Printing Resin Prosthetics. Materials 2019, 12, 2533. [Google Scholar] [CrossRef] [PubMed]
- Mohajeri, M.; Khazaei, S.; Vafaee, F.; Firouz, F.; Ghorbani Gholiabad, S.; Shisheian, A. Marginal Fit of Temporary Restorations Fabricated by the Conventional Chairside Method, 3D Printing, and Milling. Front. Dent. 2021, 18, 31. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Wada, K.; Tsuchida, Y.; Ijbara, M.; Ikeda, M.; Takahashi, H.; Iwamoto, T. Wear behavior of materials for additive manufacturing after simulated occlusion of deciduous dentition. J. Mech. Behav. Biomed. Mater. 2023, 138, 105627. [Google Scholar] [CrossRef] [PubMed]
- Espinar, C.; Della Bona, A.; Tejada-Casado, M.; Pulgar, R.; Pérez, M.M. Optical behavior of 3D-printed dental restorative resins: Influence of thickness and printing angle. Dent. Mater. 2023, 39, 894–902. [Google Scholar] [CrossRef]
- Sartori, N.; Sanchez, S.A.; Oliveira, D.; Hosney, S.; Zoidis, P.; Martin, W.; Gonzaga, L.; Rocha, M.G. Flexural properties and fatigue limit of 3D-printed and milled resin-based materials. J. Prosthodont. Published online March 14. 2024. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Cho, W.; Lee, H.; Bae, J.; Jeong, T.; Huh, J.; Shin, J. Strength and Surface Characteristics of 3D-Printed Resin Crowns for the Primary Molars. Polymers 2023, 15, 4241. [Google Scholar] [CrossRef]
- Rosentritt, M.; Rauch, A.; Hahnel, S.; Schmidt, M. In-Vitro Performance of Subtractively and Additively Manufactured Resin-Based Molar Crowns. J. Mech. Behav. Biomed. Mater. 2023, 141, 105806. [Google Scholar] [CrossRef] [PubMed]
- Bento, V.A.A.; Gomes, J.M.L.; Oliveira-Limirio, J.P.J.; Rosa, C.D.D.R.D.; Lemos, C.A.A.; Dos Santos, D.M.; Pellizzer, E.P. Effect of Aging on the Mechanical Properties of CAD/CAM-Milled and 3D-Printed Acrylic Resins for Denture Bases. Int. J. Prosthodont. 2024, 37, 5–11. [Google Scholar] [CrossRef]
- Al-Qarni, F.D.; Gad, M.M. Printing Accuracy and Flexural Properties of Different 3D-Printed Denture Base Resins. Materials 2022, 15, 2410. [Google Scholar] [CrossRef] [PubMed]
- El Samahy, M.M.; Abdelhamid, A.M.; El Shabrawy, S.M.; Hanno, K.I. Evaluation of physicomechanical properties of milled versus 3D-printed denture base resins: A comparative in vitro study. J. Prosthet. Dent. 2023, 129, 797.e1–797.e7. [Google Scholar] [CrossRef]
- Gad, M.A.; Abdelhamid, A.M.; ElSamahy, M.; Abolgheit, S.; Hanno, K.I. Effect of aging on dimensional accuracy and color stability of CAD-CAM milled and 3D-printed denture base resins: A comparative in-vitro study. BMC Oral. Health 2024, 24, 1124. [Google Scholar] [CrossRef]
- Gad, M.M.; Khattar, A.; Alramadan, D.M.; Al Dawood, Z.H.; Al Shehab, S.S.; Al Zaher, R.H.; Alzain, L.O.; Khan, S.Q.; Abdelfattah, M.Y. Nanoparticle-Modified 3D-Printed Denture Base Resins: Influence of Denture Cleansers on the Color Stability and Surface Roughness In Vitro. Nanomaterials 2024, 14, 891. [Google Scholar] [CrossRef]
- Silva, M.D.D.D.; Nunes, T.S.B.S.; Viotto, H.E.D.C.; Coelho, S.R.G.; Souza, R.F.; Pero, A.C. Microbial adhesion and biofilm formation by Candida albicans on 3D-printed denture base resins. PLoS ONE 2023, 18, e0292430. [Google Scholar] [CrossRef]
- Al-Ubaydi, A.S.; Al-Groosh, D. Do the Various Indirect Bonding Techniques Provide the Same Accuracy for Orthodontic Bracket Placement? (Randomized Clinical Trial). Int. J. Dent. 2024, 2024, 5455197. [Google Scholar] [CrossRef]
- Paradowska-Stolarz, A.; Wezgowiec, J.; Mikulewicz, M. Comparison of Two Chosen 3D Printing Resins Designed for Orthodontic Use: An In Vitro Study. Materials 2023, 16, 2237. [Google Scholar] [CrossRef]
- Paradowska-Stolarz, A.M.; Wieckiewicz, M.; Mikulewicz, M.; Malysa, A.; Dus-Ilnicka, I.; Seweryn, P.; Laskowska, J.; Figueiredo Pollamann, M.C.; Adamska, M.; Wezgowiec, J. Comparison of the tensile modulus of three 3D-printable materials used in dentistry. Dent. Med. Probl. 2023, 60, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Mahran, A.A.; Refai, W.M.; Hashem, A.S. Comparison of the accuracy of two techniques for three-dimensional digital indirect bonding of orthodontic brackets: A randomized controlled trial. Dent. Press. J. Orthod. 2024, 29, e2423117. [Google Scholar] [CrossRef] [PubMed]
- Koletsi, D.; Panayi, N.; Laspos, C.; Athanasiou, A.E.; Zinelis, S.; Eliades, T. In vivo aging-induced surface roughness alterations of Invisalign® and 3D-printed aligners. J. Orthod. 2023, 50, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Can, E.; Panayi, N.; Polychronis, G.; Papageorgiou, S.N.; Zinelis, S.; Eliades, G.; Eliades, T. In-house 3D-printed aligners: Effect of in vivo aging on mechanical properties. Eur. J. Orthod. 2022, 44, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Sayahpour, B.; Eslami, S.; Stuhlfelder, J.; Bühling, S.; Dahmer, I.; Goteni, M.; Kopp, S.; Nucci, L. Evaluation of thickness of 3D printed versus thermoformed aligners: A prospective in vivo ageing experiment. Orthod. Craniofac Res. 2024, 27, 831–838. [Google Scholar] [CrossRef]
- Pratsinis, H.; Papageorgiou, S.N.; Panayi, N.; Iliadi, A.; Eliades, T.; Kletsas, D. Cytotoxicity and estrogenicity of a novel 3-dimensional printed orthodontic aligner. Am. J. Orthod. Dentofac. Orthop. 2022, 162, e116–e122. [Google Scholar] [CrossRef] [PubMed]
- Willi, A.; Patcas, R.; Zervou, S.K.; Panayi, N.; Schätzle, M.; Eliades, G.; Hiskia, A.; Eliades, T. Leaching from a 3D-printed aligner resin. Eur. J. Orthod. 2023, 45, 244–249. [Google Scholar] [CrossRef]
- Koenig, N.; Choi, J.Y.; McCray, J.; Hayes, A.; Schneider, P.; Kim, K.B. Comparison of dimensional accuracy between direct-printed and thermoformed aligners. Korean J. Orthod. 2022, 52, 249–257. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, H.; Kim, H.J.; Chung, C.J.; Choi, Y.J.; Kim, S.J.; Cha, J.Y. Thermo-mechanical properties of 3D printed photocurable shape memory resin for clear aligners. Sci. Rep. 2022, 12, 6246. [Google Scholar] [CrossRef]
- Hertan, E.; McCray, J.; Bankhead, B.; Kim, K.B. Force profile assessment of direct-printed aligners versus thermoformed aligners and the effects of non-engaged surface patterns. Prog. Orthod. 2022, 23, 49. [Google Scholar] [CrossRef]
- Grant, J.; Foley, P.; Bankhead, B.; Miranda, G.; Adel, S.M.; Kim, K.B. Forces and moments generated by 3D direct printed clear aligners of varying labial and lingual thicknesses during lingual movement of maxillary central incisor: An in vitro study. Prog. Orthod. 2023, 24, 23. [Google Scholar] [CrossRef]
- Zinelis, S.; Panayi, N.; Polychronis, G.; Papageorgiou, S.N.; Eliades, T. Comparative analysis of mechanical properties of orthodontic aligners produced by different contemporary 3D printers. Orthod. Craniofac Res. 2022, 25, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Shirey, N.; Mendonca, G.; Groth, C.; Kim-Berman, H. Comparison of mechanical properties of 3-dimensional printed and thermoformed orthodontic aligners. Am. J. Orthod. Dentofac. Orthop. 2023, 163, 720–728. [Google Scholar] [CrossRef]
- Abdeen, L.; Chen, Y.W.; Kostagianni, A.; Finkelman, M.; Papathanasiou, A.; Chochlidakis, K.; Papaspyridakos, P. Prosthesis accuracy of fit on 3D-printed casts versus stone casts: A comparative study in the anterior maxilla. J. Esthet. Restor. Dent. 2022, 34, 1238–1246. [Google Scholar] [CrossRef]
- Morón-Conejo, B.; López-Vilagran, J.; Cáceres, D.; Berrendero, S.; Pradíes, G. Accuracy of five different 3D printing workflows for dental models comparing industrial and dental desktop printers. Clin. Oral. Investig. 2023, 27, 2521–2532. [Google Scholar] [CrossRef]
- Papaspyridakos, P.; AlFulaij, F.; Bokhary, A.; Sallustio, A.; Chochlidakis, K. Complete Digital Workflow for Prosthesis Prototype Fabrication with Double Digital Scanning: Accuracy of Fit Assessment. J. Prosthodont. 2023, 32, 49–53. [Google Scholar] [CrossRef]
- Jin, G.; Shin, S.H.; Shim, J.S.; Lee, K.W.; Kim, J.E. Accuracy of 3D printed models and implant-analog positions according to the implant-analog-holder offset, inner structure, and printing layer thickness: An in-vitro study. J. Dent. 2022, 125, 104268. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; He, H.; Kuang, W.; Yuan, W. Presurgical nasoalveolar molding with 3D printing for a patient with unilateral cleft lip, alveolus, and palate. Am. J. Orthod. Dentofac. Orthop. 2019, 156, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Neoh, S.P.; Khantachawana, A.; Chintavalakorn, R.; Santiwong, P.; Srikhirin, T. Comparison of physical, mechanical, and optical properties between thermoplastic materials and 3-dimensional printing resins for orthodontic clear retainers. Am. J. Orthod. Dentofac. Orthop. 2025, 167, 95–109.e1. [Google Scholar] [CrossRef]
- Sharma, N.; Cao, S.; Msallem, B.; Kunz, C.; Brantner, P.; Honigmann, P.; Thieringer, F.M. Effects of Steam Sterilization on 3D Printed Biocompatible Resin Materials for Surgical Guides-An Accuracy Assessment Study. J. Clin. Med. 2020, 9, 1506. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, Y.; Gu, Y.; Ping, Y.; Zhou, R.; Wang, J. Shaping ability of four single-file systems in the instrumentation of second mesiobuccal canals of three-dimensional printed maxillary first molars. Ann. Transl. Med. 2021, 9, 1425. [Google Scholar] [CrossRef]
- Kim, T.; Lee, S.; Kim, G.B.; Hong, D.; Kwon, J.; Park, J.W.; Kim, N. Accuracy of a simplified 3D-printed implant surgical guide. J. Prosthet. Dent. 2020, 124, 195–201.e2. [Google Scholar] [CrossRef] [PubMed]
- Rouzé l’Alzit, F.; Cade, R.; Naveau, A.; Babilotte, J.; Meglioli, M.; Catros, S. Accuracy of commercial 3D printers for the fabrication of surgical guides in dental implantology. J. Dent. 2022, 117, 103909. [Google Scholar] [CrossRef]
- Shui, Y.; Wu, J.; Luo, T.; Sun, M.; Yu, H. Three dimensionally printed template with an interproximal isolation design guide consecutive closure of multiple diastema with injectable resin composite. J. Esthet. Restor. Dent. 2024, 36, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhu, J.; Yang, X.; Gao, J.; Yu, H. Technique to restore the midline space of central incisors using a two-in-one template: A clinical report. J. Prosthodont. 2023, 32, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Robles, M.; Jurado, C.A.; Azpiazu-Flores, F.X.; Villalobos-Tinoco, J.; Afrashtehfar, K.I.; Fischer, N.G. An Innovative 3D Printed Tooth Reduction Guide for Precise Dental Ceramic Veneers. J. Funct. Biomater. 2023, 14, 216. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.C.; Kim, J.H.; Moon, H.S. Two-visit placement of immediate dentures with the aid of digital technologies. J. Am. Dent. Assoc. 2019, 150, 618–623. [Google Scholar] [CrossRef]
- Morón-Conejo, B.; Berrendero, S.; Salido, M.P.; Zarauz, C.; Pradíes, G. Accuracy of surgical guides manufactured with four different 3D printers. A comparative in vitro study. J. Dent. 2024, 148, 105226. [Google Scholar] [CrossRef] [PubMed]
- Krug, R.; Reich, S.; Connert, T.; Kess, S.; Soliman, S.; Reymus, M.; Krastl, G. Guided endodontics: A comparative in vitro study on the accuracy and effort of two different planning workflows. Int. J. Comput. Dent. 2020, 23, 119–128. [Google Scholar]
- Wegmüller, L.; Halbeisen, F.; Sharma, N.; Kühl, S.; Thieringer, F.M. Consumer vs. High-End 3D Printers for Guided Implant Surgery-An In Vitro Accuracy Assessment Study of Different 3D Printing Technologies. J. Clin. Med. 2021, 10, 4894. [Google Scholar] [CrossRef]
- Ammoun, R.; Dalal, N.; Abdulmajeed, A.A.; Deeb, G.R.; Bencharit, S. Effects of two Postprocessing Methods onto Surface Dimension of in-Office Fabricated Stereolithographic Implant Surgical Guides. J. Prosthodont. 2021, 30, 71–75. [Google Scholar] [CrossRef]
- Burkhardt, F.; Handermann, L.; Rothlauf, S.; Gintaute, A.; Vach, K.; Spies, B.C.; Lüchtenborg, J. Accuracy of additively manufactured and steam sterilized surgical guides by means of continuous liquid interface production, stereolithography, digital light processing, and fused filament fabrication. J. Mech. Behav. Biomed. Mater. 2024, 152, 106418. [Google Scholar] [CrossRef] [PubMed]
- Vara, R.; Lin, W.; Low, J.K.; Smith, D.; Grimm, A.; Calvert, G.; Tadakamadla, S.K.; Alifui-Segbaya, F.; Ahmed, K.E. Assessing the Impact of Resin Type, Post-Processing Technique, and Arch Location on the Trueness and Precision of 3D-Printed Full-Arch Implant Surgical Guides. Appl. Sci. 2023, 13, 2491. [Google Scholar] [CrossRef]
- Abduo, J.; Lyons, K.; Bennamoun, M. Trends in computer-aided manufacturing in prosthodontics: A review of the available streams. Int. J. Dent. 2014, 2014, 783948. [Google Scholar] [CrossRef] [PubMed]
- Balestra, D.; Lowther, M.; Goracci, C.; Mandurino, M.; Cortili, S.; Paolone, G.; Louca, C.; Vichi, A. 3D Printed Materials for Permanent Restorations in Indirect Restorative and Prosthetic Dentistry: A Critical Review of the Literature. Materials 2024, 17, 1380. [Google Scholar] [CrossRef]
- Osnes, C.; Davda, K.; Hyde, T.P.; Khalid, S.; Dillon, S.; Archer, N.; Attrill, D.; Devlin, H.; Keeling, A. Current challenges for 3D printing complete dentures: Experiences from a multi-centre clinical trial. Br. Dent. J. 2023. [Google Scholar] [CrossRef] [PubMed]
- İnal, C.B.; Ayten, U.B.C.; Nemli, S.K. Replacement Implant-Retained Ear Prosthesis Using Semi-Digital Workflow: A Case Report. Int. J. Prosthodont. 2024. [Google Scholar] [CrossRef]
- Schweiger, J.; Edelhoff, D.; Güth, J.F. 3D Printing in Digital Prosthetic Dentistry: An Overview of Recent Developments in Additive Manufacturing. J. Clin. Med. 2021, 10, 2010. [Google Scholar] [CrossRef]
- Dimitrova, M.; Vlahova, A.; Kalachev, Y.; Zlatev, S.; Kazakova, R.; Capodiferro, S. Recent Advances in 3D Printing of Polymers for Application in Prosthodontics. Polymers 2023, 15, 4525. [Google Scholar] [CrossRef] [PubMed]
- Tsolakis, I.A.; Gizani, S.; Panayi, N.; Antonopoulos, G.; Tsolakis, A.I. Three-dimensional printing technology in orthodontics for dental models: A systematic review. Children 2022, 9, 1106. [Google Scholar] [CrossRef]
- Jheon, A.H.; Oberoi, S.; Solem, R.C.; Kapila, S. Moving towards precision orthodontics: An evolving paradigm shift in the planning and delivery of customized orthodontic therapy. Orthod. Craniofac Res. 2017, 20, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Krey, K.F.; Darkazanly, N.; Kühnert, R.; Ruge, S. 3D-printed orthodontic brackets-proof of concept. Int. J. Comput. Dent. 2016, 19, 351–362. [Google Scholar]
- Panayi, N.C. In-office customized brackets: Aligning with the tuture. Turk. J. Orthod. 2023, 36, 143–148. [Google Scholar] [CrossRef]
- Polychronis, G.; Papageorgiou, S.N.; Riollo, C.S.; Panayi, N.; Zinelis, S.; Eliades, T. Fracture toughness and hardness of in-office, 3D-printed ceramic brackets. Orthod. Craniofac Res. 2023, 26, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Waldman, A.; Garvan, C.S.; Yang, J.; Wheeler, T.T. Clinical efficiency of LightForce 3D-printed custom brackets. J. Clin. Orthod. 2023, 57, 274–282. [Google Scholar] [PubMed]
- Palone, M.; Fazio, M.; Pellitteri, F.; Guiducci, D.; Cremonini, F.; Pozzetti, I.; Tola, M.; Lombardo, L. CAD/CAM-based 3D-printed and PVS indirect bonding jig system accuracy: A systematic review, meta-analysis, and comparative analysis of hard and soft CAD/CAM transfer trays. Eur. J. Orthod. 2024, 46, 1–14. [Google Scholar] [CrossRef]
- Karabiber, G.; Eglenen, M.N. 3D printed indirect bonding trays: Transfer accuracy of bar vs shell design in a prospective, randomized clinical trial. Angle Orthod. 2024, 94, 648–656. [Google Scholar] [CrossRef]
- Schwärzler, A.; Nemec, M.; Lettner, S.; Rank, C.; Schedle, A.; Jonke, E. 3D printed indirect bonding trays: Transfer accuracy of hard versus soft resin material in a prospective, randomized, single-blinded clinical study. Dent. Mater. 2023, 39, 1058–1065. [Google Scholar] [CrossRef]
- Jindal, P.; Juneja, M.; Siena, F.L.; Bajaj, D.; Breedon, P. Mechanical and geometric properties of thermoformed and 3D printed clear dental aligners. Am. J. Orthod. Dentofac. Orthop. 2019, 156, 694–701. [Google Scholar] [CrossRef]
- Abd El-Ghafour, M.; Aboulhassan, M.A.; Fayed, M.M.S.; El-Beialy, A.R.; Eid, F.H.K.; Hegab, S.E.; El-Gendi, M.; Emara, D. Effectiveness of a Novel 3D-Printed Nasoalveolar Molding Appliance (D-NAM) on Improving the Maxillary Arch Dimensions in Unilateral Cleft Lip and Palate Infants: A Randomized Controlled Trial. Cleft Palate Craniofacial J. 2020, 57, 1370–1381. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.S.; Suarez, C.A.; Mirsky, N.A.; Slavin, B.V.; Brochu, B.; Vivekanand Nayak, V.; El Shatanofy, M.; Witek, L.; Thaller, S.R.; Coelho, P.G. Application of 3D printing in cleft lip and palate repair. J. Craniofac. Surg. 2024. Advance online publication. [Google Scholar] [CrossRef] [PubMed]
- Virani, F.R.; Chua, E.C.; Timbang, M.R.; Hsieh, T.Y.; Senders, C.W. Three-dimensional printing in cleft care: A systematic review. Cleft Palate Craniofac. J. 2022, 59, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Gong, X.; Wang, G.-M.; Yu, Z.-Y.; Qian, Y.-F.; Shen, G. A novel technique for presurgical nasoalveolar molding using computer-aided reverse engineering and rapid prototyping. J. Craniofac. Surg. 2011, 22, 142–146. [Google Scholar] [CrossRef]
- Schiebl, J.; Bauer, F.X.; Grill, F.; Loeffelbein, D.J. RapidNAM: Algorithm for the semi-automated generation of nasoalveolar molding device designs for the presurgical treatment of bilateral cleft lip and palate. IEEE Trans. Biomed. Eng. 2019, 67, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Yu, Q. Correction of maxillary deformity in infants with bilateral cleft lip and palate using computer-assisted design. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2012, 114, S74–S78. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Qian, J.; Zhou, W.; Li, J.; Mao, B.; Wen, A.; Zhao, Y.; Pan, J.; Wang, Y. 3D-printed titanium surgical guides for extraction of horizontally impacted lower third molars. Clin. Oral. Investig. 2023, 27, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Goil, P. Formulating an Easy, Affordable, and Reproducible Method for Virtual Planning and 3D Reconstruction: A State Institution’s Approach for Mandibular Reconstruction. Ann. Plast. Surg. 2021, 87, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Kim, J.C.; Jeong, C.G.; Cheon, K.J.; Cho, S.W.; Park, I.Y.; Yang, B.E. The accuracy and stability of the maxillary position after orthognathic surgery using a novel computer-aided surgical simulation system. BMC Oral. Health 2019, 19, 18. [Google Scholar] [CrossRef]
- Espinar, C.; Della Bona, A.; Pérez, M.M.; Pulgar, R. Color and optical properties of 3D printing restorative polymer-based materials: A scoping review. J. Esthet. Restor. Dent. 2022, 34, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zhao, Y.; Yang, X.; Wang, H.; Zhang, F.; Liu, L. Clinical application of 3D-printed surgical splints in orthognathic surgery. J. Oral. Maxillofac. Surg. 2020, 78, 238–244. [Google Scholar]
- Zheng, L.; Wang, Y.; Chen, Z.; Zhang, S.; Lin, J.; Zhang, J. Efficiency of 3D-printed surgical guides in maxillofacial surgeries. Int. J. Oral. Maxillofac. Surg. 2021, 50, 890–898. [Google Scholar]
- Singh, R.; Kumar, A.; Gupta, S.; Mehra, R.; Sharma, A.; Patel, P. Patient satisfaction with 3D-printed custom surgical tools in oral and maxillofacial surgery. J. Craniofac Surg. 2019, 30, 820–824. [Google Scholar]
- Al-Halabi, M.N.; Bshara, N.; Nassar, J.A.; Comisi, J.C.; Rizk, C.K. Clinical performance of two types of primary molar indirect crowns fabricated by 3D printer and CAD/CAM for rehabilitation of large carious primary molars. Eur. J. Dent. 2021, 15, 463–468. [Google Scholar] [CrossRef]
- Al-Halabi, M.N.; Bshara, N.; Nassar, J.A.; Comisi, J.C.; Alawa, L. Comparative assessment of novel 3D printed resin crowns versus direct celluloid crowns in restoring pulp-treated primary molars. J. Evid. Based Dent. Pract. 2022, 22, 101664. [Google Scholar] [CrossRef]
- Lee, K.E.; Kang, H.S.; Shin, S.Y.; Lee, T.; Lee, H.S.; Song, J.S. Comparison of three-dimensional printed resin crowns and preformed stainless steel crowns for primary molar restorations: A randomized controlled trial. J. Clin. Pediatr. Dent. 2024, 48, 59–67. [Google Scholar] [CrossRef]
- Cengiz, A.; Karayilmaz, H. Comparative evaluation of the clinical success of 3D-pr maintainted spaceiners and band-loop space maintainers. Int. J. Paediatr. Dent. 2024, 34, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Tokuc, M.; Yilmaz, H. Comparison of fit accuracy between conventional and CAD/CAM-fabricated band-loop space maintainers. Int. J. Paediatr. Dent. 2022, 32, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Yangdol, P.; Kalra, N.; Tyagi, R.; Khatri, A.; Sabherwal, P.; Goyal, T. Three-dimensional Printing Technology: Patient-friendly and Time-saving Approach for Space Management in an Autistic Child in COVID-19 Times. Int. J. Clin. Pediatr. Dent. 2023, 16, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Tichy, A.; Kamoi, K.; Hiasa, M.; Yonekura, K.; Tanaka, E.; Nakajima, M.; Hosaka, K. Restoration of a microdont using the resin composite injection technique with a fully digital workflow: A flexible 3D-printed index with a stabilization holder. Oper. Dent. 2023, 48, 483–489. [Google Scholar] [CrossRef]
- Puri, N.; Atria, P.J.; Oquendo, A.; Blatz, M.B.; Sampaio, C.S. A fully digital workflow involving 3D printed tooth reduction guides and injection resin-indexes to restore an impacted canine. J. Esthet. Restor. Dent. 2024, 36, 1388–1395. [Google Scholar] [CrossRef]
- Valverde Haro, H.P.; Quille Punina, L.G.; Erazo Conde, A.D. Guided Endodontic Treatment of Mandibular Incisor with Pulp Canal Obliteration following Dental Trauma: A Case Report. Iran. Endod. J. 2024, 19, 223–227. [Google Scholar] [CrossRef]
- Connert, T.; Krug, R.; Eggmann, F.; Emsermann, I.; ElAyouti, A.; Weiger, R.; Kühl, S.; Krastl, G. Guided Endodontics versus Conventional Access Cavity Preparation: A Comparative Study on Substance Loss Using 3-dimensional-printed Teeth. J. Endod. 2019, 45, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.Y.; Kim, N.H.; Kim, S.; Karabucak, B.; Kim, E. Computer-aided Design/Computer-aided Manufacturing-guided Endodontic Surgery: Guided Osteotomy and Apex Localization in a Mandibular Molar with a Thick Buccal Bone Plate. J. Endod. 2018, 44, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, T.K.; Wealleans, J.A.; Pratt, A.M.; Ray, J.J. Targeted endodontic microsurgery and endodontic microsurgery: A surgical simulation comparison. Int. Endod. J. 2020, 53, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.D.; Costa, P.F.; Vaquette, C.; Ivanovski, S.; Hutmacher, D.W.; Malda, J. Additive Biomanufacturing: An Advanced Approach for Periodontal Tissue Regeneration. Ann. Biomed. Eng. 2017, 45, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Bottino, M.C.; Pankajakshan, D.; Nör, J.E. Advanced Scaffolds for Dental Pulp and Periodontal Regeneration. Dent. Clin. N. Am. 2017, 61, 689–711. [Google Scholar] [CrossRef] [PubMed]
- Roato, I.; Masante, B.; Putame, G.; Massai, D.; Mussano, F. Challenges of periodontal tissue engineering: Increasing biomimicry through 3D printing and controlled dynamic environment. Nanomaterials 2022, 12, 3878. [Google Scholar] [CrossRef] [PubMed]
- Mohd, N.; Razali, M.; Fauzi, M.B.; Abu Kasim, N.H. In vitro and in vivo biological assessments of 3D-bioprinted scaffolds for dental applications. Int. J. Mol. Sci. 2023, 24, 12881. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, T.D.M.; Do Amaral, G.C.L.S.; Bezerra, G.N.; Nakao, L.Y.S.; Villar, C.C. Three-dimensional-printed scaffolds for periodontal regeneration: A systematic review. J. Indian. Soc. Periodontol. 2023, 27, 451–460. [Google Scholar] [CrossRef]
- Davidopoulou, S.; Karakostas, P.; Batas, L.; Barmpalexis, P.; Assimopoulou, A.; Angelopoulos, C.; Tsalikis, L. Multidimensional 3D-printed scaffolds and regeneration of intrabony periodontal defects: A systematic review. J. Funct. Biomater. 2024, 15, 44. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, U.; Rajaram, V.; Mahendra, J.; Kannan, L.P.; Chellathurai, B.N.; Namasivayam, A. Biomimetic scaffold and 3D bioprinting in dental application: A review. Bioinformation 2024, 20, 789–793. [Google Scholar] [CrossRef] [PubMed]
Property | Subtractive Manufacturing (Milling) | Additive Manufacturing (3D Printing) |
---|---|---|
Material Waste | Significant waste, such as excess material, is removed during the milling process and is often not reusable | Minimal waste due to layer-by-layer fabrication. Reported material savings of up to 95–98%, with unused resin and powder being recyclable |
Time Efficiency | Time-intensive for intricate designs due to the removal of excess material and the need for post-processing | Faster for complex designs, mainly when producing multiple items simultaneously (e.g., up to 20 restorations printed in one session) |
Production Costs | Higher costs due to material waste, expensive milling blocks, and longer production times | Lower equipment and consumable costs; up to 8–10 times cheaper for materials such as composite resin compared to milled PMMA or lithium disilicate |
Customization | Limited customization; additional complexity increases production time and costs | High customization capability with minimal additional cost for unique designs and patient-specific applications |
Environmental Impact | Higher environmental impact due to excessive material waste and higher energy requirements during milling | Reduced environmental footprint due to lower material consumption and energy use in production. Improved sustainability through local production |
Techniques | ||
---|---|---|
Vat Photopolymerization | Material Jetting | |
Advantages | High resolution Good accuracy Smooth surfaces Suitable for producing complex geometries Cost-effective and relatively fast technology | High-resolution and surface quality Multi-material printing and combining multiple materials with different hardness and colors Esthetic suitability Colorful prototypes and models |
Disadvantages | Material fragility Sensitivity to UV light and heat Post-processing requirements Limited material options | Durability issues (Photopolymers tend to degrade over time, losing their mechanical properties) Maintenance needs |
Cost | Lower equipment and material costs (especially for SLA) Post-processing requirements can increase labor costs | Higher equipment and material costs |
Production Time | Faster due to the light source curing entire layers at once (especially in DLP) | Longer due to more complex processes for creating detailed and esthetic models |
Material | Technology | Application | Manufacturer |
---|---|---|---|
Formlabs Permanent Crown Resin® | SLA | Permanent crown | Formlabs Inc., Somerville, MA, USA [80,81,82,83,84,85,86,87,88,89] |
VarseoSmile Crown Plus | SLA, DLP | Permanent crown | Bego, Bremen, Germany [90,91,92,93,94,95] |
CROWNTEC | DLP | Permanent crown | Saremco Dental AG, Rebstein, Switzerland [86,89,91,94,96,97] |
NexDent C&B MFH | SLA | Temporary crown | Vertex-Dental B.V., Soesterberg, The Netherlands [82,90,98,99,100] |
Detax Freeprint Temp | DLP | Temporary crown | Detax GmbH, Ettlingen, Germany [81,98,101,102,103] |
GC TempPrint | DLP | Temporary crown | GC Corporation, Tokyo, Japan [81,103] |
Formlabs Temporary CB | SLA | Temporary crown | Formlabs Inc., Somerville, MA, USA [81,84,103,104] |
Graphy tera harz TC-80DP | DLP | Temporary crown | Graphy Inc., Seoul, Republic of Korea [82,98,102,105] |
P Pro Crown& Bridge | DLP | Temporary crown | Straumann Cares, Basel, Switzerland [106] |
Prov.Crown&Bridge | DLP | Temporary crown | Voco, Cuxhaven, Germany [106] |
3Delta temp | DLP | Temporary resin | Deltamed, Friedberg, Germany [98] |
Zenith ZMD-1000B® | DLP | Temporary resin | Dentis Co., Daegu, Republic of Korea [102] |
Veltz DT-1 Temporary Teeth® | DLP | Temporary resin | Hephzibah, Incheon, Republic of Korea [102] |
Resina 3D Smart Print Bio Denture | DLP | Denture base | SmartDent, São Paulo, Brasil [107] |
Formlabs Denture Base RP | SLA | Denture base | Formlabs Inc., Somerville, MA, USA [108,109,110] |
ASIGA DentaBASE | DLP | Denture base | ASIGA, Erfurt, Germany [108,111] |
NextDent Denture 3D+ | DLP | Denture base | NextDent B.V., Soesterberg, The Netherlands [111,112] |
Cosmos Denture | DLP | Denture base | Yller Biomateriais AS, Pelotas, RS, Brazil [112] |
Formlabs Denture Teeth | SLA | Denture teeth | Formlabs Inc., Somerville, MA, USA [104] |
OnX | DLP | Denture teeth | Sprintray, Los Angeles, CA, USA [95] |
Flexcera Ultra+ | DLP | Denture teeth | Desktop Health, Burlington, MA, USA [95] |
Dima Print Denture Teeth® | DLP | Denture teeth | Kulzer GmbH, Hanau, Germany [102] |
Detax IBT resin | DLP | Indirect bonding tray | Detax GmbH, Ettlingen, Germany [113] |
Formlabs IBT resin | SLA | Indirect bonding tray | Formlabs, Ohio, Milbury, OH, USA [114,115] |
TEC resin | DLP | Digital align dental model | Detax GmbH, Ettlingen, Germany [113] |
Hard Model 2.0 resin | DLP | Digital align dental model | Nextdent B.V., Soesterbeg, The Netherlands [116] |
Tera Harz TC-85 DAC (Direct aligner clear) | DLP | Aligner | Graphy, Seoul, Republic of Korea [117,118,119] |
Tera Harz TC85A aligner resin | DLP | Aligner | Graphy, Seoul, Republic of Korea [120,121,122,123,124,125] |
Tera Harz TC-85 DAW (Direct aligner white) | DLP, LCD | Aligner | Graphy, Seoul, Republic of Korea [126] |
Material X | DLP | Aligner | Envisiontec, Inc.; Dearborn, Mich [127] |
OD-Clear TF | DLP | Aligner | 3DResyns, Barcelona, Spain [127] |
SprintRay Die resin | DLP | Model resin | SprintRay, Los Angeles, CA, USA [124] |
Gray model resin | DLP | Model resin | SprintRay, Los Angeles, CA, USA [124] |
Dental Model V2, Formlabs | SLA | Dental model | Formlabs Inc., Somerville, MA, USA [128,129,130] |
NextDent Model 2.0 | DLP | Dental model | NextDent B.V., Soesterberg, The Netherland [129,131] |
3D acrylic resin | DLP | Molding plate | Vertex-Dental B.V., Soesterberg, The Netherlands [132] |
NextDent OrthoFlex | DLP | Dental splints, retainers | NextDent B.V., Soesterberg, The Netherland [133] |
Dental LT Clear Resin | SLA | Splints, occlusal guards, orthodontic appliances, retainer | Formlabs Inc., Somerville, MA, USA [115,133,134] |
VisiJet Crystal | Multijet | Replica of the tooth (for education) | 3D Systems, Rock Hill, SC, USA [135,136] |
VeroWhitePlusTM | PolyJet | Replica of the tooth (for education) Surgical guide | Stratasys Ltd., Eden Prairie, MN, USA [65,137] |
Visijet M3 Stoneplast | Multijet | Composite Injection Guides | 3D Systems, Rock Hill, SC, USA [61,138,139] |
Anycubic Clear UV Resin | DLP | 3D-printed gingivectomy and Tooth reduction guide | Anycubic, Shenzhen, China [64,140] |
NextDent SG | DLP | Endodontic guide Surgical guide | Nextdent B.V., Soesterberg, The Netherlands [62,141,142] |
MED610 | PolyJet | Surgical guide | Stratasys Ltd., Minneapolis, MN, USA [143] |
DentalSG | SLA | Surgical guide | Formlabs Inc., Somerville, MA, USA [137,141,142,144,145] |
NextDent Ortho Clear | DLP | Surgical guide | Nextdent B.V., Soesterberg, The Netherlands [134] |
BioMed Amber resin | SLA | Surgical guide | Formlabs, Ohio, Milbury, OH, USA [114,115] |
SHERAprint-SG | DLP | Surgical guide | SHERA Werkstoff-Technologie GmbH & Co. KG, Lemforde, Germany [137,142] |
V-PrintSG | DLP | Surgical guide | Voco, Cuxhaven, Germany [142] |
Clear Resin | SLA | Surgical guide | Formlabs Inc., Somerville, MA, USA [146] |
Dima Print Guide | DLP | Surgical guide | Kulzer GmbH, Hanau, Germany [137] |
Asiga DentaCLEAR | DLP | Surgical guide | Asiga, Alexandria, NSW, Australia [147] |
Asiga DentaGUIDE | DLP | Surgical guide | Asiga, Alexandria, NSW, Australia [148] |
Rigid 10K Resin | SLA | Resin die | Formlabs Inc., Somerville, MA, USA [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yüceer, Ö.M.; Kaynak Öztürk, E.; Çiçek, E.S.; Aktaş, N.; Bankoğlu Güngör, M. Three-Dimensional-Printed Photopolymer Resin Materials: A Narrative Review on Their Production Techniques and Applications in Dentistry. Polymers 2025, 17, 316. https://doi.org/10.3390/polym17030316
Yüceer ÖM, Kaynak Öztürk E, Çiçek ES, Aktaş N, Bankoğlu Güngör M. Three-Dimensional-Printed Photopolymer Resin Materials: A Narrative Review on Their Production Techniques and Applications in Dentistry. Polymers. 2025; 17(3):316. https://doi.org/10.3390/polym17030316
Chicago/Turabian StyleYüceer, Özge Mine, Esra Kaynak Öztürk, Elif Su Çiçek, Nagehan Aktaş, and Merve Bankoğlu Güngör. 2025. "Three-Dimensional-Printed Photopolymer Resin Materials: A Narrative Review on Their Production Techniques and Applications in Dentistry" Polymers 17, no. 3: 316. https://doi.org/10.3390/polym17030316
APA StyleYüceer, Ö. M., Kaynak Öztürk, E., Çiçek, E. S., Aktaş, N., & Bankoğlu Güngör, M. (2025). Three-Dimensional-Printed Photopolymer Resin Materials: A Narrative Review on Their Production Techniques and Applications in Dentistry. Polymers, 17(3), 316. https://doi.org/10.3390/polym17030316