Corn or Soybean Oil as the Sole Carbon Source for Polyhydroxybutyrate Production in a Biofuel Biorefinery Concept
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain and Reagents
2.2. Strain Adaptation
2.3. Inoculum and Conservation Media
2.4. Screening of Nitrogen Source for Biomass Production
2.5. Optimization of Medium Composition for PHB Production
2.6. Kinetics of PHB Production
2.7. Analytical Methods
3. Results and Discussion
3.1. Screening of Nitrogen Sources for C. necator Growth
3.2. Optimization of Medium Composition for PHB Production
3.3. Kinetics of PHB Production Using Corn and Soybean Oils
3.4. Perspectives on the Implementation of the Proposed Process in a Biofuel Biorefinery Context
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrade, M.C.; Silva, C.d.O.G.; Moreira, L.R.d.S.; Filho, E.X.F. Crop Residues: Applications of Lignocellulosic Biomass in the Context of a Biorefinery. Front. Energy 2021, 16, 224–245. [Google Scholar] [CrossRef]
- Luz, C.d.S.C.d.; Mainier, F.B.; Monteiro, L.P.C. Evaluation of Oilseeds for Biodiesel Production. Am. J. Environ. Eng. 2015, 5, 47–51. [Google Scholar] [CrossRef]
- Callegari, A.; Bolognesi, S.; Cecconet, D.; Capodaglio, A.G. Production Technologies, Current Role, and Future Prospects of Biofuels Feedstocks: A State-of-the-Art Review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 384–436. [Google Scholar] [CrossRef]
- OECD/FAO. OECD-FAO Agricultural Outlook 2021–2030; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Embrapa Embrapa Soja. Available online: https://www.embrapa.br/soja/cultivos/soja1/dados-economicos (accessed on 8 July 2024).
- CONAB Safra de Grãos 2023/2024. Available online: https://www.conab.gov.br/ultimas-noticias/5478-safra-de-graos-2023-2024-esta-estimada-em-294-1-milhoes-de-toneladas#:~:text=Mercado—Nestelevantamento%2CaCompanhia,aoobtidonociclopassado (accessed on 6 July 2024).
- Karp, S.G.; Medina, J.D.C.; Letti, L.A.J.; Woiciechowski, A.L.; de Carvalho, J.C.; Schmitt, C.C.; de Oliveira Penha, R.; Kumlehn, G.S.; Soccol, C.R. Bioeconomy and Biofuels: The Case of Sugarcane Ethanol in Brazil. Biofuels Bioprod. Biorefin. 2021, 15, 899–912. [Google Scholar] [CrossRef]
- da Silva, A.L.; Castañeda-Ayarza, J.A. Macro-Environment Analysis of the Corn Ethanol Fuel Development in Brazil. Renew. Sustain. Energy Rev. 2020, 135, 110387. [Google Scholar] [CrossRef]
- de Mello, A.F.M.; Vandenberghe, L.P.d.S.; Machado, C.M.B.; Valladares-Diestra, K.K.; de Carvalho, J.C.; Soccol, C.R. Polyhydroxybutyrate Production by Cupriavidus Necator in a Corn Biorefinery Concept. Bioresour. Technol. 2022, 370, 128537. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento-Vásquez, Z.; Vandenberghe, L.P.d.S.; Karp, S.G.; Soccol, C.R. Production of Polyhydroxyalkanoates through Soybean Hull and Waste Glycerol Valorization: Subsequent Alkaline Pretreatment and Enzymatic Hydrolysis. Fermentation 2022, 8, 433. [Google Scholar] [CrossRef]
- Khatami, K.; Perez-Zabaleta, M.; Owusu-Agyeman, I.; Cetecioglu, Z. Waste to Bioplastics: How Close Are We to Sustainable Polyhydroxyalkanoates Production? Waste Manag. 2021, 119, 374–388. [Google Scholar] [CrossRef]
- Muhammadi; Shabina; Afzal, M.; Hameed, S. Bacterial Polyhydroxyalkanoates-Eco-Friendly next Generation Plastic: Production, Biocompatibility, Biodegradation, Physical Properties and Applications. Green Chem. Lett. Rev. 2015, 8, 56–77. [Google Scholar] [CrossRef]
- Nguyen-Huynh, S.T.T.; Chua, A.S.M.; Chow, Y.H.; Wong, W.Y.; Yoon, L.W. Enrichment Strategies for Mixed Cultures in Valorisation of Crude Glycerol into Polyhydroxyalkanoate Bioplastics. Biochem. Eng. J. 2023, 200, 109086. [Google Scholar] [CrossRef]
- Oliveira-Filho, E.R.; Campos-Silva, R.; Hanson, A.D. Running Fermi Calculations as a Superpower to Gauge Reality. Plant Physiol. 2024, kiae347. [Google Scholar] [CrossRef] [PubMed]
- Peña-Jurado, E.; Pérez-Vega, S.; Zavala-Díaz de la Serna, F.J.; Pérez-Reyes, I.; Gutiérrez-Méndez, N.; Vazquez-Castillo, J.; Salmerón, I. Production of Poly (3-Hydroxybutyrate) from a Dairy Industry Wastewater Using Bacillus Subtilis EPAH18: Bioprocess Development and Simulation. Biochem. Eng. J. 2019, 151, 107324. [Google Scholar] [CrossRef]
- Elsayed, N.S.; Aboshanab, K.M.; Aboulwafa, M.M.; Hassouna, N.A. Cost-Effective Production of the Bio-Plastic Poly-Beta-Hydroxybutyrate Using Acinetobacter Baumannii Isolate P39. J. Microbiol. Biotechnol. Food Sci. 2016, 05, 552–556. [Google Scholar] [CrossRef]
- Zytner, P.; Kumar, D.; Elsayed, A.; Mohanty, A.; Ramarao, B.V.; Misra, M. A Review on Polyhydroxyalkanoate (PHA) Production through the Use of Lignocellulosic Biomass. RSC Sustain. 2023, 1, 2120–2134. [Google Scholar] [CrossRef]
- Levett, I.; Birkett, G.; Davies, N.; Bell, A.; Langford, A.; Laycock, B.; Lant, P.; Pratt, S. Techno-Economic Assessment of Poly-3-Hydroxybutyrate (PHB) Production from Methane—The Case for Thermophilic Bioprocessing. J. Environ. Chem. Eng. 2016, 4, 3724–3733. [Google Scholar] [CrossRef]
- de Mello, A.F.M.; Vandenberghe, L.P.d.S.; Machado, C.M.B.; Brehmer, M.S.; de Oliveira, P.Z.; Binod, P.; Sindhu, R.; Soccol, C.R. Polyhydroxyalkanoates Production in Biorefineries: A Review on Current Status, Challenges and Opportunities. Bioresour. Technol. 2024, 393, 130078. [Google Scholar] [CrossRef] [PubMed]
- Talan, A.; Pokhrel, S.; Tyagi, R.D.; Drogui, P. Biorefinery Strategies for Microbial Bioplastics Production: Sustainable Pathway towards Circular Bioeconomy. Bioresour. Technol. Rep. 2022, 17, 100875. [Google Scholar] [CrossRef]
- Veljković, V.B.; Biberdžić, M.O.; Banković-Ilić, I.B.; Djalović, I.G.; Tasić, M.B.; Nježić, Z.B.; Stamenković, O.S. Biodiesel Production from Corn Oil: A Review. Renew. Sustain. Energy Rev. 2018, 91, 531–548. [Google Scholar] [CrossRef]
- Chien Bong, C.P.; Alam, M.N.H.Z.; Samsudin, S.A.; Jamaluddin, J.; Adrus, N.; Mohd Yusof, A.H.; Muis, Z.A.; Hashim, H.; Salleh, M.M.; Abdullah, A.R.; et al. A Review on the Potential of Polyhydroxyalkanoates Production from Oil-Based Substrates. J. Environ. Manag. 2021, 298, 113461. [Google Scholar] [CrossRef] [PubMed]
- Volova, T.; Sapozhnikova, K.; Zhila, N. Cupriavidus Necator B-10646 Growth and Polyhydroxyalkanoates Production on Different Plant Oils. Int. J. Biol. Macromol. 2020, 164, 121–130. [Google Scholar] [CrossRef]
- García, I.L.; López, J.A.; Dorado, M.P.; Kopsahelis, N.; Alexandri, M.; Papanikolaou, S.; Villar, M.A.; Koutinas, A.A. Evaluation of By-Products from the Biodiesel Industry as Fermentation Feedstock for Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Production by Cupriavidus Necator. Bioresour. Technol. 2013, 130, 16–22. [Google Scholar] [CrossRef]
- Cavalheiro, J.M.B.T.; de Almeida, M.C.M.D.; Grandfils, C.; da Fonseca, M.M.R. Poly(3-Hydroxybutyrate) Production by Cupriavidus Necator Using Waste Glycerol. Process Biochem. 2009, 44, 509–515. [Google Scholar] [CrossRef]
- Khanna, S.; Srivastava, A.K. Statistical Media Optimization Studies for Growth and PHB Production by Ralstonia Eutropha. Process Biochem. 2005, 40, 2173–2182. [Google Scholar] [CrossRef]
- Zafar, M.; Kumar, S.; Kumar, S.; Dhiman, A.K. Optimization of Polyhydroxybutyrate (PHB) Production by Azohydromonas Lata MTCC 2311 by Using Genetic Algorithm Based on Artificial Neural Network and Response Surface Methodology. Biocatal. Agric. Biotechnol. 2012, 1, 70–79. [Google Scholar] [CrossRef]
- Kamilah, H.; Tsuge, T.; Yang, T.A.; Sudesh, K. Waste Cooking Oil as Substrate for Biosynthesis of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate): Turning Waste into a Value-Added Product. Malays. J. Microbiol. 2013, 9, 51–59. [Google Scholar] [CrossRef]
- Ng, K.S.; Ooi, W.Y.; Goh, L.K.; Shenbagarathai, R.; Sudesh, K. Evaluation of Jatropha Oil to Produce Poly(3-Hydroxybutyrate) by Cupriavidus Necator H16. Polym. Degrad. Stab. 2010, 95, 1365–1369. [Google Scholar] [CrossRef]
- Kynadi, A.S.; Suchithra, T.V. Formulation and Optimization of a Novel Media Comprising Rubber Seed Oil for PHA Production. Ind. Crops Prod. 2017, 105, 156–163. [Google Scholar] [CrossRef]
- Prasanth, S.; Sivaranjani, R.; Abishek, P.; Rupesh, K.J.; Swathi, M.; Sudalai, S.; Arumugam, A. Polyhydroxyalkanoate Production and Optimization: Utilization of Novel Non-Edible Oil Feedstock, Economic Analysis. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Schmidt, M.; Ienczak, J.L.; Quines, L.K.; Zanfonato, K.; Schmidell, W.; Aragão, G.M.F. Poly(3-Hydroxybutyrate) Production by Cupriavidus Necator Supplemented with Miniemulsified Soybean Oil. Braz. J. Chem. Eng. 2016, 33, 13–20. [Google Scholar] [CrossRef]
- Beadle, J.B.; Just, D.E.; Morgan, R.E.; Reiners, R.A. Compositon of Corn Oil. J. Am. Oil Chem. Soc. 1964, 42, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Clemente, T.E.; Cahoon, E.B. Soybean Oil: Genetic Approaches for Modification of Functionality and Total Content. Plant Physiol. 2009, 151, 1030–1040. [Google Scholar] [CrossRef] [PubMed]
- Ingram, H.R.; Winterburn, J.B. Anabolism of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) by Cupriavidus Necator DSM 545 from Spent Coffee Grounds Oil. New Biotechnol. 2021, 60, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Q.; Hajnal, I.; Wu, H.; Lv, L.; Ye, J. Engineering Biosynthesis Mechanisms for Diversifying Polyhydroxyalkanoates. Trends Biotechnol. 2015, 33, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Obruca, S.; Petrik, S.; Benesova, P.; Svoboda, Z.; Eremka, L.; Marova, I. Utilization of Oil Extracted from Spent Coffee Grounds for Sustainable Production of Polyhydroxyalkanoates. Appl. Microbiol. Biotechnol. 2014, 98, 5883–5890. [Google Scholar] [CrossRef] [PubMed]
- USDA. Corn and Soybean: Projections for the 2023/2024 Season USDA—February 2024; United States Department of Agriculture-Foreign Agricultural Service: Washington, DC, USA, 2024; Circular Series WAP 2–24 February 2024. [Google Scholar]
- RFA. Ethanol Co-Products—Renewable Fuels Association (RFA); Renewable Fuels Association-RFA: Washington, DC, USA, 2024. [Google Scholar]
- BluePHA. Bluepha Co. Ltd. (Bluepha), © 2024 Beijing Blue Crystal Microbiology Technology Co., Ltd. Available online: https://www.bluepha.com/pha (accessed on 25 August 2024).
- Ubando, A.T.; Del Rosario, A.J.R.; Chen, W.H.; Culaba, A.B. A State-of-the-Art Review of Biowaste Biorefinery. Environ. Pollut. 2021, 269, 116149. [Google Scholar] [CrossRef] [PubMed]
Nitrogen Source | DCW (g/L) | |
---|---|---|
Corn Oil | Soybean Oil | |
Urea (CH₄N₂O) | 4.35 ± 0.41 | 10.4 ± 0.37 |
Ammonium chloride (NH4Cl) | 2.17 ± 0.39 | 5.68 ± 0.67 |
Ammonium phosphate ((NH4)3PO4) | 2.5 ± 0.35 | 2.88 ± 0.25 |
Ammonium sulphate (NH4)2SO4 | 2.27 ± 0.60 | 4.4 ± 0.56 |
Soybean Oil | Corn Oil | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Assay | Oil (g/L) | Urea (g/L) | KH2PO4 (g/L) | DCW (g/L) | Accumulation (%) | PHB (g/L) | PHB (g/g) | DCW (g/L) | Accumulation (%) | PHB (g/L) | PHB (g/g) |
1 | 20 | 2.5 | 5 | 11.83 | 39.37 | 4.66 | 0.2330 | 3.50 | 33.34 | 0.12 | 0.0060 |
2 | 20 | 2.5 | 15 | 11.95 | 59.11 | 7.06 | 0.3530 | 12.63 | 47.55 | 6.00 | 0.3000 |
3 | 20 | 7.5 | 5 | 10.90 | 46.46 | 5.06 | 0.2530 | 9.15 | 42.14 | 3.86 | 0.1930 |
4 | 20 | 7.5 | 15 | 3.25 | 9.78 | 0.32 | 0.0160 | 10.03 | 58.44 | 5.86 | 0.2930 |
5 | 60 | 2.5 | 5 | 20.70 | 62.24 | 12.88 | 0.2147 | 23.05 | 61.28 | 14.13 | 0.2355 |
6 | 60 | 2.5 | 15 | 6.25 | 32.74 | 2.05 | 0.0342 | 14.48 | 54.70 | 7.92 | 0.1320 |
7 | 60 | 7.5 | 5 | 12.05 | 58.01 | 6.99 | 0.1165 | 12.60 | 56.32 | 7.10 | 0.1183 |
8 | 60 | 7.5 | 15 | 14.58 | 54.23 | 7.90 | 0.1317 | 8.80 | 39.78 | 3.50 | 0.0583 |
9 | 6.4 | 5 | 10 | 6.80 | 9.50 | 0.65 | 0.1016 | 6.65 | 23.62 | 1.57 | 0.2453 |
10 | 73.6 | 5 | 10 | 17.83 | 55.49 | 9.89 | 0.1344 | 15.28 | 59.79 | 9.13 | 0.1240 |
11 | 40 | 0.8 | 10 | 15.88 | 75.43 | 11.98 | 0.2995 | 14.60 | 84.15 | 12.29 | 0.3073 |
12 | 40 | 9.2 | 10 | 15.05 | 48.31 | 7.27 | 0.1818 | 13.40 | 58.93 | 7.90 | 0.1975 |
13 | 40 | 5 | 1.6 | 10.53 | 26.95 | 2.84 | 0.0710 | 11.03 | 29.04 | 3.20 | 0.0800 |
14 | 40 | 5 | 18.4 | 3.88 | 8.94 | 0.35 | 0.0088 | 4.08 | 7.40 | 0.30 | 0.0075 |
15 | 40 | 5 | 10 | 16.08 | 55.76 | 8.96 | 0.2240 | 15.88 | 50.25 | 7.98 | 0.1995 |
16 | 40 | 5 | 10 | 15.15 | 59.07 | 8.95 | 0.2238 | 14.43 | 50.13 | 7.23 | 0.1808 |
Model | R2 | R2 Adj. | Error | MS Residual | |
---|---|---|---|---|---|
Soybean Oil | DCW | 0.76749 | 0.41872 | 86.781 | 14.46351 |
DCW Adjusted | 0.7036 | 0.506 | 110.6276 | 12.29195 | |
PHB Accumulation | 0.78773 | 0.46932 | 1358.649 | 226.442 | |
PHB Accumulation Adj | 0.69496 | 0.49161 | 1952.386 | 216.932 | |
PHB Production | 0.78129 | 0.45323 | 53.3403 | 8.89006 | |
PHB Production Adj | 0.72066 | 0.53443 | 68.1286 | 7.56985 | |
Corn Oil | DCW | 0.87877 | 0.69692 | 43.1419 | 7.1903 |
DCW Adjusted | 0.87452 | 0.73111 | 44.6557 | 6.3794 | |
PHB Accumulation | 0.86101 | 0.65252 | 912.961 | 152.16 | |
PHB Accumulation Adj | 0.8337 | 0.64365 | 1092.304 | 156.043 | |
PHB Production | 0.96645 | 0.91613 | 7.8675 | 1.31124 | |
PHB Production Adj | 0.96559 | 0.92627 | 8.0691 | 1.15272 |
Fermentation Parameter | Corn Oil | Soybean Oil |
---|---|---|
Specific Growth Rate, μ (h−1) | 0.0236 | 0.0239 |
DCW Productivity (g/L.h) | 0.2305 | 0.2066 |
PHB Productivity (g/L.h) | 0.1324 | 0.1134 |
g DCW/g Substrate | 0.3688 | 0.3305 |
g PHB/g Substrate | 0.2118 | 0.1815 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matte Borges Machado, C.; Porto de Souza Vandenberghe, L.; de Mello, A.F.M.; Soccol, C.R. Corn or Soybean Oil as the Sole Carbon Source for Polyhydroxybutyrate Production in a Biofuel Biorefinery Concept. Polymers 2025, 17, 324. https://doi.org/10.3390/polym17030324
Matte Borges Machado C, Porto de Souza Vandenberghe L, de Mello AFM, Soccol CR. Corn or Soybean Oil as the Sole Carbon Source for Polyhydroxybutyrate Production in a Biofuel Biorefinery Concept. Polymers. 2025; 17(3):324. https://doi.org/10.3390/polym17030324
Chicago/Turabian StyleMatte Borges Machado, Clara, Luciana Porto de Souza Vandenberghe, Ariane Fátima Murawski de Mello, and Carlos Ricardo Soccol. 2025. "Corn or Soybean Oil as the Sole Carbon Source for Polyhydroxybutyrate Production in a Biofuel Biorefinery Concept" Polymers 17, no. 3: 324. https://doi.org/10.3390/polym17030324
APA StyleMatte Borges Machado, C., Porto de Souza Vandenberghe, L., de Mello, A. F. M., & Soccol, C. R. (2025). Corn or Soybean Oil as the Sole Carbon Source for Polyhydroxybutyrate Production in a Biofuel Biorefinery Concept. Polymers, 17(3), 324. https://doi.org/10.3390/polym17030324