Theoretical Modelling, Experimental Testing and Simulation Analysis of Thermal Properties for Green Building-Insulation Materials
Abstract
:1. Introduction
2. Experimental Study on the Manufacture of Materials Using Epoxidized Sesame Oil
2.1. Materials Used in the Experiments
2.2. Experimental Study
2.2.1. The Prepare of 45 Different Samples
2.2.2. Experimental Test Methodology
3. Results and Discussion
3.1. Test Results of Samples Obtained with Experimental Study
3.2. Theoretical Calculation of Thermal Conductivity Coefficient in Porous Materials
- The pore diameters of the fly ash used in this study are smaller than 1 mm. Thus,
- Based on the Stefan-Boltzmann law, the thermal conductivity through radiation is calculated using the following equation:
- Although pore shapes are in irregular and complex geometrical forms, they are close to spheres. In order to be able to take the cross-section constant in the thermal flow direction, the assumption is that the pore cross sections are square.
- There is an assumption that moisture does not exist within the material structure.
3.2.1. Determining the Model Parameters with Experimental or Theoretical Methods
Porosity
Volume and Weight Relationship in Ash-Binder Mixtures
Thermal Conductivity Coefficients of Non-Porous Ash, Clay, and Binder
Thermal Conductivity Coefficients of the Gases Inside the Pore
Quantitative Calculation of Coefficient of Thermal Conductivity of a Sample
- Weight percentages of the mixture: 33% fly ash/66% clay + ESO
- Volume percentages of the mixture: 21.4% fly ash/78.6% clay + ESO
3.3. ANSYS Software Analysis
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carlsson, A.S. Plant oils as feedstock alternatives to petroleum—A short survey of potential oil crop platforms. Biochimie 2009, 91, 665–670. [Google Scholar] [CrossRef]
- Biermann, U.; Friedt, W.; Lang, S.; Luhs, W.; Machmuller, G.; Metzger, J.O.; Klaas, M.R.; Schafer, H.J.; Schneider, M.P.P. New syntheses with oils and fats as renewable raw materials for the chemical industry. Angew. Chem. Int. Ed. 2000, 39, 2206–2224. [Google Scholar] [CrossRef]
- Meier, M.A.R.; Metzger, J.O.; Schubert, U.S. Plant oil renewable resources as green alternatives in polymer science. Chem. Soc. Rev. 2007, 36, 1788–1802. [Google Scholar] [CrossRef]
- Shahidi, F. (Ed.) Bailey’s Industrial Oil and Fat Products, 6th ed.; Six Volume Set; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2005; 3616p. [Google Scholar]
- Aluyor, E.O.; Obahiagbon, K.O.; Ori-jesu, M. Biodegradation of vegetable oils: A review. Sci. Res. Essay 2009, 4, 543–548. [Google Scholar]
- Aluyor, E.O.; Ozigagu, C.E.; Oboh, O.I.; Aluyor, P.P. Chromatographic analysis of vegetable oils: A review. Sci. Res. Essay 2009, 4, 191–197. [Google Scholar]
- Abbasov, V.M.; Nasirov, F.A.; Rzayeva, N.S.; Nasirova, L.I.; Musayeva, K.Z. Epoxidated vegetable oils: Preparation, properties and application. Process. Petrochem. Oil Refin. 2018, 19, 427–449. [Google Scholar]
- Corma, A.; Iborra, S.; Velty, A. Chemical Routes for the Transformation of Biomass into Chemicals. Chem. Rev. 2007, 107, 2411–2502. [Google Scholar] [CrossRef] [PubMed]
- Cahoon, E.B.; Shockey, J.M.; Dietrich, C.R.; Gidda, S.K.; Mullen, R.T.; Dyer, J.M. Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: Solving bottlenecks in fatty acid flux. Curr. Opin. Plant Biol. 2007, 10, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Hill, K. Fats and oils as oleochemical raw materials. Pure Appl. Chem. 2000, 72, 1255–1264. [Google Scholar] [CrossRef]
- Williams, C.K.; Hillmyer, M.A. Polymers from renewable resources: A perspective for a special issue of polymer reviews. Polym. Rev. 2008, 48, 1–10. [Google Scholar] [CrossRef]
- Wypych, J. Polyvinyl Chloride Stabilization; Elsevier: Amsterdam, The Netherlands, 1986; 416p. [Google Scholar]
- Gan, L.H.; Ooi, K.S.; Goh, S.H.; Gan, L.M.; Leong, Y.C. Epoxidized esters of palm olein as plasticisers for poly(vinyl chloride). Europ. Polym. J. 1995, 31, 719–724. [Google Scholar] [CrossRef]
- Bunker, S.P.; Wool, R.P. Synthesis and characterization of monomers and polymers for adhesives from methyl oleate. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 451–458. [Google Scholar] [CrossRef]
- Petrović, Z.S.; Zlatanić, A.; Lava, C.C.; Sinadović-Fišer, S. Epoxidation of soybean oil in tolüene with peroxoacetic and peroxoformic acids—Kinetics and side reactions. Eur. J. Lipid Sci. Technol. 2002, 104, 293–299. [Google Scholar] [CrossRef]
- Sun, B.; Chaudhary, B.I.; Shen, C.Y.; Mao, D.; Yuan, D.M.; Dai, G.C.; Li, B.; Cogen, J.M. Thermal stability of epoxidized soybean oil and its absorption and migration in poly (vinylchloride). Polym. Eng. Sci. 2013, 53, 1645–1656. [Google Scholar] [CrossRef]
- Kim, N.; Li, Y.; Sun, X.S. Epoxidation of Camelina sativa oil and peel adhesion properties. Ind. Crop. Prod. 2015, 64, 1–8. [Google Scholar] [CrossRef]
- Varganici, C.-D.; Rosu, L.; Rosu, D.; Mustata, F.; Rusu, T. Sustainable wood coatings made of epoxidized vegetable oils for ultraviolet protection. Environ. Chem. Lett. 2021, 19, 307–328. [Google Scholar] [CrossRef]
- Li, Y.; Wang, D.; Sun, X.S. Epoxidized and acrylated epoxidized camelina oils for ultraviolet-curable wood coatings. J. Am. Oil Chem. Soc. 2018, 95, 1307–1318. [Google Scholar] [CrossRef]
- Ammar, S.; Iling, A.; Ramesh, K.; Ramesh, S. Development of fully organic coating system modified with epoxidized soybean oil with superior corrosion protection performance. Prog. Org. Coat. 2020, 140, 105523. [Google Scholar] [CrossRef]
- Ge, X.; Yu, L.; Liu, Z.; Liu, H.; Chen, Y.; Chen, L. Developing acrylated epoxidized soybean oil coating for improving moisture sensitivity and permeability of starch-based film. Int. J. Biol. Macromol. 2019, 125, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Miao, S.; Zhu, W.; Castro, N.J.; Nowicki, M.; Zhou, X.; Cui, H.; Fisher, J.P.; Zhang, L.G. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci. Rep. 2016, 6, 27226. [Google Scholar] [CrossRef] [PubMed]
- Caillol, S.; Desroches, M.; Boutevin, G.; Loubat, C.; Auvergne, R.; Boutevin, B. Synthesis of new polyester polyols from epoxidized vegetable oils and biobased acids. Eur. J. Lipid Sci. Technol. 2012, 114, 1447–1459. [Google Scholar] [CrossRef]
- Ang, K.P.; Lee, C.S.; Cheng, S.F.; Chuah, C.H. Synthesis of palm oil-based polyester polyol for polyurethane adhesive production. J. Appl. Polym. Sci. 2014, 131, 39967. [Google Scholar] [CrossRef]
- Gobin, M.; Loulergue, P.; Audic, J.-L.; Lemiègre, L. Synthesis and characterisation of bio-based polyester materials from vegetable oil and short to long chain dicarboxylic acids. Ind. Crop. Prod. 2015, 70, 213–220. [Google Scholar] [CrossRef]
- Cifarelli, A.; Boggioni, L.; Vignali, A.; Tritto, I.; Bertini, F.; Losio, S. Flexible polyurethane foams from epoxidized vegetable oils and a bio-based diisocyanate. Polymers 2021, 13, 612. [Google Scholar] [CrossRef]
- Branciforti, D.S.; Lazzaroni, S.; Milanese, C.; Castiglioni, M.; Auricchio, F.; Pasini, D.; Dondi, D. Visible light 3D printing with epoxidized vegetable oils. Addit. Manuf. 2019, 25, 317–324. [Google Scholar] [CrossRef]
- Shin, D.-G.; Kim, T.-H.; Kim, D.-E. Review of 4D printing materials and their properties. Int. J. Precis. Eng. Manuf.-Green Technol. 2017, 4, 349–357. [Google Scholar] [CrossRef]
- Balo, F.; Yücel, H.L.; Uçar, A. Physical and mechanical propertiies of materials prepared using class C fly ash and soybean oil. J. Porous Mater. 2009, 17, 553–564. [Google Scholar] [CrossRef]
- Balo, F.; Uçar, A.; Yücel, H.L. Development of the insulation materials from coal fly ash, perlite, clay and linseed oil. Ceram. Silik. 2010, 54, 182–191. [Google Scholar]
- Balo, F.; Yücel, H.L.; Uçar, A. Determination of the thermal and mechanical properties for materials containing epoxidised palm oil, clay and fly ash. Int. J. Sustain. Eng. 2010, 3, 47–57. [Google Scholar] [CrossRef]
- Balo, F.; Yücel, H.L.; Uçar, A. Research of the thermal and strength properties for materials obtained with sunflower oil. J. Adhes. Sci. Technol. 2011, 25, 1629–1645. [Google Scholar] [CrossRef]
- Balo, F. Castor oil-based building materials reinforced with fly ash, clay, expanded perlite and pumice powder. Ceram. Silik. 2011, 55, 280–293. [Google Scholar]
- Balo, F. Characterization of green building materials manufactured from canola oil and natural zeolite. J. Mater. Cycles Waste Manag. (JMCWM) 2015, 17, 336–349. [Google Scholar] [CrossRef]
- Balo, F. Feasibility study of “green” insulation materials including tall oil: Environmental, economical and thermal properties. Energy Build. 2015, 86, 161–175. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Y.; Yao, J.; He, M. Epoxidised soybean oil polymer composites reinforced with modified microcrystalline cellulose. J. Exp. Nanosci. 2016, 11, 1213–1226. [Google Scholar] [CrossRef]
- Gogoi, G.; Thakur, A.J.; Maji, T.K. Effect of Natural Crosslinker on the Properties of Chicken Feather and Modified Vegetable Oil Based Green Composites. J. Nat. Fibers 2022, 19, 7896–7908. [Google Scholar] [CrossRef]
- Supanchaiyamat, N.; Shuttleworth, P.S.; Sikhom, C.; Chaengkham, S.; Yue, H.B.; Fernandez-Blazquez, J.P.; Budarin, V.L.; Hunt, A.J. Bio-based carbonaceous composite materials from epoxidised linseed oil, bio-derived curing agent and starch with controllable functionality. RSC Adv. 2017, 7, 24282–24290. [Google Scholar] [CrossRef]
- Bhalerao, M.S.; Patwardhan, A.V.; Bhosale, M.A.; Kulkarni, V.M.; Bhanage, B.M. Epoxidised soybean oil–Cu/Cu2O bio-nanocomposite material: Synthesis and characterization with antibacterial activity. RSC Adv. 2016, 6, 38906–38912. [Google Scholar] [CrossRef]
- Supanchaiyamat, N.; Hunt, A.J.; Shuttleworth, P.S.; Ding, C.; Clark, J.H.; Matharu, A.S. Bio-based thermoset composites from epoxidised linseed oil and expanded starch. RSC Adv. 2014, 4, 23304–24290. [Google Scholar] [CrossRef]
- Anuar, H.; Rahman, N.A.A.; Manshor, M.R.; Alli, Y.A.; Alimi, O.A.; Alif, F.; Suhr, J. Novel soda lignin/PLA/EPO biocomposite: A promising and sustainable material for 3D printing filament. Mater. Today Commun. 2023, 35, 106093. [Google Scholar] [CrossRef]
- Sarma, A.D.; Federico, C.E.; Staropoli, M.; Nzulu, F.; Weydert, M.; Verge, P.; Schmidt, D.F. Properties of silica-filled rubber compounds vs. epoxidized oil content and degree of epoxidation. Ind. Crop. Prod. 2021, 168, 113600. [Google Scholar] [CrossRef]
- Lee, K.Y.; Ho, K.K.C.; Schlufter, K.; Bismarck, A. Hierarchical composites reinforced with robust short sisal fibre preforms utilising bacterial cellulose as binder. Compos. Sci. Technol. 2012, 72, 1479–1486. [Google Scholar] [CrossRef]
- Santmarti, A.; Zhang, H.; Lappalainen, T.; Lee, K.Y. Cellulose nanocomposites reinforced with bacterial cellulose sheets prepared from pristine and disintegrated pellicle. Compos. Part A Appl. Sci. Manuf. 2020, 130, 105766. [Google Scholar] [CrossRef]
- Sankar Lal, S.; Kannan, S.; Sahoo, S.K. Investigation on the effect of castor-oil based bio-resins on mechanical, visco-elastic, and water diffusion properties of flax fiber reinforced epoxy composites. Polym. Compos. 2023, 44, 4289–4308. [Google Scholar] [CrossRef]
- Nepomuceno, N.C.; Fook, M.V.L.; Ries, A.; Mija, A.; Wellen, R.M.R. Bio-Based Epoxy Resins of Epoxidized Soybean oil Cured with Salicylic acid Loaded with Chitosan: Evaluation of Physical–Chemical Properties. J. Polym. Environ. 2023, 31, 2566–2575. [Google Scholar] [CrossRef]
- Hu, Y.; Jia, P.; Lamm, M.E.; Sha, Y.; Kurnaz, L.B.; Ma, Y.; Zhou, Y. Plant oil-derived vitrimers-graphene composites with self-healing ability triggered by multiple stimuli. Compos. B Eng. 2023, 259, 110704. [Google Scholar] [CrossRef]
- Mohamed, H.M.; Awatif, I.I. The Use of Sesame Oil Unsaponifiable Matter as a Natural Antioxidant. Food Chem. 1998, 62, 269–276. [Google Scholar] [CrossRef]
- Saydut, A.; Duz, M.Z.; Kaya, C.; Kafadar, C.; Hamamci, A.B. Transesterified sesame (Sesamum indicum L.) seed oil as a biodiesel fuel. Bioresour. Technol. 2008, 99, 6656–6660. [Google Scholar] [CrossRef]
- Mordret, F. Detection of sesame oil. J. Crops Grass 1968, 6, 389–397. [Google Scholar]
- Musik, M.; Milchert, E. Selective epoxidation of sesame oil with peracetic acid. Mol. Catal. 2017, 433, 170–174. [Google Scholar] [CrossRef]
- Hyo-Jeong, B.; Cheong-Tae, K.; Hee Kim, B. Liquid and gas chromatographic analyses of triacylglycerols for Asian sesame oil traceability. Eur. J. Lipid Sci. Technol. 2014, 116, 1354–1362. [Google Scholar]
- Gryglewicz, S.; Piechocki, W.; Gryglewicz, G. Preparation of polyol esters based on vegetable and animal fats. Bioresour. Technol. 2003, 87, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Prabha Littis Malar, G.S.; Begila David, S. Synthesis and Characterization of Biodegradable Polyesters Based on Sesame Oil for Biomedical Field. Int. J. Sci. Res. (IJSR) 2015, 4, 1960–1964. [Google Scholar]
- Ocholi, O.; Bibian Oyoh, K.; Dominic Onukwuli, O. Synthesis and tribological evaluation of sesame oil-based trimethylolpropane ester. J. Chin. Adv. Mater. Soc. 2015, 3, 71–88. [Google Scholar]
- Musik, M.; Milchert, E.; Malarczyk-Matusiak, K. Technological parameters of epoxidation of sesame oil with performic acid. Pol. J. Chem. Tech. 2018, 20, 53–59. [Google Scholar] [CrossRef]
- Urszula Fabiszewska, A.; Białecka-Florjańczyk, E. Factors influencing synthesis of extracellular lipases by yarrowia lipolytica in medium containing vegetable oils. J. Microbiol. Biotech. Food Sci./Fabiszewska Białecka-Florjańczyk 2014, 4, 231–237. [Google Scholar] [CrossRef]
- Kumara, S.; Fernando, M.; Kalpage, S. Comparison of coconut/sesame/castor oils and their blends for transformer insulation. In Proceedings of the 2017 IEEE International Conference on Industrial and Information Systems (ICIIS), Peradeniya, Sri Lanka, 15–16 December 2017. [Google Scholar]
- Karunanayak, L.; Fernando, P.N.J. Effect of incorporation of peanut and sesame oils and their epoxides on the structure of Poly Vinyl Chloride. J. Nat. Sci. Found. Sri Lanka 2006, 34, 97–102. [Google Scholar] [CrossRef]
- Available online: https://www.thespruce.com/fly-ash-applications-844761 (accessed on 21 January 2025).
- Khot, N.S.; Lascala, J.J.; Can, E.; Morye, S.S.; Williams, I.G.; Palmese, R.G.; Kusefoğlu, S.H.; Wool, P.R. Development and Application of Triglyceride Based Polymers and Composites. J. Appl. Polym. Sci. 2001, 82, 703–723. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Bhojaraju, C.; Ouellet-Plamondon, C. Clay as a Sustainable Binder for Concrete—A Review. Constr. Mater. 2021, 1, 134–168. [Google Scholar] [CrossRef]
- Zhang, X.; Hendro, W.; Fujii, M.; Tomimura, T.; Imaishi, N. Measurements of the Thermal Conductivity and Thermal Diffusivity of Polymer Melts with the Short-Hot-Wire Method. Int. J. Thermophys. 2002, 23, 1077–1090. [Google Scholar] [CrossRef]
- Uçar, A.; İnalli, M.; Balo, F. Application of three different methods for determination of optimum insulation thickness in external walls. Environ. Prog. Sustain. Energy 2011, 30, 709–719. [Google Scholar] [CrossRef]
- Vysniauskas, V.V.; Zikas, A.A. Determination of Thermal Conductivity by the Hot Wire Technique. Heat Transf. Sov. Res. 1988, 20, 137–142. [Google Scholar]
- TS 699 standards; Natural Building Stones–Methods of Inspection and Laboratory Testing. TSE: Ankara, Turkey, 2016.
- Zhu, L.; Wool, R.P. Nanoclay Reinforced Bio-Based Elastomers: Synthesis and Characterization. Polymer 2006, 47, 8106–8115. [Google Scholar] [CrossRef]
- Song, B.; Chen, W.; Liu, Z.; Erhan, S. Compressive Properties of Epoxidized Soybean Oil/Clay Nanocomposites. Int. J. Plast. 2006, 22, 1549–1568. [Google Scholar] [CrossRef]
- TS 825 Standards; Thermal Insulation Requirements in Buildings. TSE: Ankara, Turkey, 2024.
- Çelik, M.H.; Yilmaz Aruntaş, H.; Baran, Y. Effect of Seyitömer and Çayirhan fly ashes on the starting and ending setting times of Portland cement-fly ash (pç-uk) paste (Seyitömer ve çayirhan uçucu küllerinin portland çimentosu-uçucu kül (pç-uk) hamurunun priz başlama ve sonu sürelerine etkisi). J. Polytech. 2003, 6, 397–409. [Google Scholar]
- Sagbansua, L.; Balo, F. A novel simulation model for development of renewable materials with waste-natural substance in sustainable buildings. J. Clean. Prod. 2017, 158, 245–260. [Google Scholar] [CrossRef]
- Balo, F.; Sua, L.S. Techno-Economic Optimization Model for “Sustainable” Insulation Material Developed for Energy Efficiency. Int. J. Appl. Ceram. Technol. 2018, 15, 792–814. [Google Scholar] [CrossRef]
- Raquez, J.M.; Del’eglise, M.; Lacrampe, M.F. Thermosetting (bio)materials derived from renewable resources: A critical review. Prog. Polym. Sci. 2010, 35, 487–509. [Google Scholar] [CrossRef]
- Ragauskas, A.J.; Williams, C.K.; Davison, B.H. The path forward for biofuels and biomaterials. Science 2006, 311, 484–489. [Google Scholar] [CrossRef]
Acid | Formula | Structure (C:DB) | Formula | Chemical Structure |
---|---|---|---|---|
Lycanic | C18H28O3 | 18:3 | 4-oxo-cis, trans, trans-11,13octadeca-trienoic | |
Vernolic | C18H32O3 | 18:1 | 12,13-epoxy-cis-9octadecenoic | |
Ricinoleic | C18H34O3 | 18:1 | 9-12-hydroxy-cis-9octadece- noic | |
Erucic | C22H42O2 | 22:1 | cis-13-dosocenoic | |
Alfa-eleosteafic | C18H30O2 | 18:3 | cis, trans, trans-, 1113octadeca-trienoic | |
Linolenic | C18H30O2 | 18:3 | cis-9,12,15-octadecatrienoic, cis | |
Linoleic | C18H32O2 | 18:2 | Cis/9,12-15/octadecadienoic, cis | |
Oleic | C18H34O2 | 18:1 | Cis/9/octadecenoic | |
Palmitoleic | C16H30O2 | 16:1 | Cis/9-hexadecenoic | |
Lignoceric | C24H48O2 | 24:0 | Tetracosanoic | |
Behenic | C22H44O2 | 22:0 | Docosanoic | |
Arachic | C20H40O2 | 20:0 | Eicosanoic | |
Stearic | C18H36O2 | 18:0 | Octadecanoic | |
Palmitinic | C16H32O2 | 16:0 | Hexadecanoic | |
Myristitic | C14H28O2 | 14:0 | Tetradecanoic | |
Lauric | C12H24O2 | 12:0 | Dodecanoic |
Ref. | Results | Materials | Implementation |
---|---|---|---|
[36] | The hydrophilicity of the composite is improved due to the OH− classes present in the grafted polymer. | Soybean oil (epoxidized) + cellulose powder (microcrystalline) + 1-methylimidazole + cis-1,2-cyclohexane-carboxylic anhydride | Cosmetics, food processing, pharmaceutical, and medical implementation |
[37] | As a substitute crosslinker for epoxy, divinyl acrylic polymeric acid is synthesized from rosin acid. The addition of divinyl acrylic pimaric acid to epoxy resulted in reduced water absorption and volumetric swelling. | Soybean oil (methacrylated) + fibers of chicken feather + tert-butyl-peroxybenzoate + co-monomer | Household items (panels, frames, chairs, etc.) |
[38] | The Young’s modulus increased by 400%, and the maximum tensile strength improved by 260%. The composite exhibited thermal stability up to 300 °C. | Linseed oil (epoxidized) + synthesized fillers + pripol1009 + DMAP | Bio-sourced thermoset materials, high-temperature implementations, membrane separation. |
[39] | A nanocomposite with excellent thermal stability and strong antibacterial properties was developed. | Soybean oil (dried epoxidized) + DMAP + Cu2O NPs/Cu | Biomedical applications, anti-bacterial material |
[40] | The addition of 10 weight percent starch results in a slight improvement in mechanical features. Increasing the starch content to 20 weight percent leads to approximately a 150% increase in Young’s modulus and tensile strength, while elongation at break decreases by 12%. | Linseed oil (epoxidized) + pripol-1009 + DMAP + starch (expanded) | Bio-sourced option, biocomposite, vinyl films |
[41] | There is an increase in impact strength (37%), flexural modulus (2%), and tensile strain (4%) | Plant oils (epoxidized) + lignin powder (alkaline) + PLA | 3 dimensional printing implementation |
[42] | For dynamic loading, a silica-to-silanol ratio of 0.6 is found to be ideal, whereas a ratio of 2.0 is helpful for static applications. | Plant oils (epoxidized) + stearic acid + zinc oxide + silica + butadiene rubber + styrene butadiene rubber | Dynamic and static implementation |
[43] | Strength, flexural modulus, Young’s modulus, and tensile strength all improved. The reduced amplitude of tan(δ) in the produced composite indicates enhanced interfacial adhesion between the fibers and the matrix. | Soybean oil (epoxidized and acrylated) + sisal preforms (short) + luperox P | Bio-composite materials |
[44] | Higher non-homogeneity was observed in sheets made from distorted pellicles through β-radiography. Pristine pellicle sheets exhibited high tensile strength and fracture toughness. | Soybean oil (epoxidized and acrylated) + pristine sheet and cellulose pellicle (bacterial) | Composite materials for medical implementation |
[45] | An improvement in fracture toughness, impact strength, and tensile strength was observed. When flax fiber was added, impact strength and cross-linking were enhanced, while epoxy methyl ricin oleate exhibited a higher storage modulus compared to castor oil (epoxidized). | Castor oil (epoxidized) + flax woven + sodium methoxide + methanol | Automotive and structural implementation |
[46] | The reaction enthalpy was higher with 1%/3% chitosan loading compared to 5% loading. Chitosan’s low crosslinking density was indicated by its swelling ratio. | Soybean oil (epoxidized) + salicylic acid + chitosan | Composites, curing agents |
[47] | Trimer formation occurs due to the combination of anhydride and epoxy groups. The increase in tensile strength is attributed to H2 bonding. | Soybean oil (epoxidized) + maleic anhydride tung oil and Tung oil and soybean oil (epoxidized) + maleic anhydride | Self-healing implementation |
Acid Name | Sesame | Com | Canola | Olive | Rapeseed | Sunflower | Grape | Flaxseed | Rice Oil | Peanut | C:DC |
---|---|---|---|---|---|---|---|---|---|---|---|
Newomc | 0 | 0 | 0.12 | 0 | 0.12 | 0 | 0 | 0 | 0 | 0 | 24:1 |
Lignoceric | 0.08 | 0.17 | 0.13 | 0.05 | 0.16 | 0.24 | 0.16 | 0.12 | 0.42 | 1.39 | 24:0 |
Elucic | 0 | 0 | 0 | 0 | 0.07 | 0.04 | 0.05 | 0 | 0.06 | 0.21 | 22:1 |
Behenic | 0.13 | 0.12 | 0.25 | 0.11 | 0 | 0.78 | 0.41 | 0.16 | 0.26 | 2.62 | 22:0 |
- | 0.19 | 028 | 0.98 | 029 | 126 | 0.16 | 0.19 | 0.10 | 0.53 | 1.15 | 20:1 |
Arachidic | 0.62 | 0.41 | 0.53 | 0.41 | 0.58 | 0.24 | 0.27 | 0.16 | 0.87 | 1.47 | 20:0 |
Linolenic | 0 | 0.8 | 6.01 | 0.63 | 8.08 | 0.05 | 0.85 | 52.65 | 0.93 | 0.5 | 18:3 |
Linoleic | 43.19 | 56.31 | 18.66 | 6.17 | 18.47 | 5825 | 60.45 | 15.85 | 30.26 | 19.96 | 18:2 |
Oleic | 40.05 | 28.38 | 51.35 | 77.86 | 64.47 | 30.4 | 25.39 | 20.38 | 44.93 | 59.26 | 18:1 |
Stearic | 5.77 | 1.78 | 2.37 | 3.15 | 193 | 3.27 | 3.8 | 4.35 | 2.06 | 3.53 | 18:0 |
Margarooleic | 0 | 0.03 | 0.06 | 0.13 | 0.09 | 0.03 | 0.04 | 0 | 0.02 | 0.05 | 17:1 |
Margaric | 0.04 | 0.06 | 0.06 | 0.07 | 0.05 | 0.04 | 0.05 | 0.06 | 0.04 | 0.07 | 17:0 |
Palmitooleic | 0.15 | 0.13 | 0.25 | 0.81 | 024 | 0.13 | 0.15 | 0.07 | 4.06 | 0.13 | 16:1 |
Palmitic | 9.32 | 11.06 | 12.53 | 1027 | 4.05 | 6.62 | 8.06 | 5.87 | 15.23 | 9.47 | 16:0 |
Myristic | 0.02 | 0.03 | 0.29 | 0 | 0.05 | 0.07 | 0.07 | 0 | 0.26 | 0.03 | 14:0 |
Features | Unit | Value |
---|---|---|
Viscosity | [cSt (mm2/s) at 40 °C] | 36 |
Acidity | [mg·KOH/g.oil] | 4.6 |
Pour point | [°C] | −9 |
Loss tangent at 50 Hz | [%] | 18 |
Conductivity at 1 mHz | [pS/m] | 1041 |
Permittivity at 1 kHz | [cSt (mm2/s)] | 3.04 |
Average Breakdown Voltage | [kV] | 14.3 |
Total saturation | [%] | 13 |
Total unsaturation | [%] | 87 |
Strategies | Catalysts | Reactants | Disadvantages | Advantages |
---|---|---|---|---|
Polyoxometalate catalysts methodology | Polyoxometalates | H2O2 | Difficult separation | Restricted side reactions |
No reusability | Mild circumstances quickly | |||
Catalysts’ deactivation | Full conversion | |||
Instability | High selectivity | |||
Chemoenzymatic catalysis | Biocatalyst | H2O2, Fatty acid | No reusability | Restricted side reactions |
High cost | Mild circumstances | |||
Less stability | Enhanced chemoselectivity | |||
High stereoselectivity and regioselectivity | ||||
High Yield | ||||
Metal mediated Differential catalysis | Metal sourced catalysts | H2O2, Carboxylic acid | Less regioselectivity | Less costs |
Toxicity | Restricted oxirane ring opening | |||
Less stereoselectivity | Limit side reactions | |||
Maximum selectivity | ||||
High conversion and yield | ||||
Heterogenous Catalysis | Acidic ion exchange resins | H2O2, Carboxylic acid | High costs | Easy produce separation |
Less stereoselectivity | Restricted side reactions | |||
Less regioselectivity | More selectivity | |||
Great yield | ||||
Green and clean | ||||
Homogenous Catalysis | Mineral acid | H2O2, Carboxylic acid | Thermal runway | Less cost |
Side reactions | Great yield, | |||
Corrosion | ||||
Decreased Selectivity |
SiO2 | Fe2O3 | Al2O3 | CaO | Na2O | K2O | SO3 | MgO | Ignition Loss | (Unknown) | |
---|---|---|---|---|---|---|---|---|---|---|
wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | wt% | |
Fly ash (Seyithan) | 33.54 | 4.43 | 15.27 | 34.62 | 0.18 | 1.42 | 2.56 | 2.65 | 5.18 | 0.19 |
Clay | 48 | 16.80 | 16.24 | 0.42 | 1.10 | 0.70 | 0.12 | 0.56 | 16.00 | 0.06 |
Features | Unit | Value |
---|---|---|
Epoxidation extent | [%] | 96.2 |
Moisture content | [%] | 7.57 |
Density | [g·mL−1] | 1.04 |
Iodine index | [gI2/100 g] | 7.67 |
Acid index | [mg·(NaOH)·g−1] | 18.7 |
Acid number | [mg·(KOH)/g−1] | 8.11 |
Oxirane oxygen | [%(p/p)] | 1.775 |
Thermal conductivity coefficient | [W/mK] | 0.82 |
Process parameters with Performic acid | ||
Reaction yield | [%] | 28.53 |
Carboxlic acid/C=C molar ratio | [mol/mol] | 0.8:1 |
Glycols concentration | [mol/IOO g oil] | 0.03 |
Conversion | [%] | 90.7 |
Relative conversion to oxirane | [%] | 84.6 |
Oxirane O2 content | [%] | 5.5 |
Selectivity | [%] | 93.2 |
Epoxy number | [mol/100 g oil] | 0.34 |
Stirring speed | [wt%-rpm] | 700 |
Temperature | [°C] | 80 |
Sample Codes Range from ‘SE1’ for ‘1’ to ‘SE45’ for ‘45’. | |||||||||
---|---|---|---|---|---|---|---|---|---|
Exp. Clay -Fly Ash | 145 °C | 165 °C | 185 °C | ||||||
30% | 35% | 40% | 30% | 35% | 40% | 30% | 35% | 40% | |
70–30% | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
60–40% | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
50–50% | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
40–60% | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
30–70% | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 |
Material | Density (g/cm3) | Thermal Conductivity Coefficient (W/mK) |
---|---|---|
Seyitömer chimney bottom fly ash | 2.100 | 0.097 |
Clay | 1.527 | 1.002 |
Type | Insulated Wall Structure | External Plaster | Building Material | Insulation Material | Building Material | Internal Plaster | |
---|---|---|---|---|---|---|---|
(From Outdoor to Indoor) | |||||||
GROUP A | 1 | Sandwich | + | gas concrete | EPS | gas concrete | + |
2 | Sandwich | + | gas concrete | XPS | gas concrete | + | |
3 | Sandwich | + | gas concrete | rock wool | gas concrete | + | |
4 | Sandwich | + | gas concrete | polyurethane | gas concrete | + | |
5 | Sandwich | + | bims | EPS | bims | + | |
6 | Sandwich | + | bims | XPS | bims | + | |
7 | Sandwich | + | bims | rock wool | bims | + | |
8 | Sandwich | + | bims | polyurethane | bims | + | |
9 | Sandwich | + | brick | EPS | brick | + | |
10 | Sandwich | + | brick | XPS | brick | + | |
11 | Sandwich | + | brick | rock wool | brick | + | |
12 | Sandwich | + | brick | polyurethane | brick | + | |
13 | Sandwich | + | SE45 | EPS | SE45 | + | |
14 | Sandwich | + | SE45 | XPS | SE45 | + | |
15 | Sandwich | + | SE45 | rock wool | SE45 | + | |
16 | Sandwich | + | SE45 | polyurethane | SE45 | + | |
GROUP B | 17 | Internal | + | gas concrete | EPS | - | + |
18 | Internal | + | gas concrete | XPS | - | + | |
19 | Internal | + | gas concrete | rock wool | - | + | |
20 | Internal | + | gas concrete | polyurethane | - | + | |
21 | Internal | + | bims | EPS | - | + | |
22 | Internal | + | bims | XPS | - | + | |
23 | Internal | + | bims | rock wool | - | + | |
24 | Internal | + | bims | polyurethane | - | + | |
25 | Internal | + | brick | EPS | - | + | |
26 | Internal | + | brick | XPS | - | + | |
27 | Internal | + | brick | rock wool | - | + | |
28 | Internal | + | brick | polyurethane | - | + | |
29 | Internal | + | SE45 | EPS | - | + | |
30 | Internal | + | SE45 | XPS | - | + | |
31 | Internal | + | SE45 | rock wool | + | ||
32 | Internal | + | SE45 | polyurethane | + | ||
GROUP C | 33 | External | + | - | EPS | gas concrete | + |
34 | External | + | - | XPS | gas concrete | + | |
35 | External | + | - | rock wool | gas concrete | + | |
36 | External | + | - | polyurethane | gas concrete | + | |
37 | External | + | - | EPS | bims | + | |
38 | External | + | - | XPS | bims | + | |
39 | External | + | - | rock wool | bims | + | |
40 | External | + | - | polyurethane | bims | + | |
41 | External | + | - | EPS | brick | + | |
42 | External | + | - | XPS | brick | + | |
43 | External | + | - | rock wool | brick | + | |
44 | External | + | - | polyurethane | brick | + | |
45 | External | + | - | EPS | SE45 | + | |
46 | External | + | - | XPS | SE45 | + | |
47 | External | + | - | rock wool | SE45 | + | |
48 | External | + | - | polyurethane | SE45 | + |
Material | Exter. Plast. | Building Materials | Insulation Materials | Inter. Plast. | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Gas Concrete | Bims | Brick | SE45 | EPS | XPS | Stone Wool | Polyurethane | |||
Thickness (m) | 0.02 | 0.20 | 0.20 | 0.20 | 0.20 | 0.05 | 0.05 | 0.05 | 0.05 | 0.03 |
Thermal conductivity (W/mK) | 0.85 | 0.18 | 0.23 | 0.62 | 0.256 | 0.035 | 0.034 | 0.041 | 0.030 | 1.40 |
Density (g/cm3) | 1.400 | 0.82 | 0.77 | 1.80 | 1.30 | 0.024 | 0.022 | 0.215 | 0.033 | 2.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balo, F. Theoretical Modelling, Experimental Testing and Simulation Analysis of Thermal Properties for Green Building-Insulation Materials. Polymers 2025, 17, 340. https://doi.org/10.3390/polym17030340
Balo F. Theoretical Modelling, Experimental Testing and Simulation Analysis of Thermal Properties for Green Building-Insulation Materials. Polymers. 2025; 17(3):340. https://doi.org/10.3390/polym17030340
Chicago/Turabian StyleBalo, Figen. 2025. "Theoretical Modelling, Experimental Testing and Simulation Analysis of Thermal Properties for Green Building-Insulation Materials" Polymers 17, no. 3: 340. https://doi.org/10.3390/polym17030340
APA StyleBalo, F. (2025). Theoretical Modelling, Experimental Testing and Simulation Analysis of Thermal Properties for Green Building-Insulation Materials. Polymers, 17(3), 340. https://doi.org/10.3390/polym17030340